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ABSTRACT
Web page classification is important to many tasks in infor-
mation retrieval and web mining. However, applying tradi-
tional textual classifiers on web data often produces unsat-
isfying results. Fortunately, hyperlink information provides
important clues to the categorization of a web page. In this
paper, an improved method is proposed to enhance web page
classification by utilizing the class information from neigh-
boring pages in the link graph. The categories represented
by four kinds of neighbors (parents, children, siblings and
spouses) are combined to help with the page in question. In
experiments to study the effect of these factors on our al-
gorithm, we find that the method proposed is able to boost
the classification accuracy of common textual classifiers from
around 70% to more than 90% on a large dataset of pages
from the Open Directory Project, and outperforms exist-
ing algorithms. Unlike prior techniques, our approach uti-
lizes same-host links and can improve classification accuracy
even when neighboring pages are unlabeled. Finally, while
all neighbor types can contribute, sibling pages are found to
be the most important.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering ; I.5.2 [Pattern
Recognition]: Design Methodology—Classifier design and
evaluation; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing
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1. INTRODUCTION
Text classification plays a fundamental role in a number of

information management and retrieval tasks. On the Web,
classification of page content is essential to focused crawl-
ing [6], to assist development of web directories such those
provided by Yahoo [25] and the Open Directory Project
(ODP) [19], to topic-specific web link analysis [10, 18, 21],
and to analysis of the topical structure of the Web [5]. Web
page classification can also help improve the quality of query
search [7].

The general problem of text classification is well-studied
and a number of classifiers have shown good performance
in traditional text classification tasks. However, compared
to standard text classification, classification of web content
is different. First, experiments of traditional text classi-
fication is usually performed on “structured corpora with
well-controlled authoring styles” [7], while web collections
do not have such a property. Second, web documents have
features like HTML tags, visual representation and hyper-
links, which do not appear in the evaluation collection used
in standard text classification tasks.

Research shows that incorporating link information along
with the content of web pages can enhance classification [4,
3, 9]. Here, we propose to use the class or topic vector of
neighboring pages to help in the categorization of a web
page. Unlike existing work, our method does not rely on
the appearance of labeled pages in the neighborhood of the
page under scrutiny, and thus has wider applicability. In
addition, not only sibling pages but also three other kinds
of neighboring pages are taken into consideration.

The rest of this paper will be organized as follows. In
Section 2, we review recent work on using hyperlink infor-
mation to enhance web page classification. In Section 3, our
approach is detailed. Our experimental setup and results
are shown in Section 4. We conclude with a discussion and
a summary of our results in Sections 5 and 6.

2. RELATED WORK
Compared to plain text documents, web pages have extra

features, such as HTML tags, URLs, hyperlinks and anchor
texts, which have been shown to be useful in classification.
Much research has been performed to utilize these features
in web page classification. We categorize this work into two
general classes according to the features being used: work
that uses only on-page features and that using features from
neighboring pages.

On-page features are those derived from the pages being
classified themselves. Kovacevic et al. [16] performed anal-



ysis on web page visual layout to boost the performance of
web page classification. Similarly, Shen et al. [22] also used
information from components in web page layout. Kan and
Thi [14, 15] proposed an approach to classify web pages by
using their URLs, in which no HTML content is needed. Us-
ing on-page features, Yu et al. [27] devised an SVM-based
approach to eliminate the need for manual collection of neg-
ative examples while still retaining similar classification ac-
curacy. Finally, Holden [12] developed an approach to web
page classification inspired by the behavior of ant colonies.

Other researchers have utilized off-page information for
classification. This second category of approaches includes
research utilizing information in or about pages nearby in
the web link graph as well as placement in a class hierarchy.

Attardi et al. [1] proposed using content information from
the pages citing the page being classified to help deter-
mine the page’s topic. Similarly, Glover et al. [9] pro-
posed an approach using extended anchortexts. Slattery
and Mitchell [23] presented the co-citation relation in the
form of recursive learning rules and inserted them into a
relational learner, FOIL, to improve the accuracy. These
three approaches ([1, 9, 23]) only used one particular kind
of neighboring page while ignoring the others.

Dumais and Chen [8] demonstrated that making use of
the hierarchical structure of web directories can improve
both efficiency and accuracy. Wibowo and Williams [24]
also studied the problem of hierarchical web classification
and suggested methods to minimize errors.

Chakrabarti et al. [4] have shown that directly including
neighboring pages’ textual content into the page does not
improve the performance of classification because too much
noise is introduced in this approach. After studying different
kinds of web graph relationships between pages, however,
they also showed that labeling a page according to the ma-
jority labels of its sibling pages can enhance classification.

