
Learning Web Request Patterns

Brian D. Davison

Department of Computer Science and Engineering, Lehigh University
19 Memorial Drive West, Bethlehem, PA 18015 USA
email: davison@lehigh.edu

Brian D. Davison. (2004) Learning Web request patterns. In A. Poulovassilis and
M. Levene (eds), Web Dynamics: Adapting to Change in Content, Size, Topology
and Use, pp. 435–460, Springer.

Summary. Most requests on the Web are made on behalf of human users, and like
other human-computer interactions, the actions of the user can be characterized by
identifiable regularities. Much of these patterns of activity, both within a user, and
between users, can be identified and exploited by intelligent mechanisms for learn-
ing Web request patterns. Our focus is on Markov-based probabilistic techniques,
both for their predictive power and their popularity in Web modeling and other
domains. Although history-based mechanisms can provide strong performance in
predicting future requests, performance can be improved by including predictions
from additional sources.

In this chapter we review the common approaches to learning and predicting
Web request patterns. We provide a consistent description of various algorithms
(often independently proposed), and compare performance of those techniques on
the same data sets. We also discuss concerns for accurate and realistic evaluation of
these techniques.

1 Introduction

Modeling user activities on the Web has value both for content providers and
consumers. Consumers may appreciate better responsiveness as a result of
pre-calculating and of pre-loading content into a local cache in advance of
their requests. A user requesting content that can be served by the cache is
able to avoid the delays inherent in the Web, such as congested networks and
slow servers. Additionally, consumers may find adaptive and personalized Web
sites that can make suggestions and improve navigation to be useful. Likewise,
the content provider will appreciate the insights that modeling can provide
and the financial benefits of a happier consumer that gets the information
desired even faster.

Most requests on the Web are made on behalf of human users, and like
other human-computer interactions, the actions of the user can be charac-
terized as having identifiable regularities. Much of these patterns of activity,

2 B. D. Davison

both within a user, and between users, can be identified and exploited by
intelligent mechanisms for learning Web request patterns.

Prediction here is different from what data mining approaches do with
Web logs. We wish to build a (relatively) concise model of the user so as to be
able to dynamically predict the next action(s) that the user will take. Data
mining of Web logs, in contrast, is typically concerned with characterizing
the user, finding common attributes of classes of users, and predicting future
actions (such as purchases) without the concern for interactivity or immediate
benefit (e.g., see the KDD-Cup 2000 competition [8]).

Therefore we might consider the application of machine learning tech-
niques [44] to the problem of Web request sequence prediction. In particular,
we wish to be able to predict the next Web page that a user will select. This
chapter will demonstrate the use of machine learning models on real-world
traces with predictive accuracies of 12-50% or better, depending on the trace.

Sequence prediction in general is a well-studied problem, particularly
within the data compression field (e.g., [4, 19, 64]). Unfortunately, some in
the Web community have rediscovered many of these techniques, leading to is-
lands of similar work with dissimilar vocabulary. Here we will both re-examine
these techniques as well as offer modifications motivated by the Web domain.
This chapter will describe, implement, and experimentally evaluate a number
of methods to model usage and predict Web requests. Our focus will be on
Markov-based and Markov-like probabilistic techniques, both for their predic-
tive power, but also their popularity in Web modeling and other domains.

Prediction can be applied to various types of Web workloads — those seen
by clients, proxies, and servers. Each location provides a different view of Web
activities, and the context in which they occur. As a result, different levels of
performance will be possible.

We will also briefly consider information retrieval techniques to allow the
use of the content of Web pages to help predict future requests. Although
history-based mechanisms can provide strong performance in predicting fu-
ture requests, we will find that performance can be improved by including
predictions from additional sources.

Our contributions in this chapter include the consistent description of var-
ious algorithms (often independently proposed), the development and utiliza-
tion of generalized prediction codes to implement some of those techniques,
and consistent comparison of the performance of those techniques across data
sets.

In the next section, we will detail the many concerns for accurate and real-
istic performance assessment, and describe the approaches we will take in the
empirical evaluation of various Web request prediction algorithms. In Section
3 we review the common approaches to learning and predicting Web request
patterns. In Section 4 we describe the workloads used by our system (which
is summarized in Section 5). We present and discuss experimental results in
Sections 6 and 7. An alternative to history-based prediction is proposed in
Section 8. Section 9 reviews the findings of this chapter.

Learning Web Request Patterns 3

2 Evaluation concerns and approaches

Because much of the existing work on learning Web request patterns has been
performed by researchers in many disciplines, we first discuss the various as-
pects of how and what to evaluate when we compare Web request predic-
tion algorithms. Two high-level concerns that we address are the questions
of whether to modify typical evaluation approaches to better fit the domain,
and whether to modify predictions to better fit the domain, or both.

2.1 Type of Web logs used

One important aspect of any experimental work is the data sets used in the
experiments. While we will introduce the Web workloads that we will use in
Section 4, the type of workload is an evaluation issue. At a high level, we are
simply concerned with methods that learn models of typical Web usage. How-
ever, at a lower level, those models are often simply identifying co-occurrences
among resources — with the ultimate goal to make accurate predictions for
resources that might be requested given a particular context.

However, there are multiple types of relationships between Web resources
that might cause recognizable co-occurrences in Web logs [6, 18, 16]. One
possible relationship is that of an embedded object and its referring page — an
object, such as an image, audio, or Java applet that is automatically retrieved
by the browser when the referring page is rendered. Another relationship is
that of traversal — when a user clicks on a link from the referring page to
another page. The first (embedding) is solely an aspect of how the content
was prepared. The second (traversal), while likewise existing because of a link
placed by the content creator, is also a function of how users navigate through
the Web hypertext.

Many researchers (see, for example [36, 45, 49, 69, 61, 59, 66, 11]) dis-
tinguish between such relationships and choose not to make predictions for
embedded resources. They are concerned with “click-stream” analysis — just
the sequence of requests made by the user and not the set of automatically
requested additional resources. Sometimes the data can provide the distinc-
tion for us — a Web server often records the referrer in its access logs, which
captures the traversal relationship. But the HTTP referrer header is not a
required field, and is thus not always available. In other cases, analysis of
the data is required to label the kind of request — for example, requests for
embedded links are usually highly concentrated in time near the referring
page. Unfortunately, many of the publicly available access logs do not pro-
vide sufficient detail to allow us to make such distinctions conclusively. In
addition, methods that use click-stream data exclusively will require a more
complex implementation, as they assume that the embedded resources will
be prefetched automatically, which requires parsing and may miss resource
retrievals that are not easily parsed (such as those that result from JavaScript
or Java execution). As a result, in this chapter we have chosen to disregard

4 B. D. Davison

the type of content and the question of whether it was an embedded resource
or not, and instead use all logged requests as data for training and prediction.
This approach is also taken by Bestavros et al. [6, 5], and Fan et al. [28].

2.2 Per-user or per-request averaging

One can calculate average performance on a per-user (sometimes termed
macroaverage) or per-request (microaverage) basis. Macroaverage perfor-
mance treats all users equally, even though some users will be more active
and generate more traffic than others. In contrast, microaverage performance
emphasizes the requests made by highly active users.

While predictions in the approaches we examine are made on a per-user
basis (that is, on the basis of that user’s previous request which is not neces-
sarily the most recent request in the system), we don’t always build per-user
predictive models. Individual models of behavior require more space, and tend
to be less accurate because they see less data than a global model. In our ex-
periments, we will build global models (which can be thought of as modeling
the typical user) for Web servers and proxies, and only consider per-user mod-
els when making predictions at the client. Thus for comparison, we will report
only per-request averages.

