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ABSTRACT

Web pages, like people, are often known by others in a vadéty
contexts. When those contexts are sufficiently distinctagefs
importance may be better represented by multiple domairsiof
thority, rather than by one that indiscriminately mixesutgtions.
In this work we determine domains of authority by examinihg t
contexts in which a page is cited. However, we find that it is no
enough to determine separate domains of authority; our haate
ditionally determines the local flow of authority based upbe
relative similarity of the source and target authority damsa In
this way, we differentiate both incoming and outgoing hyip&s
by topicality and importance rather than treating them sndm-
inately. We find that this approach compares favorably t@oth
topical ranking methods on two real-world datasets and ywes
an approximately 10% improvement in precision and qualityne
top ten results over PageRank.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3lpformation Storage and Retrieval]: Infor-
mation Search and Retrieval

General Terms
Algorithms, Performance

Keywords
Web search engine, link analysis, reputation, PageRank

1. INTRODUCTION

Human recommendations are typically made within a pasicul
context. For example, we say that persBrnis a great plumber; it
is rare to recommend someone without qualification (thawith-
out regard to purpose or topic). In addition, a person may bés
known in multiple contexts: a successful scientist mighbdle an
amateur musician.

Thus one might argue that reputation (or equally, imporamc
authority) is context-sensitive. This idea is equally azdle to
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the analysis of web authority. Traditional link analysihemes
treat hyperlinks indiscriminately and make the assumptiat ev-
ery target page is equally recommended. Under such methods,
page’s importance is measured by the sum total of authooityirfig
through incoming links without considering from which comni+
ties that authority is derived. Similarly, in traditionahk analy-
sis methods, a page divides its authority equally amongedkets
without considering the context in which those links wereated.

However, when a content creator places a hyperlink from one
web page to another, often the link is meant to refer a pdaticu
aspect or topic of the target page instead of the page in gener
Importantly, a single page often covers multiple topics an an
indiscriminate analysis of an incoming link might mistakegive
importance to unintended topics.

In this paper we propose to model reputation within distohmt
mains. A page can be known in multiple areas, and thus we track
a page'’s reputation separately within each domain. In exfditve
consider to what reputation domain an outgoing link is hdadead
propagate topical authority appropriately. To accompthsb, we
break a node into a number of heterogeneous, domain-spgaific
structures and consider authority flow between those ubibgh(
within and between pages) instead of at the page-to-pagé lev

By modeling the structure of the web at this finer level of deta
we can separate authority flow on different topics and pressuch
heterogeneity during authority propagation. As a resuftage’s
importance is able to be represented within multiple domaih
authority, rather than by one that indiscriminately mixeguta-
tions. Furthermore, by considering the relative similabetween
the source and target domains, a page can propagate italtapic
thority among the targets in a more intelligent and appaiprivay.

We evaluate our approach by conducting experiments on two
real-world web datasets and involve studies on contexessmta-
tion as well as domain identification. We show that by intrmidg
this fine-grained graph model, we can improve the retrieuality
of the PageRank algorithm.

The contributions of the paper are:

e We introduce a fine-grained link structure to better model
authority propagation and the query-specific ranking.

e We examine in-page link context at multiple scales for do-
main classification.

e We propose in-page local transitions to preserve the hetero
geneity in topical authority flows.

e We improve estimation of domain similarity by using a
global context to describe domain-specific reputation.

e \We compare our approach to a number of well-known rank-
ing algorithms to show the superiority of our approach.



The remainder of this paper is organized as follows: the back
ground and related work will be introduced in Section 2, wath
focus on combining text with link analysis and communityritie
fication. The proposed model is then detailed. The experiahen
framework and results will be presented in Sections 4 andpee
tively. We conclude with a discussion and summary of countrib
tions.

2. RELATED WORK

We begin with brief connections to related work, which can be
put into four categories: web reputation representatiork dnal-
ysis for community discovery, topicality in link analysiaciweb
page patrtitioning.