Calado et al. [2] evaluated four similarity measures de-
rived from web link structure, and demonstrated that us-
ing a Bayesian network model combining the class-similarity
measures with the results obtained by traditional content-
based classifiers can greatly improve classification perfor-
mance. Unlike our work, Calado et al. discarded links be-
tween pages of the same site, and they do not directly test
the influence of parent and child pages.

These two approaches ([4, 2]) rely on the presence of la-
beled neighbors of the page in question. Otherwise, they
would either suffer significantly in terms of coverage (leav-
ing a number of pages undecidable) or reduce to the result
of traditional content-based classifiers.

3. APPROACH
Previous research has shown that utilizing information

about neighboring web pages can enhance web page clas-
sification. However, it is unlikely that all neighbors provide
similar value; a more selective approach may improve perfor-
mance further. In addition, we would like to know the sig-
nificance of human-labeled pages in the neighborhood since
machine-generated classifications are also possible. We hope
that a better understanding of these factors can lead to ad-
ditional improvements in web content classification.

In the following, the page to be classified is called the
“target page”, and nearby pages in the link graph are called
the “neighboring pages”.

Ap parent pages { q | q → p and q 6= p }
Bp child pages { q | p → q and q 6= p }
Cp sibling pages { q | ∃ r s.t. r → p, r → q and q 6= p }
Dp spousal pages { q | ∃ r s.t. p → r, q → r and q 6= p }

Figure 1: Four kinds of neighboring pages of p

3.1 Analyzing the neighborhood
In order to help classify a target page, we use nearby pages

with four kinds of relationships: parent pages, child pages,
sibling pages and spousal pages. We name them A, B, C
and D, respectively, as described in Figure 1. These four
sets of pages may overlap with each other. In other words,
a page may have multiple roles. For example, a page can be
both the sibling and spouse of the target page at the same
time. In that case, both roles count.

Furthermore, each of these sets can be divided into two
subsets: labeled pages and unlabeled pages. Labeled pages
are those pages whose categories are already known, such
as the pages in the ODP. Unlabeled pages are those whose
labels are not known.

Since any classifier produces only an approximation to the
desired human labeling, we will generally use the human
judgment whenever it is available. Otherwise, a standard
text classifier will be used to generate a soft classification.
That is, the probabilities of the page being in each cate-
gory are given as the classification result. Therefore, after
classification, each page p can be represented by a proba-
bility distribution vector vp = (vp,1, vp,2, ..., vp,i, ..., vp,n), in
which each component vp,i is the normalized probability of
the page being in the corresponding category ci. This vec-
tor is referred to as “topic vector” in this paper. Again, for
unlabeled pages, this vector is given by the classifier. For
labeled pages, this vector is set according to Equation 1:

vp,k =



1 if C[k] = L[p]
0 if C[k] 6= L[p]

(1)

where C is a sorted list of the names of each category, and
L[p] is the human labeling of page p. Such soft classifica-
tion is mainly used for internal representation. Although
the output of our algorithm is also in the form of proba-
bility distribution, it is converted into hard labeling for the
purpose of evaluation, i.e., labeling the page by the class to
which it most likely belongs.

The reason why we do soft classification rather than hard
labeling is based on observations of real-world pages. First,
web pages have complex structures and each part of the page
may talk about related but different topics. Second, even for
those pages which concentrate on one topic, it is natural that



the topic may belong to multiple categories. For example,
the homepage of a health insurance company may belong
to both “Business” and “Health”. Part of the reason for
this lies in the ambiguously-defined taxonomy. Many pages
in the ODP directory are placed into multiple categories by
human editors, which fortifies our confidence in using soft
classification.

So far, the neighboring pages have been divided into four
sets according to the link structure. Each of them is further
categorized into two subsets according to the availability of
its pre-determined label. In addition, each page in these
subsets is represented by a topic vector. We next discuss
how to utilize this information to help classify the target
page.

3.2 Utilizing the neighboring information
After analyzing the neighborhood structure, the neighbor-

ing pages are placed into one or more of the four sets based
on their relationship in the web graph. Each page is also
represented by a topic vector vp. In the next step, these
topic vectors combined with the topic vector of the target
page will be combined to improve classification performance.

In general, the topic vectors of all neighboring pages may
help in determining the target page’s category. For exam-
ple, one simple approach would be to set the target page’s
class to the majority class of all neighbors. However, in this
work we find that different types of pages are of different
importance to this purpose according to their relationship
to the target. Therefore, we introduce weighting factors to
bias the influence held by different subsets of neighboring
pages.