2.3 User request sessions

A session is a period of sustained Web activity by a user. In most traces,
users have request activities that could be broken into sessions. In practice,
it may be helpful to mark session boundaries to learn when not to prefetch,
but alternately, it may be desirable to prefetch the first page that the user
will request at the beginning of the next session. We have not analyzed the
data sets for sessions — for the purposes of this chapter, each trace is treated
like a set of per-user strings of tokens. Thus, even though a Web log contains
interleaved requests by many clients, our algorithms will consider each pre-
diction for a client solely in the context of the requests made by the same
client. In addition, it does not matter how much time has passed since the
previous request by the same client, nor what the actual request was. If the
next request received matches the predicted request, it is considered a success.

2.4 Batch versus online evaluation

The traditional approach to machine learning evaluation is the batch ap-
proach, in which data sets are separated into distinct training and test sets.
The algorithm attempts to determine the appropriate model by learning from
the training set. The model is then used statically on the test set to evaluate
its performance. This approach is used in a number of Web prediction papers
(e.g., [69, 1, 45, 57, 61, 66, 67, 65, 11]). While we can certainly do the same

Learning Web Request Patterns 5

(and will do so in one case for system validation), our normal approach will
be to apply the predictive algorithms incrementally, in which each request
serves to update the current user model and assist in making a prediction for
the next request. This matches the approach taken in other Web prediction
papers (e.g., [47, 48, 28, 49]). This model is arguably more realistic in that it
matches the expected implementation — a system that learns from the past
to improve its predictions in the future. Similarly, under this approach we can
test the code against all requests (not just a fraction assigned to be a test set),
with the caveat that performance is likely to be poor initially before the user
model has acquired much knowledge (although some use an initial warming
phase in which evaluation is not performed to alleviate this effect).

When using the prediction system in a simulated or actual system, note
that the predictions may cause the user’s actual or perceived behavior to
change. In prefetching, the user may request the next document faster if there
was no delay in fetching the first (because it was preloaded into a cache). Like-
wise, a proxy- or server-based model that sends hints about what to prefetch
or content to the browser will change the reference stream that comes out
of the browser, since the contents of the cache will have changed. Thus, the
predictive system may have to adjust itself to the change in activity that was
caused by its operation. Alternatively, with appropriate HTTP extensions, the
browser could tell the server about requests served by the cache (as suggested
in [28, 26]). While it might be helpful to incorporate caching effects, in this
chapter we limit ourselves to models that are built from the same requests as
those which are used for evaluation. This model is appropriate for prefetching
clients and proxies, as long as they don’t depend on server hints (built with
additional data).

2.5 Selecting evaluation data

Even when using an online per-user predictive model, it will be impossible
for a proxy to know when to “predict” the first request, since the client had
not connected previously. Note that if the predictions are used for server-side
optimization, then a generic prefetch of the most likely first request for any
user may be helpful and feasible, and similarly for clients a generic pre-loading
of the likely first request can be helpful. Likewise, we cannot test predictions
made after the user’s last request in our sample trace. Thus, the question
of which data to use for evaluation arises. While we will track performance
along many of these metrics, we will generally plot performance on the broad-
est metric — the number of correct predictions out of the total number of
requests. This is potentially an underestimate of performance, as the first
requests and the unique requests (that is, those requests that are never re-
peated) are counted, and may become less of a factor over time. If we were
to break the data into per-user sessions, this would be a larger factor as there
would be more first and last requests that must be handled.

6 B. D. Davison

2.6 Confidence and support

In most real-world implementation scenarios, there is some cost for each pre-
diction made. For example, the cost can be cognitive if the predictions generate
increased cognitive load in a user interface. Or the cost can be financial, as
in prefetching when there is a cost per byte retrieved. Thus, we may wish to
consider exactly when we wish to make a prediction — in other words, to
refrain from taking a guess at every opportunity.

We consider two mechanisms to reduce or limit the likelihood of making
a false prediction. They are:

• Thresholds on confidence. Confidence is loosely defined as the probability
that the predicted request will be made, and is typically based on the
fraction of the number of times that the predicted request occurred in this
context in the past. Our methods use probabilistic predictors, and thus
each possible prediction has what can be considered an associated proba-
bility. By enforcing a minimum threshold, we can restrict the predictions
to those that have high expected probability of being correct. Thresholds
of this type have been used previously (e.g., [47, 48, 41, 25, 65, 11]).

• Thresholds on support. Support is strictly the number of times that the
predicted request has occurred in this context. Even when a prediction
probability (i.e., confidence) is high, that value could be based on only a
small number of examples. By providing a minimum support, we can limit
predictions to those that have had sufficient experience to warrant a good
prediction [36, 58, 41, 28, 55, 61, 25, 66, 65].1

Typically, these two factors are be combined in some function.

2.7 Calculating precision

Given the ability to place minimum thresholds on confidence and support,
the system may choose to refrain from making a prediction at all. Thus, in
addition to overall accuracy (correct predictions / all requests), we will also
calculate precision — the accuracy of the predictions when predictions are
made. However, the exact selection of the denominator can be uncertain. We
note at least two choices: those requests for which a prediction was attempted,
and those requests against which a prediction was compared. The former
includes predictions for requests that were never received (i.e., made beyond
the last request received from a client). Since we cannot judge such predictions,
when reporting precision, we will use the latter definition.

1 In fact, Su et al. [61] go further, requiring thresholds not only of page popularity
(i.e., support), but also ignoring sequences below some minimum length.

Learning Web Request Patterns 7

2.8 Top-n predictions

All of the variations we have described above provide probabilities to de-
termine a prediction. Typically there are multiple predictions possible, with
varying confidence and support. Since it may be useful (and feasible) to make
predictions for more than one object simultaneously, we will explore the costs
and benefits of various sets of predictions. As long as additional predictions
still exceed minimum confidence and support values, we will generate them,
up to some maximum prediction list length of n. The top-n predictions can
all be used for prediction (and, for example, prefetching), and depending on
the evaluation metric, it may not matter which one is successful, as long as
one of the n predictions is chosen by the user.

In some systems (e.g., [28]), there are no direct limits to the number of
predictions made. Instead, effective limits are achieved by thresholds on con-
fidence or support, or by available transmission time when embedded in a
prefetching system. In this chapter we do not directly limit the number of
predictions, but instead consider various threshold values. Limits are typi-
cally needed to trade off resources expended versus benefits gained, and that
trade-off depends on the environment within which the predictions are being
made.

3 Prediction Techniques

In this section we describe a number of prediction algorithms and their vari-
ations used by Web researchers.

3.1 n-grams and Markov Models

Typically the term sequence is used to describe an ordered set of actions (Web
requests, in this case). Another name, from statistical natural language pro-
cessing, for the same ordered set is an n-gram. Thus, an n-gram is a sequence
of n items. For example, the ordered pair (A, B) is an example 2-gram (or
bigram) in which A appeared first, followed by B.

For prediction, we would try to match the complete prefix of length n− 1
(i.e., the current context) to an n-gram, and predict the nth request based on
the last item of the n-gram. Since there may be multiple n-grams with the
same prefix of n− 1 requests, and n-grams do not natively provide the means
to track their frequency, a mechanism is needed to determine which n-gram
(of those matching the n − 1 request prefix) should be used for prediction.

Markov models provide that means, by tracking the likelihood of each n-
gram in a state space encoding the past. In this approach, we explicitly make
the Markov assumption which says that the next request is a function strictly
of the current state. In a k-step Markov model, then, each state represents
the sequence of k previous requests (the context), and has probabilities on

8 B. D. Davison

Fig. 1. A sample node in a Markov tree.

the transitions to each of the next possible states. Since k is fixed, there are
at most |a|k states in such a system (where |a| is the number of possible
requests).