2.1 Web page reputation

In this work we explicitly represent the various domains imeth
a page’s reputation exists. Rafiei and Mendelzon [18, 19 ials
vestigated the reputation of a page, and proposed a mettgahto
erate a description of a page’s reputation by consideriagtmtri-
butions of all terms in predecessors that add authority égotge.
In contrast, we consider distinct domain reputations withset of
topics, rather than a single cumulative reputation oveteadl. Our
approach for generating reputation domains from link cxtstés
based on our prior work on identification of communities of-pa
ent pages [12, 13] but here we additionally consider extéraie
chortext and communities of child pages in order to mainthin
heterogeneous flow of topical authority.

2.2 Link analysis for community discovery

Instead of classifying links into topical domains, one copér-
tition links by the communities in which the link endpointeea
placed. Processes for discovering communities on the webé ha
been extensively studied. Kumat al. [9] find expanded bipar-
tite subgraphs to represent web communities. Similarlgké&et
al. [5] and Andersen and Lang [1] also detect communities purely
based on link structure, while our approach takes page obintt
account when deciding communities. Moreover, these aphesa
utilize link analysis to detect web communities, while we asm-
munity information to assist with link analysis.

Roberts and Rosenthal [20] find clusters of web pages based on

their outlink sets; in their model the authority value of gpas
proportional to the number of clusters which tend to linktt@ather
than the number of pages which link to it. This is somewhatlaim
in spirit to our approach, except that we utilize page camemen
generating communities, and do not consider each commtmity
be of equal value.

2.3 Topicality in link analysis

This paper is one of many that have proposed methods to in-
tegrate topical analysis with link analysis. Haveliwaldspic-
Sensitive PageRank (TSPR) [6] was the first algorithm to rinco
porate topical information into link analysis. In his modeilulti-
ple PageRank calculations are performed, one per categac)
biased by jumping exclusively to pages in the correspondatg-
gory rather than to any web page. Rafiei and Mendelzon [18}app
a similar idea at the term level.

In addition to biasing the random jump on a per-term releganc
basis, Richardson and Domingos’s Intelligent Surfer (18] [bi-
ases the selection among the outgoing links based on thaneke
of the target to the term. Pal and and Narayan [16] similaaiyof
links leading to pages on the topic of interest.

In past work [11] we also incorporated topicality into welnka
ings in our Topical PageRank model. This approach calcsiiate

authority score vector for each page to distinguish the rdmmt
tion from different topics. A topical random surfer problitically
combines page topical distribution and link structure.

All of the approaches above incorporate topics within the ra
dom surfer model. In contrast, the approach introduced is th
paper retains the original random surfer model but appti¢s a
finer-grained link graph for better modeling of authorityopaga-
tion though a page’s reputation domains.

2.4 Partitioning web pages

Our proposed model partitions the set of outgoing links fote
page (by domain). Others have similarly considered brepkin
page into subpages. Chakrabaatial. [3] propose segmenting a
page into small pagelets containing contiguous subseitsksf¢on-
sistently on a particular topic. Ceat al.[2] use a vision-based al-
gorithm to partition a page into blocks. In contrast, ourgmeed
approach breaks the set of outlinks by the reputation dosniain
which they point, independent of the source page’s stractur

3. METHODOLOGY

Web pages, like people, are often known by others in a variety
of contexts. When those contexts are sufficiently distiagiage’s
importance may be better represented by multiple domairsiof
thority, rather than by one that indiscriminately mixesutgtions.

To achieve this, a page can be regarded as mapping into feultip
“authority” units, in which each unit/subnode is used towama-
late authority flows from a particular domain. In this waypue
tation flows from various domains will stay on their topicsher
than diffusing into the entire page.

Similarly, a single page normally covers multiple topichus
hyperlinks from different contexts within this page may oo
different topics and carry different importance as wellstead of
giving each possible outlink the same amount of authoritsnatter
whether the target's topic is relevant to the authority'siteat or
not, it is advantageous to separate the targets into distoroains
and distribute authority among them based on relevancet adus
in the previous mechanism, we can separate the page intcakeve
domain-specific “hub” units, in which each hub includes oing
links leading to targets in a particular domain.

