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ABSTRACT
Web pages, like people, are often known by others in a varietyof
contexts. When those contexts are sufficiently distinct, a page’s
importance may be better represented by multiple domains ofau-
thority, rather than by one that indiscriminately mixes reputations.
In this work we determine domains of authority by examining the
contexts in which a page is cited. However, we find that it is not
enough to determine separate domains of authority; our model ad-
ditionally determines the local flow of authority based uponthe
relative similarity of the source and target authority domains. In
this way, we differentiate both incoming and outgoing hyperlinks
by topicality and importance rather than treating them indiscrim-
inately. We find that this approach compares favorably to other
topical ranking methods on two real-world datasets and produces
an approximately 10% improvement in precision and quality of the
top ten results over PageRank.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval

General Terms
Algorithms, Performance

Keywords
Web search engine, link analysis, reputation, PageRank

1. INTRODUCTION
Human recommendations are typically made within a particular

context. For example, we say that personP is a great plumber; it
is rare to recommend someone without qualification (that is,with-
out regard to purpose or topic). In addition, a person may also be
known in multiple contexts: a successful scientist might also be an
amateur musician.

Thus one might argue that reputation (or equally, importance or
authority) is context-sensitive. This idea is equally applicable to
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the analysis of web authority. Traditional link analysis schemes
treat hyperlinks indiscriminately and make the assumptionthat ev-
ery target page is equally recommended. Under such methods,a
page’s importance is measured by the sum total of authority flowing
through incoming links without considering from which communi-
ties that authority is derived. Similarly, in traditional link analy-
sis methods, a page divides its authority equally among all targets
without considering the context in which those links were created.

However, when a content creator places a hyperlink from one
web page to another, often the link is meant to refer a particular
aspect or topic of the target page instead of the page in general.
Importantly, a single page often covers multiple topics, and so an
indiscriminate analysis of an incoming link might mistakenly give
importance to unintended topics.

In this paper we propose to model reputation within distinctdo-
mains. A page can be known in multiple areas, and thus we track
a page’s reputation separately within each domain. In addition, we
consider to what reputation domain an outgoing link is headed, and
propagate topical authority appropriately. To accomplishthis, we
break a node into a number of heterogeneous, domain-specificsub-
structures and consider authority flow between those units (both
within and between pages) instead of at the page-to-page level.

By modeling the structure of the web at this finer level of detail,
we can separate authority flow on different topics and preserve such
heterogeneity during authority propagation. As a result, apage’s
importance is able to be represented within multiple domains of
authority, rather than by one that indiscriminately mixes reputa-
tions. Furthermore, by considering the relative similarity between
the source and target domains, a page can propagate its topical au-
thority among the targets in a more intelligent and appropriate way.

We evaluate our approach by conducting experiments on two
real-world web datasets and involve studies on context representa-
tion as well as domain identification. We show that by introducing
this fine-grained graph model, we can improve the retrieval quality
of the PageRank algorithm.

The contributions of the paper are:� We introduce a fine-grained link structure to better model
authority propagation and the query-specific ranking.� We examine in-page link context at multiple scales for do-
main classification.� We propose in-page local transitions to preserve the hetero-
geneity in topical authority flows.� We improve estimation of domain similarity by using a
global context to describe domain-specific reputation.� We compare our approach to a number of well-known rank-
ing algorithms to show the superiority of our approach.



The remainder of this paper is organized as follows: the back-
ground and related work will be introduced in Section 2, witha
focus on combining text with link analysis and community identi-
fication. The proposed model is then detailed. The experimental
framework and results will be presented in Sections 4 and 5 respec-
tively. We conclude with a discussion and summary of contribu-
tions.

2. RELATED WORK
We begin with brief connections to related work, which can be

put into four categories: web reputation representation, link anal-
ysis for community discovery, topicality in link analysis and web
page partitioning.

2.1 Web page reputation
In this work we explicitly represent the various domains in which

a page’s reputation exists. Rafiei and Mendelzon [18, 17] also in-
vestigated the reputation of a page, and proposed a method togen-
erate a description of a page’s reputation by considering the contri-
butions of all terms in predecessors that add authority to the page.
In contrast, we consider distinct domain reputations within a set of
topics, rather than a single cumulative reputation over alltext. Our
approach for generating reputation domains from link contexts is
based on our prior work on identification of communities of par-
ent pages [12, 13] but here we additionally consider extended an-
chortext and communities of child pages in order to maintainthe
heterogeneous flow of topical authority.