3.2.1 Bias on labeled pages
As described in Section 3.1, the pages in the neighbor-

hood of the target page might or might not be labeled. The
topic vectors of labeled pages are determined by the human
labeling, while the topic vectors of unlabeled ones are pro-
duced by a classifier. In order to keep under control the
noise introduced by the classifier, we use a factor η (where
0 ≤ η ≤ 1) to down-weight the vectors of unlabeled pages.
That is, we modify the topic vector vp by multiplying it by
its weight w(p). The modified topic vector v′

p is computed
by Equation 2.

v
′

p,k = vp,k × w(p) (2)

where w(p) =



1 if p is labeled
η if p is unlabeled

When η=0, the influence coming from those unlabeled
pages will be totally ignored, which implies that we don’t
trust the classifier at all. When η=1, the unlabeled pages are
treated equally to the labeled ones, which means we assume
the classifier is doing as well as human labeling.

3.2.2 Intra-host link bias
Links connecting pages within the same web site often

serve the purpose of navigation and do not confer authority.
Therefore, they are often ignored or considered less useful in
the scenario of link-based ranking. However, the situation
can be different in web page classification tasks. For exam-
ple, on a shopping web site, a product list in digital camera
category may contain links to all the digital cameras, which
are also on the same topic. As a result, we wish to explicitly
consider the utility of internal links for web page classifica-
tion.

In order to find out the answer, we introduce the param-
eter θ to weight the influence of the neighboring pages that
are within the same web host of the target page. We modify
the topic vector again to include this parameter.

v
′′

p,k =



θ · v′

p,k host(p) == host(s)
v′

p,k host(p) 6= host(s)
(3)

where s is the target page and host() is a function that
returns a page’s host name.

When θ=0, intra-host links are ignored. When θ=1, intra-
host and inter-host links are counted equally. Note that
we do not limit θ to be between 0 and 1. Values larger
than 1 are also acceptable, which means we are open to the
possibility that intra-host links are more important than
inter-host ones.

3.2.3 Counting the multiple paths
Now that we generated and modified the topic vector for

each page in the neighborhood, it is time to consider the
relationship between the target page and the neighboring
pages. Here, an interesting issue may arise: if a sibling page
has more than one parent in common with the target page,
that is, in a link graph view, there are multiple paths be-
tween the target page and its sibling page, should the weight
be counted as one or as the number of parents in common?
The same question applies to the spousal pages, too. We
leave this question to be answered by the experiments.

In the weighted path variation, the influence of a sib-
ling page (or a spousal page) to the target page’s topic is
weighted by the number of common parents (or children).
In the unweighted version, such weighting scheme is ignored.
That is, no matter how many parents (or children) that are
held in common, it is counted only once.

3.2.4 Bias among neighbors
In Section 3.1, we introduced four types of neighboring

pages: parent pages (A), child pages (B), sibling pages (C)
and spousal pages (D). We expect that the pages in these
four sets may have different influence on the target page’s
topic. Therefore, a weighting vector β = (β1, β2, β3, β4) is
used to allow for bias among them, where β1, β2, β3, β4 ≥ 0
and β1 + β2 + β3 + β4 = 1.

The combined neighboring pages’ topic vector vn can be
computed by Equation 4.

vn,k = β1 ×

P

p∈A
v′′

p,k
P

p∈A
w(p)

+ β2 ×

P

p∈B
v′′

p,k
P

p∈B
w(p)

+β3 ×

P

p∈C
v′′

p,k
P

p∈C
w(p)

+ β4 ×

P

p∈D
v′′

p,k
P

p∈D
w(p)

(4)

3.2.5 Combining neighboring pages with target page
Like neighboring pages, the target page s will also go

through the classifier and get its topic vector vs. Then
the combined topic vector v for the target page s will be
a weighted combination of vs and vn.

vk = α × vs,k + (1 − α)vn,k (5)

or in vector representation:

~v = α × ~vs + (1 − α)~vn (6)

where (0 ≤ α ≤ 1).



When α=0, the labeling of the target page is solely de-
cided by its neighbors without looking at its own content
at all. When α=1, the labeling is based solely on the pure
textual classifier while the information from the neighboring
pages are ignored.

Now that the combined topic vector v is obtained by tak-
ing into consideration all the neighboring pages’ informa-
tion as well as that of the target page, a conversion from
probabilistic distribution to hard labeling is needed before
evaluation. The conversion simply picks the category corre-
sponding to the largest component in v as the label of the
target page.