In this way, we map the authority propagation from the webepag
level into a level consisting of domain-specific subnodeschSa
fine-grained model explores the hidden semantic structuitgnv
web pages between which a hyperlink really takes placeepres
the heterogeneity in topical reputation flow and providesaem
effective method of reputation calculation. The rest of sketion
gives a detailed introduction of our model, HeterogeneasicT
Rank (denoted as HTR). For better understanding, we use kh sma
web made up of four pages in Figure 1 as an example.

3.1 Identifying the various domains sur-
rounding a page

As introduced above, the premise to identify the “authdrityd
“hub” units for a given page is to find out various distinct dans
surrounding it. Web pages are often known by others or refetft-
ers in a variety of contexts. To disambiguate various cdsfexe
classify them into separate categories. We predefine twelvad
categories (Table 1), chosen from the top level of the dmoearnOp
Directory Project (ODP) [14], and use a textual classifiedéter-
mine the category of each context. As shown in the second step
in Figure 1, the classification process will assign a labepicted
by different colors in this example) to each hyperlink. listivay,
given a page:, the hyperlink contexts pointing to and from it are
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topics

Figure 1: The Heterogeneous Topic Ranking (HTR) process.

separated into several domains (topics) based on thegifitagion
labels.

Besides the classification solution given above, we cowd al
use clustering techniques to disambiguate contexts basd¢ed
textual similarity. Compared to classification, clustgrimould be
more flexible. However, it is an expensive process, and ircase,
would need to be applied to the set of parents for each dodymen
even with parallelization and optimization, this will alygabe ex-
pensive for large datasets.

There are a number of options for representing a hyperlicdes
text. In this paper, we examine three variations:

e Anchortext: anchortext of the hyperlink.

e ExtendedAnchor: anchortext of the hyperlink plus the sur-
rounding texts.

e Fulltext: full contents of the document where the hyperlink
appears.

3.2 Exploring the fine-grained web graph

3.2.1 Node decomposition

With the various topics/domains surrounding a given page-d
tified, we can easily partition the page from both directjonso
domain-specific “authority” and “hub” units (denoted Asand H
in what follows).

This process is demonstrated in the 3rd step of Figure 1. Node

u is linked from two relatively distinct domains, and domairep-
resents 66% of the links and 33%. Nodeu is split into two in-
dependentd units, e.g.,A’, and A7 (shown in the left rectangle
within nodewu) with links from domain: and domain; are sepa-
rately directed tad’, and A%,. Symmetrically, we can decompose

Arts Business| Computer Games
Health Home Recreation| Reference
Science| Shopping| Society Sports

Table 1: The twelve broad categories

a page into several domain-specificunits with regarding to vari-
ous domains to which it points. As reflected in the examplaesi
nodew links to two different domaing andj, two independentf
units, e.g.,H: and HJ (shown in the right rectangle within node
u) are introduced into node to separate outgoing links pointing to
different domains. A similar process is applied to everyamotthe
collection.

3.2.2 Representing and # units

When node decomposition is complete, each page has been

mapped into a bipartite graph consisting of two sets of gesti
units A and H, with each A (and H) associated with a particu-
lar domain. The decomposition processesdcind H units for a
given page are symmetric, determined by various domaijsis&o
pointing to or linked from this page respectively. To delserthe
domain referred by a particulad(H), we use two levels of ab-
straction. Given amd’, unit (shown in the 3rd step in Figure 1), we
know that it is a unit within page referenced by a domain which
contains several contexts on topicIn “Term level” description,
each context is represented in the form of a term vector, teis
can describe the domain by the average of all the belonging ve
tors, denoted as(A’,). Such an average vector (i.e., the centroid)
integrates information from various members and rendellslaad)
view of this domain. Alternatively, since each context ie tto-
main is labeled with the same category tagie can simply use the
tagi to denote the domain at “category level”. TH& unit, in turn,
can be represented using the textual average vector (“Teret’)

or classification label (“Category level”) of all thé units (4%, and

A7 in our example) linked by it.