2.2 Link analysis for community discovery
Instead of classifying links into topical domains, one could par-

tition links by the communities in which the link endpoints are
placed. Processes for discovering communities on the web have
been extensively studied. Kumaret al. [9] find expanded bipar-
tite subgraphs to represent web communities. Similarly, Flakeet
al. [5] and Andersen and Lang [1] also detect communities purely
based on link structure, while our approach takes page content into
account when deciding communities. Moreover, these approaches
utilize link analysis to detect web communities, while we use com-
munity information to assist with link analysis.

Roberts and Rosenthal [20] find clusters of web pages based on
their outlink sets; in their model the authority value of a page is
proportional to the number of clusters which tend to link to it rather
than the number of pages which link to it. This is somewhat similar
in spirit to our approach, except that we utilize page content when
generating communities, and do not consider each communityto
be of equal value.

2.3 Topicality in link analysis
This paper is one of many that have proposed methods to in-

tegrate topical analysis with link analysis. Haveliwala’sTopic-
Sensitive PageRank (TSPR) [6] was the first algorithm to incor-
porate topical information into link analysis. In his model, multi-
ple PageRank calculations are performed, one per category,each
biased by jumping exclusively to pages in the correspondingcate-
gory rather than to any web page. Rafiei and Mendelzon [18] apply
a similar idea at the term level.

In addition to biasing the random jump on a per-term relevance
basis, Richardson and Domingos’s Intelligent Surfer (IS) [19] bi-
ases the selection among the outgoing links based on the relevance
of the target to the term. Pal and and Narayan [16] similarly favor
links leading to pages on the topic of interest.

In past work [11] we also incorporated topicality into web rank-
ings in our Topical PageRank model. This approach calculates an

authority score vector for each page to distinguish the contribu-
tion from different topics. A topical random surfer probabilistically
combines page topical distribution and link structure.

All of the approaches above incorporate topics within the ran-
dom surfer model. In contrast, the approach introduced in this
paper retains the original random surfer model but applies it to a
finer-grained link graph for better modeling of authority propaga-
tion though a page’s reputation domains.

2.4 Partitioning web pages
Our proposed model partitions the set of outgoing links for each

page (by domain). Others have similarly considered breaking a
page into subpages. Chakrabartiet al. [3] propose segmenting a
page into small pagelets containing contiguous subsets of links con-
sistently on a particular topic. Caiet al. [2] use a vision-based al-
gorithm to partition a page into blocks. In contrast, our proposed
approach breaks the set of outlinks by the reputation domains to
which they point, independent of the source page’s structure.

3. METHODOLOGY
Web pages, like people, are often known by others in a variety

of contexts. When those contexts are sufficiently distinct,a page’s
importance may be better represented by multiple domains ofau-
thority, rather than by one that indiscriminately mixes reputations.
To achieve this, a page can be regarded as mapping into multiple
“authority” units, in which each unit/subnode is used to accumu-
late authority flows from a particular domain. In this way, repu-
tation flows from various domains will stay on their topics rather
than diffusing into the entire page.

Similarly, a single page normally covers multiple topics; thus
hyperlinks from different contexts within this page may point to
different topics and carry different importance as well. Instead of
giving each possible outlink the same amount of authority nomatter
whether the target’s topic is relevant to the authority’s context or
not, it is advantageous to separate the targets into distinct domains
and distribute authority among them based on relevance. Just as
in the previous mechanism, we can separate the page into several
domain-specific “hub” units, in which each hub includes outgoing
links leading to targets in a particular domain.

In this way, we map the authority propagation from the web page
level into a level consisting of domain-specific subnodes. Such a
fine-grained model explores the hidden semantic structure within
web pages between which a hyperlink really takes place, preserves
the heterogeneity in topical reputation flow and provides a more
effective method of reputation calculation. The rest of thesection
gives a detailed introduction of our model, Heterogeneous Topic
Rank (denoted as HTR). For better understanding, we use a small
web made up of four pages in Figure 1 as an example.

3.1 Identifying the various domains sur-
rounding a page

As introduced above, the premise to identify the “authority” and
“hub” units for a given page is to find out various distinct domains
surrounding it. Web pages are often known by others or refer to oth-
ers in a variety of contexts. To disambiguate various contexts, we
classify them into separate categories. We predefine twelvebroad
categories (Table 1), chosen from the top level of the dmoz Open
Directory Project (ODP) [14], and use a textual classifier todeter-
mine the category of each context. As shown in the second step
in Figure 1, the classification process will assign a label (depicted
by different colors in this example) to each hyperlink. In this way,
given a pageu, the hyperlink contexts pointing to and from it are



Figure 1: The Heterogeneous Topic Ranking (HTR) process.

separated into several domains (topics) based on their classification
labels.