Each state in the Markov model corresponds to the sequence of k = n− 1
requests that comprise the prefix of an n-gram. The nth element of the n-
gram (the next request) determines the destination of a link from this state
to a future state, with a label corresponding to the last n − 1 requests in the
n-gram. Thus a Markov model can encompass the information in multiple
n-grams, but additionally tracks the likelihood of moving from one state to
another.

Typically k is fixed and is often small in practice to limit the space cost
of representing the states. In our system we allow k to be of arbitrary size,
but in practice we will typically use relatively small values (primarily because
long sequences are infrequently repeated on the Web).

3.2 Markov Trees

A more capable mechanism for representing past activity in a form usable for
prediction is a Markov tree [60, 40, 27] — in which the transitions from the
root node to its children represent the probabilities in a zero-th order Markov
model, the transitions to their children correspond to a first order model, and
so on. The tree itself thus stores sequences in the form of a trie — a data

Sequences from two different sessions: (A, B, C, D, A, B, C) followed by (A, B, C).

Fig. 2. A sample trace and simple Markov tree of depth two built from it.

Learning Web Request Patterns 9

Given a sequence s, a MaxTreeDepth, and an initial tree
(possibly just a root node) t:

for i from 0 to min(|s|,MaxTreeDepth)
let ss be the subsequence containing the last i items from s

let p be a pointer to t

if |ss| = 0

increment p.SelfCount

else

for j from first(ss) to last(ss)

increment p.ChildCounts

if not-exists-child(p,j)

increment p.NumChildren

add a new node for j to the list of p’s children

end if

let p point to child j

if j = last(ss)

increment p.SelfCount

end if

end for

end if

end for

Fig. 3. Pseudocode to build a Markov tree.

structure that stores elements in a tree, where the path from the root to the
leaf is described by the key (the sequence, in this case). A description of an
individual node is shown in Figure 1.

Figure 2 depicts an example Markov tree of depth two with the information
recorded after having two visitors with the given request sequences. The root
node corresponds to a sequence without context (that is, when nothing has
come before). Thus, a zero-th order Markov model interpretation would find
the naive probability of an item in the sequence to be .3, .3, .3, and .1, for
items A, B, C, and D, respectively. Given a context of B, the probability of
a C following in this model is 1. These probabilities are calculated from the
node’s SelfCount divided by the parent’s ChildCounts.

To make this process clear, pseudocode to build a Markov tree is provided
in Figure 3, and Figure 4 illustrates one step in that process. Given the se-
quence (A, B, A), the steps taken to update the tree are described in in 4a
to get the tree 4b. All of the suffixes of this sequence will be used, starting
with the empty sequence. Given a sequence of length zero, we go to the root
and increment SelfCount. Given next the sequence of length one, we start at
the root and update its ChildCounts, and since there is already a child A, up-
date that node’s SelfCount. Given next the sequence of length two, we start
again from the root, travel to child B, and update it’s SelfCount and find that
we need to add a new child. Thus we also update B’s NumChildren, and its

10 B. D. Davison

(a) Markov tree from sequence
(A, B).

(b) Markov tree from sequence
(A, B, A).

Fig. 4. Before and after incrementally updating a simple Markov tree.

ChildCounts as we add the new node. Assuming we are limiting this tree to
depth two, we have finished the process, and have (b).

3.3 Path and point profiles

Thus, after building a Markov tree of sufficient depth, it can be used to match
sequences for prediction. Schechter et al. [58] describes a predictive approach
which is effectively a Markov tree similar to what we have described above.
The authors call this approach using path profiles, a name borrowed from
techniques used in compiler optimization, as contrasted with point profiles

which are simply bigrams (first order Markov models). The longest path pro-
file matching the current context is used for prediction, with frequency of
occurrence used to select from equal-length profiles.

3.4 k-th order Markov models

Our Markov tree can in general be used to find k-th order Markov probabilities
by traversing the tree from the root in the order of the k items in the current
context. Many researchers (e.g., [47, 48, 6, 5, 36, 45, 41, 26, 14, 62, 29, 67]) have
used models roughly equivalent to first order Markov models (corresponding
to trees like that depicted in Figure 2) for Web request prediction, but they
are also used in many other domains (e.g., UNIX command prediction [23]
and hardware-based memory address prefetching [37]). Others have found
that second order Markov models give better predictive accuracy [59, 69], and
some, even higher order models (e.g., fourth-order [53]).

Learning Web Request Patterns 11

During the use of a non-trivial Markov model of a particular order, it is
likely that there will be instances in which the current context is not found in
the model. Examples of this include a context shorter than the order of the
model, or contexts that have introduced a new item into the known alphabet
(that is, the set of requests seen so far). Earlier we mentioned the use of the
longest matching sequence (path profile) for prediction. The same approach
can be taken with Markov models. Given enough data, Markov models of
high order typically provide high accuracy, and so using the largest one with
a matching context is commonly the approach taken. Both Pitkow and Pirolli
[55] and Deshpande and Karypis [25] take this route, but also consider varia-
tions that prune the tree to reduce space and time needed for prediction (e.g.,
to implement thresholds on confidence and support, testing on a validation
set, and minimum differences in confidence between first and second most
likely predictions). Su et al. [61] also combine multiple higher-order n-gram
models in a similar manner. Interestingly, Li et al. [42] argue in contrast that
the longest match is not always the best and provide a pessimistic selection
method (based on Quinlan’s pessimistic error estimate [56]) to choose the
context with the highest pessimistic confidence of all applicable contexts, re-
gardless of context length. They show that this approach improves precision
as the context gets larger.

3.5 PPM

There are, of course, other ways to incorporate context into the prediction
mode. PPM, or prediction by partial matching [4, 64], is typically used as a
powerful method for data compression. It works similarly to the simple Markov
model-based approach above, using the largest permissible context to encode
the probabilities of the next item. However, it also tracks the probability of
the next item to be something that has never been seen before in this context
(called the “escape” symbol when used for compression), and thus explicitly
says to use the next smaller matching context instead. There are multiple
versions of PPM that correspond to different ways of calculating the escape
probability: PPM-A, PPM-C, PPM-D, as well as others. Since the next item in
the sequence could (and is) given some probability at each of the levels below
the longest matching context, all matching contexts must be examined to sum
the probabilities for each candidate prediction (appropriately weighted by the
preceding level’s escape probability). This is accomplished by merging the
current set of predictions with those from the shorter context by multiplying
those probabilities from the shorter context by the escape symbol confidence
(e) in the longer context, and multiplying those in the longer context by (1 -
e). Various escape probabilities can then be calculated using the counts stored
in our Markov tree.

A few researchers have used PPM-based models for Web prediction (e.g.,
[49, 28, 10, 11]). Actually Fan et al. [28] go further, building Markov trees with
larger contexts. Instead of using large contexts (e.g., order n) for prediction,

12 B. D. Davison

Trace name Described Requests Clients Servers Duration

EPA-HTTP [46] 47748 2333 1 1 day
Music Machines [51, 52] 530873 46816 1 2 months

SSDC [24] 187774 9532 1 8 months
UCB-12days [30, 31] 5.95M 7726 41836 12 days

UCB-20-clients Section 4.2 163677 20 3755 12 days
UCB-20-servers Section 4.3 746711 6620 20 12 days

Table 1. Traces used for prediction and their characteristics.

they use a context smaller than n (say, m), and use the remaining portion of
the tree to make predictions of requests up to n − m steps in advance.