From the perspective of link analysis, the introductiondofind
H units provides a fine-grained representation for hypertkc-
ture. In our model, each hyperlink is no longer a simple catina
between two entire pages— v. Instead, it starts from some topi-
cal unitH; within the source page, and points to the target topical
unit A¢ rather than the complete page

3.2.3 Local flow within the page

In our model, we uncover the hidden internal structure ofgepa
as a complete bipartite graph, with eadtunit linking to everyH



unit within the same page. In this way, a particutacan propagate
its current authority to the outside via some intermediateits”
(H units). Rather than indiscriminately splitting authorégnong
all the target domains no matter whether they are relevattdo
domain of authority or not, a particulat is more likely to grant
its authority to and node on a similar topic, since thig leads to
targets in a relevant domain. As the example shows4thanit can
either propagate its authority to the target domg(A!) via HE, or
to target domairy (A4%,, AJ) via HJ, assuming thatand; are two
unrelated domains. Ifwe did not consider the relevance goelly
split authority among the three outgoing links, 66% of autijo
on topic: will divert into the irrelevant domairy. To avoid an
unrelated domain getting undeserved high authority, wecsél
units based on the relevance between the source and targatrdo
Suppose the relevance betwedh and H' is 0.85, and 0.15 for
HJ (considering the occasional off-topic transition), refietas
the weight labeled on edges within the page. As a result, doma
inherits 85% of the authority ofi’, whilej only gets a 15% share.
To measure the reIevancel(A;, 7) between a pair of internal
(A,H) units, e.g.,A%, andHZ, we calculate the similarity between
their associated domains. As mentioned above, the domaibea
described in two levels: the category level or the term level

e Category level: In category level, if the involved! and H
units are not labeled with the same classification tag, tre tr
sition probability is arbitrarily set to be a low value (0)15
the likelihood is non-zero to allow for the occasional off-
topic shift.

i 7\ 0.85 ifi ::j
rel(Ay, Hy) = { 0.15 otherwise
Term level: In term level, both4A?, and H are represented
by the centroid of contexts within their domains, denoted as
t(A%) andt(H?) respectively. The relevance can be mea-
sured by the cosine similarity of their vector space represe
tations.

t(AL)t(HY)

(AL HI) = _
rel( )= T ()

@)

likelihood to choose a particulall is determined by its relative
relevance with the current; the probability of selecting an outlink
from H is uniformly distributed. Let’s take a look at the transitio
from A% to AJ. First of all, the surfer needs to hop fror, to
HJ within the pageu, the relative likelihood isurel (A, HY), as
introduced in last section, which can be calculated in eitbat-
egory level” or “term level”. After arriving atH{L, the surfer can
select uniformly one of its outlinkgZ? — A7 with probability
1/0(H3), whereO(Hf) is used to to denote the number of out-
links from HZ . In summary, the overall probability to transit #j,
from Al is

1
O(Hi)

Since the authority score can be defined as the stationaby pro
ability of finding the random surfer at!, we can calculated’s
authority HT R(A?) as follows, withD(A,,) denoting the collec-
tion of category labels ofi units within pageu,:

(1 — d)nrel(AL, Hi)

HTR(H.
HTR(AY) ; o) +d—A (3)
HTR(H,) = Y HTR(A)nrel(Ay, H,)  (4)

T TED(Ay)

By replacingHT R(H?) in 3 with equation 4, the authority calcu-
lation can be finalized as

HTR(AU)de—A+
> HTR(A})nrel(A}, Hy)
TTED(Ay)

(1—d) >

uUu—v

O(H) ©
When the authority propagation converges, evdrynit is as-
signed an authority score with respect to its associatech@orithe
next task is performed at query time; to be able to rank resaita
particular query;, we need to calculate a query-specific importance
score for the page. This can be achieved by merging the sobres
units that belong to a page weighted by their affinity to thisny.