4. EXPERIMENTS
In the above sections we have described a highly param-

eterized model for generating a topic distribution (and thus
implicitly, a hard classification) for a target page, given the
labels and textual contents of neighboring pages and their
relationships to the target page. In this section, we describe
experiments using that model on real-world data to evaluate
the impact of various parameters and to assess the potential
of a web-page classifier using an appropriately tuned version
of the model.

4.1 Experimental setup

4.1.1 Taxonomy
We choose to use the classification structure from the

Open Directory Project [19]. Constructed and maintained
by a large community of volunteer editors, the ODP, also as
known as the dmoz Directory, is claimed to be the largest
human-edited directory of the Web.

The metadata being used in our work was downloaded
from dmoz.org in September 2004, and contains 0.6 million
categories and 4.4 million leaf nodes. A crawler was used to
fetch the web pages pointed to by the ODP, out of which
95% were successfully retrieved.

4.1.2 HTML file preprocessing
All of the web pages we use have gone through a text

preprocessor. This includes the pages to train the classifier,
as well as the target pages and their neighboring pages which
we will use for evaluation.

The functionality of the preprocessor is as follows:

• eliminate HTML tags except the content from the
“keywords” and “description” metatags (because they
may be of help in deciding a page’s topic);

• unescape escaped characters;

• eliminate characters other than alphanumeric charac-
ters;

• eliminate terms whose length exceeds a certain limit
(4096 characters in this case).

Therefore, after preprocessing, each HTML file is trans-
formed into a stream of terms.

The preprocessing is essential for at least three reasons.
First, it filters out noisy terms such as “html”, “body”,
which may compromise the classification accuracy. In our
experience, this preprocessing can increase the classification
accuracy by 3% (in absolute value), if not more, leading to
an overly optimistic estimation of future performance. Sec-
ond, one of our text classifiers (Rainbow) cannot function on

Arts Business Computers Games

Health Home Recreation Reference

Science Shopping Society Sports

Table 1: Set of twelve top-level categories used in
the dmoz Directory.

the original HTML files without preprocessing due to terms
that are too long. Finally, preprocessing eliminates some
unnecessary features and thus makes web pages shorter, re-
ducing time and space required by the classifier.

4.1.3 Text-based classifier training
Two common textual classifiers are used in our experi-

ments: Rainbow [17], a text classifier based on the Bow li-
brary, and SVMlight [13], a Support Vector Machine imple-
mentation developed by Joachims. We wish to determine
whether the choice of text classifier will affect the perfor-
mance of our approach.

First, as in the work by Chakrabarti et al. [4], we select
12 out of the 17 top-level categories of the dmoz Directory,
and list them in Table 1. A random selection of 19,000
pages from each of the 12 categories (i.e., 228,000 in total)
are used to train Rainbow’s näıve Bayes classifier with the
built-in Laplace smoothing method. No feature selection
was employed (i.e., all features were used).

Twelve “one against many” binary SVM classifiers are
trained using linear kernel. The values predicted by each
binary classifier are normalized to form a probability distri-
bution.

4.1.4 Tuning set and test set
Two datasets are used in our experiments to measure per-

formance: a sample of 12,000 web pages from ODP and a
sample of 2000 web pages from Stanford’s WebBase collec-
tion [11].

For ODP dataset, 500 target pages are randomly sampled
form each category for tuning the parameters and another
500 for test. We obtain the URLs of the neighboring pages
and then crawl the union of those pages from the Web. The
outgoing links are directly extracted from the web pages,
while the incoming links are obtained by querying Yahoo
search with “inlink:” queries through the Yahoo API [26].
Due to API usage limits, we obtain at most the first 50
incoming links for each page.

On average, 778 neighbors are retrieved for each target
page. The numbers of the four kinds of neighbors used in our
test are listed in Table 2. Although we distinguish the four
kinds of neighbors literally, they actually overlap with one
another. Therefore, the actual total number of neighboring
pages is less than the sum.

For the WebBase dataset, 2000 target pages are selected
from a 2005 crawl. The link graph provided with the data
collection is used to find the neighboring pages. The use

Parent pages 518,309
Child pages 260,154
Sibling pages 4,917,296
Spousal pages 3,642,242

Unique neighbors 6,483,871

Table 2: Numbers of the four kinds of neighbors



of WebBase dataset has two purposes. First, the ODP
pages are mostly high quality pages, while WebBase is a
generic crawl from the Web. Therefore, experiments on the
WebBase dataset are potentially able to demonstrate per-
formance on more typical web pages rather than just high-
quality pages. Second, in the ODP dataset, the number of
neighboring pages is limited by the method used to collect
incoming links. By using WebBase data, we hope to deter-
mine the importance of the role played by the number of
incoming links in our algorithm.