3.6 Additional parameters

In addition to the varieties described above, the prediction system can also
vary a number of other parameters that are motivated by the Web domain.
One that we will explicitly test here is the size of the prediction window (that
is, the window of requests against which the prediction is tested). Typically
evaluation is performed by measuring the accuracy of predicting the next
request. Instead of only predicting the very next request, we can measure the
accuracy when the prediction can match any of the next n requests. This may
be useful in matching the utility of preloading a cache as the resource may be
useful later.

4 Prediction Workloads

There are three primary types of Web workloads, corresponding to three view-
points on the traffic. Here we characterize each of the three and describe the
datasets of each type that we will use. A summary of the datasets used can
be found in Table 1.

4.1 Proxy

Typically sitting between a set of users and all Web servers, a proxy sees a
more limited user base than origin Web servers, but in some cases a proxy may
inherently group together users with some overlapping interests (e.g., users of
a workgroup or corporate proxy may be more likely to view the same content).
It typically records all requests not served by browser caches, but logs may
contain overlapping user requests from other proxies or from different users
that are assigned the same IP address at different times.

The models built by proxies can vary — from the typical user in a single
model to highly personalized models for each individual user. In any case, the
predictive model can be used to prefetch directly into its cache, or to provide
hints to a client cache for prefetching.

Learning Web Request Patterns 13

We will use one proxy trace in our experiments. The UC Berkeley Home
IP HTTP Traces [30] are a record of Web traffic collected by Steve Gribble
as a graduate student in November 1996. Gribble used a snooping proxy to
record traffic generated by the UC Berkeley Home IP dialup and wireless
users (2.4Kbps, 14.4Kbps, and 28.8Kbps land-line modems, and 20-30Kbps
bandwidth for the wireless modems). This is a large trace, from which we have
selected the first 12 out of 18 days (for comparison with Fan et al. [28]), for a
total of close to six million requests.

4.2 Client

The client is one of the two necessary participants in a Web transaction.
A few researchers have recorded transactions from within the client browser
[9, 17, 15, 63] making it possible to see exactly what the user does — clicking
on links, typing URLs, using navigational aids such as Back and Forward
buttons and Bookmarks. It is also typically necessary to log at this level to
capture activity that is served by the browser cache.

Using an individual client history to build a model of the client provides
the opportunity to make predictions that are highly personalized, and thus
reflect the behavior patterns of the individual user. Unfortunately, logs from
augmented browsers are rare. Instead, a subset of requests captured by an
upstream proxy (from the UCB dataset) will be used with the understanding
that such traces do not reflect all user requests — just those that were not
served from the browser cache.

We have extracted individual request histories from the UCB proxy trace.
However, not all “clients” identified from proxy traces with unique IP ad-
dresses are really individual users. Since proxies can be configured into a
hierarchy of proxy caches, we have to be concerned with the possibility that
proxy traces could have “clients” which are really proxy caches themselves,
with multiple users (or even proxies!) behind them. Likewise, even when a
client corresponds to a particular non-proxy system, it may correspond to a
mechanized process that repeatedly fetches one resource (or a small set of
resources). Since the latter correspond to highly regular request patterns, and
the former correspond to overlapping request patterns, we will attempt to
avoid the worst of both in the concern for fairness in evaluation. We have
thus ranked the clients by total numbers of requests, and ignored the top
twenty, and instead selected the second twenty as the representative set of
active users.

4.3 Server

Servers provide a complementary view on Web usage from that of clients.
Instead of seeing all requests made by a user, they see all requests made
to one or more web sites. Since they only know of requests for particular
sites, such logs are unlikely to contain information about client transitions to

14 B. D. Davison

other systems. Technically, the HTTP Referrer header provides information
on transitions into a particular site, but these are rarely provided in publicly
available logs.

When learning a predictive model, the server could build an individual
model for each user. This would be useful to personalize the content on the
Web site for the individual user, or to provide hints to the client browser
on what resources would be useful to prefetch. One difficulty is the relative
scarcity of information unless the user visits repeatedly, providing more data
than the typical site visit which commonly contains requests for only a handful
of resources. An alternative is to build a single model of the typical user —
providing directions that may say that most users request resource B after
fetching resource A. When trends are common, this approach finds them. A
single model can also provide information that could be used in site re-design
for better navigation [50, 52].

In between the two extremes lies the potential for a collaborative filter-
ing approach in which individual models from many users can contribute to
suggest requests useful to the current user, as pointed out by Zukerman et
al. [68], or clustering of users (as in [65]). For the experiments in this chapter,
we generally build a single model based on the traffic seen where the model is
stored.2 Thus, a server would build a single model, which while likely not cor-
responding to any particular user, would effectively model the typical behavior
seen.

In addition to those already described, predictive Web server usage models
can also be used to improve server performance through in-memory caching,
reduced disk load, and reduced loads on back-end database servers. Similarly,
they could be used for prefetching into a separate server-specific reverse proxy
cache (with similar benefits).

Server logs are widely available (relative to other kinds of logs), but they
have some limitations, as they do not record requests to non-server resources
and do not see responses served by downstream caches (whether browser or
proxy).

The experiments in this chapter will use traces from three servers. The
first is the EPA-HTTP server logs [46] which contain close to 48,000 requests
corresponding to 24 hours of service at the end of August 1995. The second
is two months of usage from the Music Machines website [51, 52], collected in
September and October of 1997. Unlike most Web traces, the Music Machines
website was specifically configured to prevent caching, so the log represents all
requests (not just the browser cache misses). The third (SSDC) is a trace of
approximately eight months of non-local usage of a website for a small software
development company. This site was hosted behind a dedicated modem, and

2 However, the use of non-trivial contexts (such as a Markov model with order
greater than 1) effectively clusters the user with other users who have experienced
the same context.

Learning Web Request Patterns 15

was collected over 1997 and 1998. Additionally, we have extracted the twenty-
most-popular servers from the UCB proxy trace.

5 Experimental System

In this section we describe the experimental prediction system that we use in
subsequent experiments.

5.1 Implementation

To implement various sequence prediction methods, a highly-parameterized
prediction system was implemented in approximately 5000 lines of C code.
We use the Markov tree data structure described above in Section 3.2 since
it works for the more complex algorithms, and just ignore some aspects of it
for the simpler ones.

In effect, we have built essentially what Laird and Saul [39, 40] call a
TDAG (Transition Directed Acyclic Graph). Like them, we limit the depth
of the tree explicitly and limit the number of predictions made at once. In
contrast, they additionally employ a mechanism to limit the expansion of a
tree by eliminating nodes in the graph that are rarely visited.

As mentioned above in Section 3.4, confidence and support thresholds are
believed to be useful, and so our code incorporates such thresholds and in
general provides for a minimum and maximum n-gram length for prediction.

Finally, for the purposes of these tests we will focus on potential predictive
performance (e.g., accuracy) and ignore certain aspects of implementation effi-
ciency. In particular, our codes are designed for generality, and not necessarily
for efficiency.

5.2 Validation

In order to help validate our prediction codes, we replicated (to the extent
possible) Sarukkai’s HTTP server request prediction experiment [57]. This
experiment used the EPA-HTTP data set, in which the first 40,000 requests
were used as training data, and the remainder for testing.

We set up our tests identically, and configured our prediction codes to use a
first order Markov model (i.e., an n-gram size of 2, with no minimum support
or confidence needed to predict). Thus unlike the remainder of the experiments
presented in this chapter, this experiment builds a model using the initial
training data, and freezes it for use on the test data. This static prediction
model corresponds closely to the performance of the first test of Markov chains
reported by Sarukkai. We found an approximately 1% absolute increase in
predictive accuracy of the same system when it is allowed to incrementally
update its model as it moves through the test set.