In the last phase, we normalize the relevance measurement tol N€ composite score can be calculated as follows:

represent the transition probability froshi, to HJ, and use it to

weight the corresponding edge in the page’s bipartite graph
rel(Ay, H)

ZT:TED(HH) TEI(A'ZL“ HZ"—)

In the above equation)(H,) denotes the collection of the cate-
gory labels ofH units within page:.

nrel(A,, Hy) = @)

3.3 Propagating authority

The next question comes as how to propagate authority among

the newly constructed web structure. The solution is toatait
and alter the behavior of PageRank’s “random surfer”. Imagi
a web surfer wanders on the web, who at each time is at sbme
unit within a pageu, e.g.,Af“ and decides what is next to visit.
With probability d, the surfer may jump to a randomly selectéd
unit from the entire web with probability V4, assuming thaiV 4

is the number of4 units in the whole collection. Otherwise, the
surfer will pick one of the outgoing links, saying, the lirdwards
Al However, notice that the outgoing links cannot be reached
by the surfer directly, since there are sevefalunits blocking in
the middle. The solution is to take a 2-step transition: tindes
first chooses ad{ unit, and then follow one of its outlinks. The

Sq(v) = Z HTR(A}) *7(q,T) (6)

T TED(Ay)

where HT' R( A7) is pagev’s authority on domain- andr(q, 7)
represents;’s relevance to domaim. (g, 7) is the 7** compo-
nent in queryy's probability distribution across the predefined cat-
egories, which can be generated by a textual classifier.

4. EXPERIMENTAL SETUP

In this section, we describe the datasets and experimeetl-m
ods used to evaluate the performance. We will compare our ap-
proach versus well-known ranking algorithms, especialigse
combining text and link analysis. Experimental resultd i pre-
sented in Section 5.

4.1 Datasets

To avoid a corpus bias, two different data collections wesedu
in our experiments. One is the TREC GOV collection, which is
a 1.25 million page crawl of the .gov domain in the year 2002.
Among them, 1,053,372 are text/html files, which were usealin
experiments. This corpus was used as the data collectioheof t
TREC Web Track for a number of years. The second data set is



a 2005 crawl from the Stanford WebBase [7, 4]. It contains 58M
pages and approximately 900M links.

When conducting the experiments on the GOV corpus, we chose
the 2003 topic distillation task to test these algorithmkicl con-
tains 50 queries. When doing experiments on the WebBasesorp
we selected 50 queries from a set of consisting of those émttyu
used by previous researchers, ODP category names, andapopul
queries from Lycos and Google (shown in Table 2).

4.2 Evaluation

Since there are no standard relevance judgments available f
WebBase dataset, the relevance between query and seauttls res
has to be inspected manually. For each randomly assigneg, que
evaluators (members of our research lab) are required tordéte
the relevance for every URL result associated with this g(igind
to the source ranking algorithm), using a five-value scaléctwvh
were translated into the integers from 0 to 4. If the averamees
for this pair is more than 2.5, it is marked as relevant. Therav
age fraction of relevant URLs within the top ten results asrall
queries is defined as Precision@10. To further explore tladityu
of retrieval, we also evaluated the ranking algorithms akerNor-
malized Discounted Cumulative Gain (NDCG) [8] metric. NDCG
credits systems with high precision at top ranks by weightile-
vant documents according to their rankings in the returresdch
results; this characteristic is crucial in web search.

For GOV data, TREC provides relevance assessments; there ar
10.32 relevant documents per query on average for the tagit-d
lation task of TREC 2003. In addition to P@10 and NDCG@10,
we add Mean Average Precision (MAP) as evaluation metrigesin
it is widely used in TREC and not restricted to the top 10 rssul

4.3 Ranking methods compared

We compare our proposed approach HTR with five ranking algo-
rithms: PageRank (PR) [15], Topical PageRank (TPR) [11pido
Sensitive PageRank (TSPR) [6], Intelligent Surfer (I1S)][28d
CommunityRank (CR) [12]. PR is used as the baseline; we ad-
ditionally chose TPR, TSPR, IS and CR because, similar to our
model, they measure a page’s reputation with respect terdiit
aspects (topic or term) instead of a generic reputation.

As discussed previously, our model may have several options
the various resulting combinations are shown in Table 3. h t

harry potter college football diabetes
music lyrics george bush nfl

online dictionary britney spear pokemon
olsen twins diamond bracelet madonna
weight watchers windshield wiper  brad pitt
playstation jennifer lopez maps

new york fireworks moto racer poker
halloween costumes  iraq war tsunami

st patricks day cards  four leaf clover games

the passion of christ  tattoos jersey girl
automobile warranty ~ fox news golf clubs
herpes treatments paris hilton pilates
skateboarding taxes seinfeld show
lord of the rings hilary duff american idol
angelina jolie star wars diets

final fantasy janet jackson poems

prom hairstyles

musculoskeletal disorders

Table 2: Set of fifty queries used for relevance evaluation in

WebBase.