4.1.5 Removing “dmoz copies”
It is noteworthy to point out that when going through our

data set manually, we find that there are plenty of “dmoz
copies”. A “dmoz copy” is simply a mirror of a portion of the
dmoz ODP. Given that dmoz metadata is publicly available,
setting up such a mirror site is straightforward, and not
necessarily bad. However, our algorithm may unduly benefit
from those copies.

Imagine a page pointed to by dmoz Directory is under
scrutiny. By querying for the parents of this page, we may
get several or even tens of dmoz copies which link to other
pages with the same topic. Since the labels of those sib-
ling pages are known (because they are in dmoz Directory),
they are utilized by our algorithm in determining the target
page’s topic. Furthermore, the existence of “dmoz copies”
provides multiple paths between the target page and the
sibling pages. Therefore, in the weighted path version, the
labels of those labeled sibling pages will probably dominate
the contribution from the neighbors and thus boost the ac-
curacy.

In order to minimize the benefit from “dmoz copies”, we
used a simple pruning method to remove the copies from
our data set. The method is based on the observation that
most URLs of “dmoz copies” contain the names of direc-
tories in dmoz, such as “Computer/Hardware” and “Busi-
ness/Employment”. This program checks the URLs of every
neighboring page and removes the ones whose URL contains
such directory names.

In the ODP dataset, 136,844 pages were found by this
pruning step. They are removed for all the experiments.
This removal is necessary; a preliminary experiment shows
a 3% drop of the accuracy after removal.

The limitation of this approach is obvious. This pruning
method may unnecessarily remove pages that are not “dmoz
copies”. It may also pass by some real “dmoz copies” if they
do not use those directory names in their URLs. However,
a manual check on random sample of more than 100 parent
pages did not discover any additional “dmoz copies”.

4.2 Parameter tuning
In Section 3, we left several parameters in our algorithm

to be tuned by experiments. In this section, we are going to
show how the performance of the algorithm over our tuning
set is affected by the value of these parameters.

4.2.1 η: bias on labeled pages
In order to determine the effect that η (the weight of un-

labeled pages) has on the performance of the algorithm, we
performed a series of tests by changing the value of η while
fixing the values of other parameters. The other param-
eters are set as follows: θ=2.5, β={0.1, 0, 0.8, 0.1}, and
α=0.2. As is shown in Figure 2, the best performance in

Figure 2: Accuracy vs. weight of unlabeled pages
(η)

these tests is achieved when η=0. As we increase the value
of η, the accuracy shows a steady decreasing trend, high-
lighting the importance of human-labeled neighbors. The
result suggests that generally we should trust the human la-
beling while ignoring the result of textual classifier. This is
understandable given the poor performance of textual clas-
sifiers on web data. As will be detailed shortly, the accuracy
of Rainbow is only 65% on the target pages.

4.2.2 Weighted paths vs. unweighted paths
The comparison of the weighted and unweighted version

is also shown in Figure 2, from which we can see that the
weighted version outperforms the unweighted one. The ex-
planation of this result is quite straightforward: having more
parents (or children) in common implies a stronger connec-
tion between the two pages. Therefore, it is natural for the
influence between them to be weighted.

We also tested a variations of weighted path in which a
neighbor is weighted by a logarithm of the number of paths.
The results are worse than when using weighted path.

4.2.3 θ: are internal links useful?
Earlier in this paper we raised the question: are intra-host

links useful in web page classification tasks? According to
our findings, the answer is a qualified “yes”.

A preliminary study shows that inter-host links are more
informative than intra-host links. The experiment is done
when η=0, β={0.1, 0, 0.8, 0.1}, α=0.2 and using weighted
paths. When using only inter-host links, the classification
accuracy is 89.8%. The accuracy drops to 70.6% when only
intra-host links are considered.

We performed additional experiments to see how the accu-
racy changes when θ varies from 0 to 10. Figure 3 shows the

Figure 3: Accuracy vs. weight of intra-host links (θ)



Figure 4: Individual contribution of four types of
neighbors

test result. Although not remarkably, the weight of intra-
host links does influence the accuracy observably. When in-
creasing θ starting from 0, the accuracy climbs up steadily
until getting to its peak when θ=2.5. After that, the ac-
curacy fluctuates downwards. The result suggests that the
neighbors within the same host typically have some connec-
tion in topic with the target, improving performance slightly
when combined with inter-host links. In addition, rather
than being weighted less as in link-based ranking algorithms,
the results suggest that intra-host links should be given more
weight than inter-host ones.