16 B. D. Davison

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20

F
ra

ct
io

n
of

 r
eq

ue
st

s
pr

ed
ic

te
d

co
rr

ec
tly

Number of predictions allowed

SSDC
UCB servers

Music Machines
UCB clients

Fig. 5. Predictive accuracy for bigrams (first-order Markov models) under four data
sets with varying numbers of allowed predictions.

The EPA-HTTP logs, however, are rather short (especially the test set),
and so we consider the performance of prediction for other server logs in
subsequent tests and figures. Since they provide a more realistic measure of
performance, incremental predictive accuracy will be used throughout the rest
of this chapter.

6 Experimental Results

In this section we will examine the effect of changes to various model param-
eters on predictive performance. In this way we can determine the sensitivity
of the model (or data sets) to small and large changes in parameter values,
and to find useful settings of those parameters for the tested data sets.

6.1 Increasing number of predictions

Depending on the situation in which the predictive system is embedded, it
may be helpful to predict a set (Top-n) of possible next actions, as described
in Section 2.8. In Figure 5, we examine incremental predictive performance of
simple bigrams while varying a single parameter (the number of predictions
permitted) over four traces (SSDC, UCB servers, Music Machines, and UCB
clients). For the initial case of one allowed prediction, we find that perfor-
mance ranges from slightly over 10% to close to 40% accuracy. As the number
of predictions allowed increases to 20, predictive performance increases signifi-
cantly — a relative improvement of between 45% and 167%. The server-based
traces show marked performance increases, demonstrating that the traces do
indeed contain sufficient data to include most of the choices that a user might
make. The performance of the client-based trace, conversely, remains low,
demonstrating that the experience of an individual user is insufficient to in-
clude much of the activities that the user will perform in the future. Finally,

Learning Web Request Patterns 17

0

5

10

15

20

25

30

35

2 3 4 5 6

R
el

at
iv

e
im

pr
ov

em
en

t (
%

)

Maximum n-gram size

SSDC
Music Machines

UCB servers
UCB clients

Fig. 6. Relative improvement in predictive accuracy for multiple data sets as max-
imum context length grows (as compared to a context length of two).

we note that to achieve such high levels of predictive performance, systems
will need to make many predictions, each of which come with some resource
cost, such as time, bandwidth, and CPU usage.

6.2 Increasing n-gram size

One potential way to improve accuracy is to consider n-grams larger than
two. This increase in context allows the model to learn more specific patterns.
Figure 6 shows the relative improvement (compared to n=2) in incremental
predictive accuracy for multiple traces when making just one prediction at
each step. Thus, if the accuracy at n=2 were .2, an accuracy of .3 would be a
50% relative improvement, and all traces are shown to have zero improvement
at n=2. In each case, the longest n-gram is used for prediction (ties are bro-
ken by selecting the higher probability n-gram), and 1-grams are permitted
(i.e., corresponding to predictions of overall request popularity) if nothing else
matches. The graph shows that adding longer sequences does help predictive
accuracy, but improvement peaks and then wanes as longer but rarer (and
less accurate) sequences are used for prediction.3 Thus, the figure shows that
larger n-grams themselves can be useful, but if the largest n-grams were used
alone, prediction performance would be significantly harmed. This is because
longer n-grams match fewer cases than shorter n-grams, and thus are able to
make fewer correct predictions.

6.3 Incorporating shorter contexts

Prediction by partial match provides an automatic way to use contexts shorter
than the longest-matching one. In our experiments, we find that the PPM

3 As a result, in subsequent tests we will often use an n-gram limit of 4, as the
inclusion of larger n-grams typically does not improve performance.

18 B. D. Davison

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16 18 20

R
el

at
iv

e
im

pr
ov

em
en

t (
%

)

Prediction window size

UCB clients
SSDC

UCB servers
Music Machines

Fig. 7. Relative improvement in predictive accuracy as the window of requests
against which each prediction is tested grows.

variations are able to perform slightly better than the comparable longest
n-gram match. PPM-C gives the best results, with relative improvements
ranging from 1-3% when only the best prediction is used. When multiple
predictions are permitted, the performance improvement is even smaller.

However, we can also endow n-grams with the ability to incorporate shorter
n-grams. In this alternative, the n-grams always merge with the results of
prediction at the shorter context, with a fixed weight (as opposed to the
weight from the dynamically calculated escape probability in the PPM model).
Experiments reveal similar relative improvements of only a few percent.

6.4 Increasing prediction window

Another way to improve reported accuracy is to allow predictions to match
more than just the very next request. In a real Web system, prefetched content
would be cached and thus available to satisfy user requests in the future.
One can argue that when a prediction does not match the next request, it is
incorrect. However, if the prediction instead matches and can be applied to
some future request, we should count it as correct. Thus, in this test we apply
a Web-specific heuristic for measuring performance.

In Figure 7 we graph the relative performance improvement that results
when we allow predictions to match the next 1, 2, 3, 5, 10 and 20 subsequent
requests. While at 20 requests performance continues to increase, the rate of
growth is tapering. The apparent boost in potential performance suggests that
even when the next request is not predicted perfectly, the predicted requests
are potentially executed in the near future.

Predictive accuracy, even when using the mechanisms described here, is
limited at least by the recurrence rates of the sequences being examined. That
is, in this section, we only consider predicting from history which means that
every unique request cannot be predicted when it is first introduced. Thus,

Learning Web Request Patterns 19

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
re

ci
si

on
: c

or
re

ct
 o

ut
 o

f t
ho

se
 p

re
di

ct
ed

Fraction predicted correctly

Music Machines
UCB servers
UCB clients

SSDC

Fig. 8. Ratio of precision to overall accuracy for a minimum support of 10 with
varying confidence.

if we were to plot predictive performance on a scale of what is possible, the
graphs would be 2-6% absolute percentage points higher.

6.5 Considering mistake costs

Accuracy alone is typically only important to researchers. In the real world,
there are costs for mistakes. As the number of allowed predictions per request
increases the fraction predicted correctly grows, but the number of predic-
tions needed to get that accuracy also increases significantly. In a prefetching
scenario in which mistakes are not kept for Music Machines or SSDC, the av-
erage per-request bandwidth could be up to twenty times the non-prefetching
bandwidth. (Note however, that this analysis does not consider the positive
and extensive effects of caching.) The important point is that there is always
a tradeoff — in this case, for increasing coverage we will consume additional
bandwidth.

Therefore, it is worthwhile to consider how to reduce or limit the likelihood
of making a false prediction, as discussed in Section 2.6. Increased precision is
possible (with lower overall accuracy) as the threshold is increased. Likewise,
while larger values of precision are possible, they come at a cost of the number
of requests predicted correctly.

Figure 8 provides a combined view — a minimum support of 10 instances
combined with a varying confidence threshold. Ideal performance is up and
to the right (high precision and accuracy). In this figure, this combination
(of minimum support of 10 along with some varying threshold on confidence)
is able to achieve precision that exceeds that possible from either threshold
alone. The lesson here is that high accuracy predictions are quite achievable,
but are typically applicable to a much smaller fraction of the trace.