Link Domain
Method Context Relevance
AC Anchortext Category
EC ExtendedAnchor| Category
FC Fulltext Category
AT Anchortext Term
ET ExtendedAnchor Term
FT Fulltext Term

Table 3: Different HTR models.

experimental section below, we study and compare theiiexetr
quality over multiple performance metrics.

For each query, we rank all documents using the combination
of two different kinds of scores. One is the query-specifiere
vance score and the other is the authority score calculateitib
analysis algorithms. The relevance score is calculateaiguisie
OKAPI BM2500 [21] weighting function, and the parameters ar
set the same as in Cat al. [2]. We then select the top results
from the combined list as the final outputs. The combinatiouma
be score-based, where a page’s final score is a weighted summa
tion of its authority score and relevance score; it couldralately
be order-based, where ranking positions based on imp&tscare
and relevance score are combined together. In our impleatient
we choose the order-based option; all ranking results pteddn
this paper are already combined with IR scores.

4.4 Textual classification

We use a well-known naive Bayes classifier, “Rainbow” [16], t
decide the category for each hyperlink’s context for theppse
of domain recognition as well as a given query’s affinity teiva
ous topics. The classifier is trained on 19,000 pages frorh efic
twelve categories of the ODP hierarchy. We apply it to both-co
texts and queries and get a topic distribution for each. \lvellthe
context by the dominant dimension of its topic distributi@ttor.

5. EXPERIMENTAL RESULTS

To evaluate the behavior of our proposed HTR model, we com-
pare its retrieval performance versus well-known rankinhgoa
rithms. Results demonstrate that by preserving the hetesity
in topical authority flows, we can produce more accuratecear
results.

5.1 Domain identification

As described in Section 3, each node in the web graph will be
partitioned into several “authority”4) and “hub” (H) units with
respect to the different domains surrounding it. As a resiuét1.05
million nodes in GOV collection are mapped into 1.45 millidn
units and 3.16 millionH units. The 54.7 million nodes in Web-
Base are mapped into 82.3 milliof units and 167.1 millionH
units. (These numbers reflect the use of “ExtendedAnchon* co
text representation.)

We definedomain in-degreeas the number of domains point-
ing to a page, andomain out-degre@s the number of domains
pointed by a page. To illustrate, in Figure 2 we show the ithigtr
tion of the domain in-degree and the domain out-degree whiexgu
extended anchortexts on GOV. (Distribution on WebBaseiexib
similar pattern.) The distribution of domain out-degresrisoother
than the domain in-degree, indicating that it is more comifieo
document to link to multiple topics than being known withiamy
domains.

Many pages on the web are referenced by contexts from
different domains. For example, in our GOV dataset, the
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Figure 2: Histogram of domain degrees for extended anchort-  Figure 3: Precision@10 performance on GOV as the combina-
exts on GOV. tion of IR and importance scores are varied.

page htt p: //ww. t ouri sm wa. gov/ is the official site
of Washington's state tourism. We classified its parent page
into either “Recreation” or “Business” domain. Another,
http://oa. od. ni h. gov/, is the home page of “NIH Office
of Administration”, for which some parents belongs to “Hbal
while others belongs to the domain of “Business”. A broader e
ample isht t p: / / dc. gov/ , the governmental homepage of the
District of Columbia. Information related to different tep can
be found on this page, and correspondingly we found pareggga
from various topics, such as “Recreation”, “Sports”, “Buesss”,
“Health” and “Computers”, pointing to it.

Below the baseline we present performance of our model vifith d
ferent configurations. All but one result is better than thedine.
Thus we conclude that our model certainly has the poterttiaht
prove search qualityHTR(EC)gets the best performance on all
measures. We also find that using “category level” to detegrdo-
main relevance outperforms or matches “term level” measerd
in all cases.