4.2.4 β: weights among neighbors
We expect that different kinds of neighboring pages can

have different contributions when predicting the target
page’s topic. By having four separate types of neighbor-
ing pages, we can test and tune the impact that each type
has on the classification task.

First, we study the individual impact of each kind of
neighbor. Figure 4 shows the individual contribution of each
of them, among which sibling pages contribute the most.
Spousal pages are the least reliable source of information.

Next, in Figure 5, the influence of each kind of neighboring
pages is augmented in contrast to the others. For example,
in Group A, four tests are performed, each picking one kind
of neighbors and setting the corresponding component in β
to 0.4 while setting the other three to 0.2. In particular, the
“parent” column in Group A shows the accuracy under the
setting β= (0.4, 0.2, 0.2, 0.2). Similarly, in Group B, the
major component is 0.7 and the rest are set to 0.1.

Figure 5 shows that having the sibling pages to make the
major contribution is clearly better than any of the other
three. However, does that mean we should give full weight
to sibling pages?

In order to answer that question, we gradually change the
weight of sibling pages from 0.3 to 1 and let the other three
evenly share the remaining weight. The result is plotted
in Figure 6. As we can see, although siblings are the best
source of information, putting excessive weight on siblings
will decrease the accuracy.

Note that β is a four-dimensional vector. The experiment
above only explored the parameter space in one dimension,
which is far from enough. However, an exhaustive search
in a four-dimensional space is quite expensive. Experiments
on around 500 different parameter settings have been con-
ducted in order to find an optimum. Some of the results are
listed in Table 3.

Figure 5: Accuracy as principal neighbor type is
changed

Figure 6: Accuracy vs. weight of siblings

4.2.5 α: combining the neighbors with the target
page

We start by applying a textual classifier to the target page
and try to correct the classifier’s decision when the neigh-
boring pages strongly indicate otherwise. As is shown in
Figure 7, the accuracy peaks at α=0.2 if using the labels
of neighbors (α=0.15 yields the best performance when not
using labels of neighbors), which means it is important to
emphasize the information from neighboring pages.

Although the result seems to strongly suggest neighboring
pages are a better source of information for the target page’s
topic than the target page itself, we argue that there are at
least two more possible reasons which may lead to such a
result. First, neighboring pages, greatly outnumbering the
target page, provide more features, based on which the clas-
sifier is able to collectively make a better decision. Second,
some target pages do not have enough textual content for
the classifier to use. A definitive explanation will require
further study.

4.2.6 Soft classification vs. hard classification
In the previous section, we intuitively chose soft classifi-

cation against hard classification. Here we verify that intu-
ition.

Rainbow performs soft classification by default: it pre-
dicts the probability for each page being in every category.
We convert it to hard classification by taking the soft clas-
sification result and labeling each page with the category
corresponding to the largest component.



Figure 7: Accuracy vs. weight of target page content
(α)

We compared the accuracy of our algorithm when per-
forming it on both soft and hard classification results, with
the parameter setting being as follows: α=0.2, β=(0.1, 0,
0.8, 0.1), η=0, θ=2.5 and the weighted path version. The
accuracies are 90.5% and 90.3%, respectively, with the soft
classification in the lead. Similar experiments are done
based on the result of SVMlight. The accuracies are 91.4%
and 91.2%. Although the difference is not large, soft classi-
fication did do a slightly better job than hard classification.

In addition, a t-test is performed on the accuracy of soft
classification and hard classification. The result (shown in
Table 4) suggests that soft classification performs statisti-
cally significantly better than hard classification.

β1 β2 β3 β4 Accuracy
0.1 0 0.9 0 0.9055
0 0.1 0.9 0 0.9047
0 0 0.9 0.1 0.9055
0.2 0 0.8 0 0.9087
0 0.2 0.8 0 0.9048
0 0 0.8 0.2 0.9060
0.3 0 0.7 0 0.9050
0 0.3 0.7 0 0.8986
0 0 0.7 0.3 0.9022
0.4 0 0.6 0 0.8938
0 0.4 0.6 0 0.8808
0 0 0.6 0.4 0.8865
0 0.05 0.9 0.05 0.9058
0.05 0 0.9 0.05 0.9060
0.05 0.05 0.9 0 0.9055
0 0.1 0.8 0.1 0.9051
0.1 0 0.8 0.1 0.9088
0.1 0.1 0.8 0 0.9081
0 0.15 0.7 0.15 0.9033
0.15 0 0.7 0.15 0.9063
0.15 0.15 0.7 0 0.9048
0 0.2 0.6 0.2 0.8955
0.2 0 0.6 0.2 0.8978
0.2 0.2 0.6 0 0.8958

Table 3: Accuracy under different settings of beta

Algorithm P-value on accuracy
Neighboring (SVM) 9.14e-5
Neighboring (naive Bayes) 1.44e-3

Table 4: P-values for soft classification over hard
classification

4.3 Experimental results

4.3.1 Experiments on the labeled ODP dataset
After tuning the parameter settings, we ran our algorithm

on the ODP test set with the setting, α=0.2, β=(0.1, 0, 0.8,
0.1), η=0, θ=2.5 and using the weighted path version.