20 B. D. Davison

7 Discussion

We’ve demonstrated various techniques to improve predictive accuracy on
logs of Web requests. Most of these methods can be combined, leading to
significant improvements. A first-order Markov model is able to get approxi-
mately 38% top-1 predictive accuracy on the SSDC trace. A top-5 version can
increase that by another 30% to have 68% predictive accuracy. After a few
more adjustments (including using PPM, version C, with maximum n-gram
6, reducing predictions likely to be in cache down to 20%, and including past
predictions with weight .025), accuracies of 75% are possible. Put another
way, this constitutes a 20% reduction in error. And if we consider only those
predictions that were actually tested (i.e., ignoring those for which the client
made no more requests), we get a prediction accuracy of over 79%. This per-
formance, of course, comes at the cost of a large number of guesses. In this
case, we are making five guesses almost all of the time. Alternatively, lower
overall accuracy but at higher precision is possible with some modifications
(such as the use of confidence and support thresholds).

Some investigators have focused on this issue. Although they use a sim-
plistic model of co-occurrence, Jiang and Kleinrock [36] develop a complex
cost-based metric (delay cost, server resource cost) to determine a threshold
for prefetching, and use it to consider system load, capacity, and costs. Like-
wise Zukerman et al. [68, 1, 69] as well as others (e.g., [59, 34, 14]) develop
decision-theoretic utility models to balance cost and benefit and for use in
evaluation.

Elsewhere [23] we have shown evidence that the patterns of activity of
a user can change over time. The same is true of Web users. As the user’s
interests change, the activity recorded may also change — there is no need
to revisit a site if the user remembers the content, or if the user now has a
different concern. Thus, the users themselves provide a source of change over
time in the patterns found in usage logs. However, in additional experiments
on these traces [21], we found that there is a second source of change that is
even more significant — changes in content. A user’s actions (e.g., visiting a
page) depend upon the content of those pages. If the pages change content or
links, or are removed, then the request stream generated by the user will also
change (corresponding to a 2-5% relative cost in accuracy). Thus we conclude
that as long as Web access is primarily an information gathering process,
server-side changes will drive changes in user access patterns.

Finally, the astute reader may have noticed that while we mentioned proxy
workloads for completeness back in Section 4, we have not included them in the
figures shown, as they do not provide significant additional information. While
running the UCB client workloads and calculating the client-side predictive
accuracy (which is what we report), we also calculated the accuracy that a
proxy-based predictor would have achieved. In general, its accuracy was 5-
10% higher, relative to the client accuracy (i.e., .1-2% in absolute terms). A

Learning Web Request Patterns 21

first-order Markov model allowing just one guess, without thresholds, has an
asymptotic predictive accuracy of close to 25% for the UCB trace.

8 Alternative prediction mechanisms

The history-based mechanisms discussed so far have one significant flaw —
they cannot predict an request never made previously. Therefore, it is worth
considering alternative mechanisms and combining the predictions from dif-
ferent algorithms.

Our motivating goal is to accurately predict the next request that an
individual user is likely to make on the WWW. Therefore, we want to know
how helpful Web page content can be in making predictions for what will
be requested next. Elsewhere [20, 21] we experimentally validated widespread
assumptions that Web pages are typically linked to pages with related textual
content, and more specifically, that the anchor text was a reasonable descriptor
for the page to which it pointed. Many applications already take advantage
of this Web characteristic (e.g., for indexing terms not on a target page [7] or
to extract high-quality descriptions of a page [2, 3]), and here we too exploit
this property of the Web.

Relatively few researchers have considered using anything other than sim-
plistic approaches to prediction using Web page content. Given that Web
HTML contains links that are followed, we can consider predicting one or
more of those links [43, 12, 38, 35, 54]. But which links? One cannot predict
all links of a page, since the number of links per page can be quite large. A
slightly more intelligent approach is to predict the links of a page, in HTML
source order from first to last (corresponding generally to links visible from
top to bottom, e.g., [12]). Elsewhere [21, 22] we compare (using a full-content
Web log) those simple approaches with an information retrieval-based one that
ranks the list of links using a measure of textual similarity to the set of pages
recently accessed by the user. In summary, we found that textual similarity-
based predictions outperform the simpler approaches — a content-based ap-
proach was found to be 29% better than random link selection for prediction,
and 40% better than not prefetching in a system with an infinite cache. Finally,
since content-based approaches can make predictions even when history-based
mechanisms cannot, we found that by combining the predictions from both
algorithms resulted in increased predictive accuracy (achieving 85-90% of the
sum of the individual accuracies).

9 Summary

In this chapter we have examined in detail the problem of predicting Web
requests, focusing on Markov and Markov-like algorithms that build models

22 B. D. Davison

from past histories of requests. We have discussed the problems of evalua-
tion, and have provided a consistent description of algorithms used by many
researchers in this domain. We used generalized codes that implement the
various algorithms described to test the prediction algorithms on the same
set of Web traces, facilitating performance comparisons.

We demonstrated the potential for using probabilistic Markov and Markov-
like methods for Web sequence prediction. By exploring various parameters,
we showed that larger models incorporating multiple contexts could outper-
form simpler models. We also cited evidence when Web content changes, mod-
els learning user behavior should provide some emphasis on recent activity (to
adapt to the changes). Finally, we demonstrated the performance changes that
result when using Web-inspired algorithm changes. Based on these results, we
recommend the use of a multi-context predictor (such as PPM, or the multi-
context n-gram approach described in this chapter). However, for the Web, it
appears that relatively few contexts are needed — n-grams don’t need to be
much more than 3 or 4. We saw that the utilization of thresholds on predic-
tion can significantly reduce the likelihood of erroneous predictions. Finally,
we noted that history-based algorithms are not able to make predictions in
all scenarios, and so we described experiments on the utility of content-based
predictions.

10 Open questions and future work

While this chapter has explored many aspects of learning Web request pat-
terns, many open questions remain for future work. We list a few here:

• What is the the trade-off of complexity and storage versus predictive ac-
curacy? Laird and Saul [39, 40] and more recently Chen and Zhang [11]
have started to answer this question.

• What is the role of client-side caching on model accuracy? Since a proxy
or server-based model does not see requests satisfied by the browser cache,
the model they build is not entirely accurate. As we mention at the end
of Section 2.4, one possibility is to tell the upstream server about requests
satisfied by the downstream cache. The important question, though, is how
much an effect this extra information will have on the performance of the
prediction model.

• What is the effect of using HTTP referrer tags in model generation? Like
the previous question, this issue is concerned in part with the client cache.
The HTTP referrer tag automatically provides a view into the cache, as it
lists the source of the link being requested. This may be a page satisfied by
a downstream cache and thus not part of the request stream seen by the
model generator. In particular, it helps capture some uses of the browser
back-button and if used, could build a better model as the current click
could be credited to the page on which the link was found, rather than the
most recent request in the usage log.

Learning Web Request Patterns 23

• What is the role that request timestamps can play in model generation
and accuracy? Some researchers assume that non-HTML requests received
sufficiently near an HTML request (as shown by the timestamps) represent
embedded objects, and are thus not considered separate clicks (as discussed
in Section 2.1). However, timestamps might also be used to model links of
various types. Two requests very near each other in time are easily believed
to be highly associated with each other. Likewise, if two sequential requests
are far apart, one might assume that a new session has started, and thus
are unrelated. Intermediate values of association might be possible for
requests somewhat nearby, possibly even when other requests are found in
between.

• What are appropriate evaluation methods (such as those that are tied to
real-world utility)? In the end, predictive models likely need to be evalu-
ated within the context of their use. That is, for prefetching, how much
improvement in user-perceived response time is realized with various pre-
diction approaches. Similarly, what improvements in user-satisfaction (or
increased purchases) occur with personalized pages? It is not clear whether
the improvement in performance in the end system consistently matches
the improvement in predictive performance.

• What is the effect on prediction of classifying user browsing modes? If a
user is known to be performing a regular activity (such as reading the daily
sports headlines), a user-specific model of behavior might be more appro-
priate than a global model. Past researchers [9, 33, 13, 32] have attempted
to categorize browsing modes (into classes such as surfing, searching, etc.)
which may provide assistance in predicting future requests.