Table 4 additionally shows (when using “category levelgtths-
ing “ExtendedAnchor” to represent context exhibits begterfor-
mance than using “Fulltext”, while the performance of “Anch
ext” lags behind. One possible reason is that the class#igopns

poorly on short documents (i.e., anchortexts) since theyless
5.2 Global context versus local context informative and distinguishable, which may bring inacoyranto

When determining how to distribute the authority introddice  domain identification and relevance measurement. Expgritii
through a particular incoming link among the targets, oudelo  anchortext with surrounding information seems to improeefqr-
makes its choice based on the relevance of each source to eachnance to be even better than using “Fulltext”.

target. Instead of simply measuring the relevance baseden t Notably, when using “Fulltext” representation, only a sl

contexts provided by individual inlinks and outlinks, weodse unit is generated for each page because every outgoingtizues
to examine the relevance between domains. In this expetimen  an identical contextual representation—the current [safyd’ con-
investigate whether a global view of context (provided byome tent. Since the outgoing targets cannot be discriminatétsrcase,

bination of all of the members of a link’s domain) is more I‘ielp the authority score is a|WayS equa”y divided among themtraa
than a local view of context (provided by a single link alom®)  dicting our intuition. Under this configuration, the HTR nedaie-
determining relevance. generates into our previous model CommunityRank, and dégss

We randomly sampled 966 linked pages from the GOV web of whether in “category level” or “term level” measuremetitey
document corpus. The relevance between source and tanget ca exhibit the same performance as CommunityRank. Compared to

be measured by the similarity between the link pair's losa-c  “Fy|itext”, “ExtendedAnchor’ provides a more efficient asge-
texts (in “ExtendedAnchor” representation and with “terevdl” cific way to represent hyperlink contexts.
measurement). Unfortunately, the description providedaksin- After considering both quality and efficiency issues, weas®

gle hyperlink is always short and not very informative, gete o use “ExtendedAnchor” to represent contexts in the foiltmex-
ing an extremely sparse term vector space. As a result, 604 ou periments.

of 966 sample pairs end with zero relevance score, indigatiat In the following experiments, we compare the best perforcean
local context alone is not informative enough for relevajumy- of our model, with the other five rankers: PageRank, Communi-
ment. Global context provides a more detailed and compsaben tyRank, Topical PageRank, Topic-Sensitive PageRank aedliin
interpretation by synthesizing viewpoints from multiplembers. gent Surfer.

When using global context, 323 out of 966 pairs have zeroescor
Compared to local context, the global representation reslaases

of zero by almost half or equivalently, increases cases nfzeyo Method | NDCG@10 | P@10 | MAP
relevance scores by more than 75%. In this experiment, the av PR 0.218 0.138 | 0.153
age length of local context is 7.9 terms, versus an avera@8af. HTR(AC) | 0.232 0.138 | 0.167
terms for global context. In the remaining experiments, we the HTR(AT) | 0.219 0.132 | 0.165
global context to describe domain-specific reputation asiinate :-TFEEE%) 8532 8-122 81;2
the inter-domain similarity. HTR(FC) | 0.240 0146 | 0.168

HTR(FT) | 0.240 0.146 | 0.168

5.3 Results on GOV dataset

The baseline performance (PageRank) on the three evaluatio Table 4: Ranking performance of different HTR variations on
metrics introduced in Section 4.2 is shown at the top of Tdble  GOV.
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Figure 4: Comparison of overall performance for GOV data. . .
Figure 5: Comparison of overall performance on WebBase

data.

We first conduct a parameter study to investigate how differ-
ent weights for importance and relevance scores will affank-
ing systems’ performance. Figure 3 shows the Precision@10 a
is varied for the four ranking approaches, wherés the weight
of BM2500 score in the combination of text and authority. As
can be seen, HTR curve is almost always equal to or above other
curves in the graph, showing that our approach generallpesut
forms other approaches. All curves converged to the baseliven
ais 1, which corresponds to the performance of BM2500. In GOV
dataset, for each approach, we tune the combining pararfweter
the best P@10 and output its results with this optimal coatixn
as final results. In contrast, for experiments on WebBasefixve
the weight of IR score as 0.8 to save the cost of manual evafuat
across different values of.