For the purpose of comparison, we also implemented one
of the algorithms (IO-bridge) suggested by Chakrabarti et
al. [4] and the algorithm proposed by Calado et al. [2].

The main idea of IO-bridge is to build an engineered doc-
ument corresponding to each document in the dataset, in
which the constructed document consists only of prefixes of
the category names of the sibling pages of the target page.
In IO-bridge, only the sibling pages within a human labeled
dataset are considered. After that, the training and test-
ing is performed on the engineered dataset rather than the
original one.

The best performance reported by Calado et al. was
achieved when combining the result of the kNN text classifier
with co-citation similarity derived from link graph (K+C).
In the following, we compare our algorithm with both IO-
bridge and K+C.

We trained IO-bridge on the same 228,000 document as
is used to train Rainbow, and tested it on the same test set
as we used to test our algorithm. The comparison is shown
in Figure 8. The baseline is the accuracy of Rainbow, the
textual classifier, which is 65.0% on the test set. kNN , with
k=30, performs almost as well as Rainbow. SVMlight did
a better job than Rainbow, with its accuracy being 73.1%.
IO-bridge increases the accuracy to 79.6%. (IO-bridge is re-
ported in that paper to have increased the accuracy from
32% to 75% on a 800-document dataset extracted from Ya-
hoo Directory.) K+C has an accuracy of 76.3%. However,
if only the link-based measure (co-citation) is considered,
its accuracy is much higher (87.1%) than the combination
of link-based and content-based measures. Our algorithm
(referred to as “Neighboring” in Figure 8), at the best per-
formance, can achieve 91.4% accuracy on our ODP data
set. Further more, a series of t-test shows Neighboring algo-
rithm performs significantly better than all other algorithms
considered.

Although the accuracy of SVMlight is nearly 10% bet-
ter than that of Rainbow, Neighboring algorithm based on
SVMlight outperforms the one based on Rainbow by only
1%, which weakly implies that our Neighboring algorithm
does not rely much on the textual classifier.

We also calculated accuracy on top 3 and top 5 categories.

K+C K+C (link only) IO-Bridge
Neighboring 2.71e-9 5.28e-5 2.33e-9
(naive Bayes, soft)
Neighboring 5.79e-9 4.35e-5 4.78e-9
(SVM, soft)

Table 5: P-values for Neighboring over other algo-
rithms



Figure 8: Comparison of accuracy of different algo-
rithms

In these cases, the classes are sorted by the predicted prob-
abilities. If one of the top 3 or top 5 categories matches the
label given by human, the prediction is considered correct.
As is plotted in Figure 9, Neighboring algorithm based on
SVMlight got a 98.43% high accuracy when looking at top 3
categories, 99.3% at top 5.

4.3.2 Experiments on the unlabeled ODP dataset
Our Neighboring algorithm takes advantage of human

labeling. However, this is also potentially a major limita-
tion. In our dataset, each target page, on average, has 92
labeled pages out of 2,043 pages in its neighborhood. In
the real world, we cannot expect such a good number of
labeled pages. For this reason, we want to find out how
Neighboring algorithm performs when there is no human
labeling available. We hid the labels of neighboring pages
(i.e., as if they do not have labels), and ran Neighboring

algorithm again based on Rainbow and SVMlight, with the
parameters α=0.2, β=(0.1, 0, 0.8, 0.1), η=1, θ=2.5 and us-
ing the weighted path version. The result is shown in Figure
10. Our Neighboring algorithm improved the accuracy of
Rainbow from 65.0% to 76.4%, and improved the accuracy
of SVMlight from 73.1% to 79.7%. As we can see, although
Neighboring algorithm suffered from the lack of human-
assigned labels, it still has fairly good performance.

It is noticeable that the ODP hierarchy is not representa-
tive of the Web in the sense that it has a strong, intentional
bias towards highly-regarded pages. Our approach might be
taking advantage of such a characteristic. An experiment on
a WebBase dataset (below) will show its performance on a
more generic web dataset.