Acknowledgments

This work was supported in part by NSF grant ANI 9903052.

24 B. D. Davison

References

1. David W. Albrecht, Ingrid Zukerman, and Ann E. Nicholson. Pre-sending doc-
uments on the WWW: A comparative study. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI-99), volume 2,
pages 1274–1279, Stockholm, Sweden, 1999. Morgan Kaufmann.

2. Einat Amitay. Using common hypertext links to identify the best phrasal
description of target web documents. In Proceedings of the SIGIR’98 Post-
Conference Workshop on Hypertext Information Retrieval for the Web, Mel-
bourne, Australia, 1998.

3. Einat Amitay and Cecile Paris. Automatically summarising Web sites — is there
a way around it? In Proceedings of the Ninth ACM International Conference
on Information and Knowledge Management (CIKM 2000), Washington, DC,
November 2000.

4. Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text Compression. Pren-
tice Hall, Englewood Cliffs, NJ, 1990.

5. Azer Bestavros. Using speculation to reduce server load and service time on
the WWW. In Proceedings of the Fourth ACM International Conference on In-
formation and Knowledge Management (CIKM’95), Baltimore, MD, November
1995.

6. Azer Bestavros. Speculative data dissemination and service to reduce server
load, network traffic and service time for distributed information systems. In
Proceedings of the International Conference on Data Engineering (ICDE’96),
New Orleans, LA, March 1996.

7. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the Seventh International World Wide
Web Conference, Brisbane, Australia, April 1998.

8. Carla Brodley and Ronny Kohavi. KDD Cup 2000. Online at
http://www.ecn.purdue.edu/KDDCUP/, 2000.

9. Lara D. Catledge and James E. Pitkow. Characterizing browsing strategies in
the World Wide Web. Computer Networks and ISDN Systems, 26(6):1065–1073,
1995.

10. Xin Chen and Xiaodong Zhang. Coordinated data prefetching by utilizing ref-
erence information at both proxy and web servers. Performance Evaluation
Review, 29(2), September 2001. Proceedings of the 2nd ACM Workshop on
Performance and Architecture of Web Servers (PAWS-2001).

11. Xin Chen and Xiaodong Zhang. A popularity-based prediction model for web
prefetching. IEEE Computer, 36(3):63–70, March 2003.

12. Ken-ichi Chinen and Suguru Yamaguchi. An interactive prefetching proxy server
for improvement of WWW latency. In Proceedings of the Seventh Annual Con-
ference of the Internet Society (INET’97), Kuala Lumpur, June 1997.

13. Chun Wei Choo, Brian Detlor, and Don Turnbull. Working the web: An em-
pirical model of web use. In 33rd Hawaii International Conference on System
Science (HICSS), Maui, Hawaii, January 2000.

14. Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford. Efficient al-
gorithms for predicting requests to Web servers. In Proceedings of IEEE INFO-
COM, New York, March 1999.

15. Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web traf-
fic: Evidence and possible causes. IEEE/ACM Transactions on Networking,
5(6):835–846, December 1997.

Learning Web Request Patterns 25

16. Carlos R. Cunha. Trace analysis and its applications to performance enhance-
ments of distributed information systems. PhD thesis, Computer Science De-
partment, Boston University, 1997.

17. Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella. Characteristics of
WWW client-based traces. Technical Report TR-95-010, Computer Science
Department, Boston University, July 1995.

18. Carlos R. Cunha and Carlos F. B. Jaccoud. Determining WWW user’s next
access and its application to prefetching. In Proceedings of Second IEEE Sympo-
sium on Computers and Communications (ISCC’97), Alexandria, Egypt, July
1997.

19. Kenneth M. Curewitz, P. Krishnan, and Jeffrey Scott Vitter. Practical prefetch-
ing via data compression. In Proceedings of the ACM-SIGMOD Conference on
Management of Data, pages 257–266, May 1993.

20. Brian D. Davison. Topical locality in the Web. In Proceedings of the 23rd Annual
ACM International Conference on Research and Development in Information
Retrieval (SIGIR 2000), pages 272–279, Athens, Greece, July 2000.

21. Brian D. Davison. The Design and Evaluation of Web Prefetching and Caching
Techniques. PhD thesis, Department of Computer Science, Rutgers University,
October 2002.

22. Brian D. Davison. Predicting Web actions from HTML content. In Proceedings
of the The Thirteenth ACM Conference on Hypertext and Hypermedia (HT’02),
pages 159–168, College Park, MD, June 2002.

23. Brian D. Davison and Haym Hirsh. Predicting sequences of user actions. In Pre-
dicting the Future: AI Approaches to Time-Series Problems, pages 5–12, Madi-
son, WI, July 1998. AAAI Press. Proceedings of AAAI-98/ICML-98 Workshop,
published as Technical Report WS-98-07.

24. Brian D. Davison and Vincenzo Liberatore. Pushing politely: Improving Web
responsiveness one packet at a time (extended abstract). Performance Evalua-
tion Review, 28(2):43–49, September 2000. Presented at the Performance and
Architecture of Web Servers (PAWS) Workshop, June 2000.

25. Mukund Deshpande and George Karypis. Selective Markov models for predict-
ing Web-page accesses. In Proceedings of the First SIAM International Confer-
ence on Data Mining (SDM’2001), Chicago, April 2001.

26. Dan Duchamp. Prefetching hyperlinks. In Proceedings of the Second USENIX
Symposium on Internet Technologies and Systems (USITS ’99), Boulder, CO,
October 1999.

27. Guoliang Fan and Xiang-Gen Xia. Maximum likelihood texture analysis and
classification using wavelet-domain hidden markov models. In Proceedings of the
34th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, 2000.

28. Li Fan, Quinn Jacobson, Pei Cao, and Wei Lin. Web prefetching between low-
bandwidth clients and proxies: Potential and performance. In Proceedings of
the Joint International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’99), Atlanta, GA, May 1999.

29. Dan Foygel and Dennis Strelow. Reducing Web latency with hierarchical cache-
based prefetching. In Proceedings of the International Workshop on Scalable
Web Services (in conjunction with ICPP’00), Toronto, August 2000.

30. Steven D. Gribble. UC Berkely Home IP HTTP traces. Online:
http://www.acm.org/sigcomm/ITA/, July 1997.

26 B. D. Davison

31. Steven D. Gribble and Eric A. Brewer. System design issues for Internet mid-
dleware services: Deductions from a large client trace. In Proceedings of the
USENIX Symposium on Internet Technologies and Systems (USITS ’97), De-
cember 1997.

32. Jeffrey Heer and Ed H. Chi. Identification of web user traffic composition using
multi-modal clustering and information scent. In Proceedings of the Workshop
on Web Mining, SIAM Conference on Data Mining, pages 51–58, Chicago, IL,
April 2001.

33. John H. Hine, Craig E. Wills, Anja Martel, and Joel Sommers. Combining client
knowledge and resource dependencies for improved World Wide Web perfor-
mance. In Proceedings of the Eighth Annual Conference of the Internet Society
(INET’98), Geneva, Switzerland, July 1998.

34. Eric Horvitz. Continual computation policies for utility-directed prefetching.
In Proceedings of the Seventh ACM Conference on Information and Knowledge
Management, pages 175–184, Bethesda, MD, November 1998. ACM Press: New
York.

35. Tamer I. Ibrahim and Cheng-Zhong Xu. Neural net based pre-fetching to tol-
erate WWW latency. In Proceedings of the 20th International Conference on
Distributed Computing Systems (ICDCS2000), April 2000.