Figure 4 shows the overall performance comparison. HTR out- §. DISCUSSION
performs other approaches on all metrics. An observatidhas
IS does not work well on TREC data, as it performs even more
poorly than PageRank. To determine whether these impravesme
are statistically significant, we calculated several srgiled t-
tests to compare HTR with all other approaches. A t-test show
that HTR significantly exceeds both baseline and IS at a 904% co
fidence level.

Figure 5 shows the overall performance comparison. HTR out-
performs the other approaches on both metrics. Again we per-
formed t-tests to compare HTR with all the other approach®s.
t-test shows that HTR significantly outperformed most apphes
with a confidence level of at least 90% except for Intelliggutfer.
However, Intelligent Surfer is quite expensive, since iaeto be
calculated for each dictionary term, while our model, likegER-
ank, only need to calculated once. In addition, differewnfr
HTR'’s consistent superiority on GOV and WebBase, Intefiige
Surfer shows drastically different performance on the tatadets,
from the worst to nearly the best.

From the above experiments, we find that “Term level” rel-
evance measurement outperforms “Category level” measmem
on WebBase, but not on GOV. Intuitively, queries in WebBase
are broad and have lots of relevant documents, while quéamies
TREC are specific with only 10.32 relevant documents on aver-
age. As a result, there are different policies for “narrowieges
and “broad” queries. On one hand, we expand the similaridgju
5.4 Result on WebBase dataset ment from term-level to category-level for the purpose aluling
more potential candidates for the “narrow queries” on GQVile
other hand, we focus on term-level to refine our search foodbr
queries” used on WebBase. Some intermediate form, such as a
finer-grained categorical representation, might be slétédy both
scenarios, but is left for future work.

From experiments conducted on the TREC dataset, we drew
the conclusion that using “ExtendedAnchor” to represemitext
provides appropriate descriptions and a significant coginga
compared to using full content. For WebBase, we only use “Ex-
tendedAnchor” to represent context, but we still compaeettin Since text vector space is sparse, it is no surprise thatdpta-
different options for relevance measurement: “categovglieand tion domains may not have significant overlap in text; on ttheo
‘term level”, as presented in Table 5. The baseline perfoireds hand, even if two domains fall into the same broad categheytie-
listed in the top row. _ gree of relevance varies from case to case. A possible conigeo

Again, both the results presented in Table 5 are better thén t 5 15 combine the two relevance measurements so that we ean de
basel!ne.HTR(ET)gets the best performance by outperforming the  ije whether the source and target are relevant based opg@gt
baseline by 10.8% on P@10 and 53% on NDCG@]'O”' In contrast | gye|” results and further find out how relevant they are bgrax
tothe resulzs shown in GOV dataf,et, Term-Relevance” opoiat- ining the textual similarity at “Term level”. In the futureye plan
performed “Category-Relevance” on WebBase. to explore a variety of ways to combine the two measurements.

Intelligent surfer exhibits quite poor performance on GOV
dataset. A possible explanation is to note that intelligemnfer only

Method NDCG@10 | P@10 . o L .
PR 0.410 0.415 wanders in a term-specific subgraph consisting of pagesirong
ATR(EC) | 0.426 0.440 the particular term. Given a small dataset like GOV, it'sch&w
HTR(ET) | 0.433 0.460 expect that such a graph will be well-connected and amerable
link analysis. Based on our statistics, the average defisitys
Table 5: Ranking performance for different HTR approaches per node) of term-specific subgraphs in GOV (for terms in tBe 5

on WebBase. queries) is 3.11 versus 16.5 in WebBase.



7. CONCLUSION

In this paper we have proposed a novel ranking method that ex-
amines link contexts to divide the normal web graph into arfine
grained domain-based subnode graph. Our approach associat

hyperlinks with particular reputation domains/topics ameights
them with importance, so that multiple topical authorityftoare

propagated through the web graph heterogeneously. Exge+im

tal results on two real datasets indicate that this apprésclon-
sistently promising in improving search engines’ rankireyfpr-
mance.
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