Besides being highly-regarded, most ODP pages also tend
to be homepages or entry pages. In order to find out whether
our improvement is limited to entry pages, we examined the
performance on all the root pages within the test set being
used above. A root page here is defined as a page with no
path section in its URL, e.g., http://www.yahoo.com/. The
reason to use root pages is that entry pages are hard to iden-
tify even for a human expert. However, it is reasonable to
assume that all root pages are entry pages. 2930 root pages
are found within the 6000-page test set. On these entry
pages, Neighboring algorithm is able to improve the accu-
racy of naive Bayes textual classifier from 61.1% to 89.4%.
Compared to the performance on the whole test set, i.e., an
improvement from 65.0% to 89.9%, the performance on the
root pages is not substantially better. This suggests that
our approach does not have a strong bias on entry pages.

Figure 9: Accuracy on top 3 and top 5 categories

Figure 10: Neighboring algorithm with or without
using human labeling

4.3.3 Experiments on the WebBase dataset
To eliminate the potential bias of highly-regarded web

pages from the ODP, we tested our approach on randomly
selected pages from the WebBase dataset. We continued to
use the parameter settings of α=0.2, β=(0.1, 0, 0.8, 0.1),
η=1, θ=2.5 and using the weighted path version. We manu-
ally labeled 100 randomly selected pages for evaluation pur-
poses. The accuracy of our Neighboring algorithm is 56%,
reducing the error rate by one quarter compared to a naive
Bayes textual classifier (42%).

We also used WebBase to explore how sensitive our ap-
proach was to the number of incoming links. We ordered the
incoming links by their PageRank [20] value and selected the
top 50 as the initial incoming links, to best match the ex-
pected performance of the Yahoo in-link service. However,
when we increased the number of incoming links used to 100,
200, etc., even all incoming links present in the dataset, we
found no significant change in performance. Thus we con-
clude that increasing the number of incoming links is not
likely to affect classification accuracy.

5. DISCUSSION
This paper has shown the improvements that our Neigh-

boring algorithm can provide for web page classification.
However, this approach also has some limitations, which we
discuss here.

• While performance is a function of a number of tunable
parameters, we have not fully explored the parameter
space, and it remains to be seen whether the parameter
choices are independent of the data set utilized.

• The ODP dataset used for most of our experiences gen-
erally consists of highly-regarded pages. Our experi-
ment with WebBase data suggests that performance



on the ODP dataset may be higher than arbitrary web
pages. This effect might be mitigated by using training
data that better matches the test data (e.g., training
on random web pages).

• We only utilized neighbor information to help deter-
mine the target page’s topic. The classification of the
target page itself, however, may similarly affect the
neighboring pages’ topic. A relaxation technique (e.g.,
as used in another algorithm from [4]) might be a use-
ful addition to our approach.

• For simplicity, the classification showed in this paper
is only on the first-level categories of dmoz Directory.
Conducting similar classification at a deeper level, or
on more fine-grained topics, may expose more inter-
esting facts.

• Our implementation of IO-bridge may not reflect the
full power of IO-bridge in that we utilized a naive Bayes
classifier with it (rather than their TAPER classifier)
and we report the average classification accuracy over
all test pages, including ones that do not have a labeled
sibling where IO-bridge will always fail (1.57% of our
test set).

In fact, since we also found the performance of our
algorithm to be best when unlabeled pages (of all
neighbor types) are ignored, our Neighboring algo-
rithm might be similarly limited when there are no la-
beled pages in the neighbor set. While this happens in
only 0.05% of test cases, an improved approach might
fall back to using the unlabeled neighbors in such sit-
uations.

6. SUMMARY
This paper has explored a method to utilize class infor-

mation from neighboring pages to help judge the topic of a
target web page. The experimental results show that, under
appropriate parameter settings, our algorithm significantly
outperforms the Rainbow and SVMlight textual classifiers
as well as existing algorithms.

Our contributions include the following:

• We tested multiple algorithms on a large, real-world
data set.

• We showed greatly improved accuracy on web page
classification, reducing error rates by about two thirds
over common text classification approaches.

• We showed that improvements using our approach
were realized even when neighboring pages were un-
labeled.

• We explored the effects that a number of factors have
on the classification, and proposed explanations of our
findings. We found that sibling pages give a good indi-
cation of a page’s topic and that intra-host links pro-
vide some benefit.

• We pointed out the “dmoz copy effect” in web page
classification and proposed a way to address it (al-
though this has been raised as a general issue in web
link analysis).

In the future, we plan to combine on-page features and
neighboring class information with off-page anchor texts
(e.g., as in [9]) to improve accuracy further.
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