36. Zhimei Jiang and Leonard Kleinrock. An adaptive network prefetch scheme.
IEEE Journal on Selected Areas in Communications, 16(3):358–368, April 1998.

37. Doug Joseph and Dirk Grunwald. Prefetching using Markov predictors. Trans-
actions on Computers, 48(2), February 1999.

38. Reinhard P. Klemm. WebCompanion: A friendly client-side Web prefetching
agent. IEEE Transactions on Knowledge and Data Engineering, 11(4):577–594,
July/August 1999.

39. Philip Laird. Discrete sequence prediction and its applications. In Proceedings
of the Tenth National Conference on Artificial Intelligence, Menlo Park, CA,
1992. AAAI Press.

40. Philip Laird and Ronald Saul. Discrete sequence prediction and its applications.
Machine Learning, 15(1):43–68, 1994.

41. Bin Lan, Stephane Bressan, and Beng Chin Ooi. Making Web servers pushier.
In Proceedings of the Workshop on Web Usage Analysis and User Profiling, San
Diego, CA, August 1999.

42. Ian Tianyi Li, Qiang Yang, and Ke Wang. Classification pruning for Web-request
prediction. In Poster Proceedings of the 10th World Wide Web Conference
(WWW10), Hong Kong, May 2001.

43. Henry Lieberman. Autonomous interface agents. In Proceedings of the ACM
SIGCHI’97 Conference on Human Factors in Computing Systems, Atlanta, GA,
March 1997.

44. Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
45. Ann E. Nicholson, Ingrid Zukerman, and David W. Albrecht. A decision-

theoretic approach for pre-sending information on the WWW. In Proceedings
of the 5th Pacific Rim International Conference on Artificial Intelligence (PRI-
CAI’98), pages 575–586, Singapore, 1998.

46. Laura Bottomley of Duke University. EPA-HTTP server logs, 1995. Available
from http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html.

47. Venkata N. Padmanabhan. Improving World Wide Web latency. Technical
Report UCB/CSD-95-875, UC Berkeley, May 1995.

Learning Web Request Patterns 27

48. Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive prefetching to
improve World Wide Web latency. Computer Communication Review, 26(3):22–
36, July 1996. Proceedings of SIGCOMM ’96.

49. Themistoklis Palpanas and Alberto Mendelzon. Web prefetching using par-
tial match prediction. In Proceedings of the Fourth International Web Caching
Workshop (WCW99), San Diego, CA, March 1999. Work in progress.

50. Mike Perkowitz and Oren Etzioni. Adaptive Web sites: an AI challenge. In
Proceedings of the Fifteenth International Joint Conference on Artificial Intel-
ligence, 1997.

51. Mike Perkowitz and Oren Etzioni. Adaptive Web sites: Automatically synthesiz-
ing Web pages. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, Madison, WI, July 1998. AAAI Press.

52. Mike Perkowitz and Oren Etzioni. Adaptive Web sites. Communications of the
ACM, 43(8):152–158, August 2000.

53. Peter L. Pirolli and James E. Pitkow. Distributions of surfers’ paths through
the World Wide Web: Empirical characterization. World Wide Web, 2:29–45,
1999.

54. James E. Pitkow and Peter L. Pirolli. Life, death, and lawfulness on the elec-
tronic frontier. In ACM Conference on Human Factors in Computing Systems,
Atlanta, GA, March 1997.

55. James E. Pitkow and Peter L. Pirolli. Mining longest repeated subsequences
to predict World Wide Web surfing. In Proceedings of the Second USENIX
Symposium on Internet Technologies and Systems, October 1999.

56. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA, 1993.

57. Ramesh R. Sarukkai. Link prediction and path analysis using Markov chains.
In Proceedings of the Ninth International World Wide Web Conference, Ams-
terdam, May 2000.

58. Stuart Schechter, Murali Krishnan, and Michael D. Smith. Using path profiles
to predict HTTP requests. Computer Networks and ISDN Systems, 30:457–467,
1998. Proceedings of the Seventh International World Wide Web Conference.

59. Rituparna Sen and Mark H. Hansen. Predicting a Web user’s next request based
on log data. Journal of Computational and Graphical Statistics, 12(1), 2003.

60. Glenn Shafer, Prakash P. Shenoy, and Khaled Mellouli. Propagating belief func-
tions in qualitative Markov trees. International Journal of Approximate Rea-
soning, 1(4):349–400, 1987.

61. Zhong Su, Qiang Yang, Ye Lu, and Hong-Jiang Zhang. WhatNext: A prediction
system for Web request using n-gram sequence models. In First International
Conference on Web Information Systems and Engineering Conference, pages
200–207, Hong Kong, June 2000.

62. N. Swaminathan and S. V. Raghavan. Intelligent prefetching in WWW us-
ing client behavior characterization. In Proceedings of the Eighth International
Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2000.

63. Linda Tauscher and Saul Greenberg. How people revisit Web pages: Empirical
findings and implications for the design of history systems. International Journal
of Human Computer Studies, 47(1):97–138, 1997.

64. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan Kaufmann, San
Francisco, 1999. Second edition.

28 B. D. Davison

65. Yi-Hung Wu and Arbee L. P. Chen. Prediction of web page accesses by proxy
server log. World Wide Web: Internet and Web Information Systems, 5:67–88,
2002.

66. Qiang Yang, Haining Henry Zhang, and Ian Tianyi Li. Mining Web logs for
prediction models in WWW caching and prefetching. In Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’01), San Francisco, August 2001.

67. Michael Zhen Zhang and Qiang Yang. Model-based predictive prefetching. In
Proceedings of the 2nd International Workshop on Management of Informa-
tion on the Web — Web Data and Text Mining (MIW’01), Munich, Germany,
September 2001.

68. Ingrid Zukerman and David W. Albrecht. Predictive statistical models for user
modeling. User Modeling and User-Adapted Interaction, 11(1/2):5–18, 2001.

69. Ingrid Zukerman, David W. Albrecht, and Ann E. Nicholson. Predicting users’
requests on the WWW. In Proceedings of the Seventh International Conference
on User Modeling (UM-99), pages 275–284, Banff, Canada, June 1999.

Index

n-gram 7, 15, 17, 18, 20

accuracy 6, 17–19

batch 4
browser 13, 22

click-stream 3
client history 13
co-occurrences 3
collaborative filtering 14
confidence 6, 15, 19
content-based prediction 21

data mining 2

embedded object 3
embedding relationship 3
EPA HTTP server log 14, 15
evaluation 3

first order 10, 15, 20, 21

history-based prediction 2, 21
HTTP 3, 5, 22

machine learning 2, 4
macroaverage 4
Markov assumption 7
Markov model 7, 10, 20, 21
Markov tree 8, 15
microaverage 4
mistake costs 19
modeling 1
Music Machines server log 15

online 4

path profile 10
performance evaluation 5
point profile 10
PPM 11, 17, 20
pre-loading 1
precision 6
prediction 2, 4, 5, 21
prediction by partial matching 11, 17
prediction window 12, 18
predictive accuracy 18, 22
prefetching 5, 20
proxy 12
proxy cache 12

referrer header 3
referring page 3
request patterns 2

sequence 7
sequence prediction 2
server hints 5
session boundaries 4
sessions 5
SSDC server log 15
support 6, 15, 19

TDAG 15
test set 4
thresholds 6, 15
top-n 7
training set 4

30 Index

traversal relationship 3

UCB Home IP HTTP Trace 12
user clustering 14
utility model 20

validation 15

web client 13

web logs 3

web proxy 12

web server 13

workloads 3, 12