Besides the classification solution given above, we could also
use clustering techniques to disambiguate contexts based on their
textual similarity. Compared to classification, clustering would be
more flexible. However, it is an expensive process, and in ourcase,
would need to be applied to the set of parents for each document;
even with parallelization and optimization, this will always be ex-
pensive for large datasets.

There are a number of options for representing a hyperlink’scon-
text. In this paper, we examine three variations:� Anchortext: anchortext of the hyperlink.� ExtendedAnchor: anchortext of the hyperlink plus the sur-

rounding texts.� Fulltext: full contents of the document where the hyperlink
appears.

3.2 Exploring the fine-grained web graph

3.2.1 Node decomposition
With the various topics/domains surrounding a given page iden-

tified, we can easily partition the page from both directions, into
domain-specific “authority” and “hub” units (denoted asA andH
in what follows).

This process is demonstrated in the 3rd step of Figure 1. Nodeu is linked from two relatively distinct domains, and domaini rep-
resents 66% of the links andj; 33%. Nodeu is split into two in-
dependentA units, e.g.,Aiu andAju (shown in the left rectangle
within nodeu) with links from domaini and domainj are sepa-
rately directed toAiu andAju. Symmetrically, we can decompose

Arts Business Computer Games
Health Home Recreation Reference
Science Shopping Society Sports

Table 1: The twelve broad categories

a page into several domain-specificH units with regarding to vari-
ous domains to which it points. As reflected in the example, since
nodeu links to two different domainsi andj, two independentH
units, e.g.,Hiu andHju (shown in the right rectangle within nodeu) are introduced into nodeu to separate outgoing links pointing to
different domains. A similar process is applied to every node in the
collection.

3.2.2 RepresentingA andH units
When node decomposition is complete, each page has been

mapped into a bipartite graph consisting of two sets of vertices:
unitsA andH, with eachA (andH) associated with a particu-
lar domain. The decomposition processes ofA andH units for a
given page are symmetric, determined by various domains/topics
pointing to or linked from this page respectively. To describe the
domain referred by a particularA(H), we use two levels of ab-
straction. Given anAiu unit (shown in the 3rd step in Figure 1), we
know that it is a unit within pageu referenced by a domain which
contains several contexts on topici. In “Term level” description,
each context is represented in the form of a term vector, thuswe
can describe the domain by the average of all the belonging vec-
tors, denoted ast(Aiu). Such an average vector (i.e., the centroid)
integrates information from various members and renders a global
view of this domain. Alternatively, since each context in the do-
main is labeled with the same category tagi, we can simply use the
tagi to denote the domain at “category level”. TheHju unit, in turn,
can be represented using the textual average vector (“Term level”)
or classification label (“Category level”) of all theA units (Ajw andAjt in our example) linked by it.

From the perspective of link analysis, the introduction ofA andH units provides a fine-grained representation for hyperlinkstruc-
ture. In our model, each hyperlink is no longer a simple connection
between two entire pagesu! v. Instead, it starts from some topi-
cal unitHiu within the source pageu, and points to the target topical
unitAiv rather than the complete pagev.

3.2.3 Local flow within the page
In our model, we uncover the hidden internal structure of a page

as a complete bipartite graph, with eachA unit linking to everyH



unit within the same page. In this way, a particularA can propagate
its current authority to the outside via some intermediate “exits”
(H units). Rather than indiscriminately splitting authorityamong
all the target domains no matter whether they are relevant tothe
domain of authority or not, a particularA is more likely to grant
its authority to anH node on a similar topic, since thisH leads to
targets in a relevant domain. As the example shows, theAiu unit can
either propagate its authority to the target domaini (Aiv) viaHiu, or
to target domainj (Ajw, Ajt ) viaHju, assuming thati andj are two
unrelated domains. If we did not consider the relevance and equally
split authority among the three outgoing links, 66% of authority
on topic i will divert into the irrelevant domainj. To avoid an
unrelated domain getting undeserved high authority, we selectH
units based on the relevance between the source and target domain.
Suppose the relevance betweenAiu andHiu is 0.85, and 0.15 forHju (considering the occasional off-topic transition), reflected as
the weight labeled on edges within the page. As a result, domain i
inherits 85% of the authority ofAiu while j only gets a 15% share.

To measure the relevancerel(Aiu; Hju) between a pair of internal
(A,H) units, e.g.,Aiu andHju, we calculate the similarity between
their associated domains. As mentioned above, the domain can be
described in two levels: the category level or the term level.� Category level: In category level, if the involvedA andH

units are not labeled with the same classification tag, the tran-
sition probability is arbitrarily set to be a low value (0.15);
the likelihood is non-zero to allow for the occasional off-
topic shift.rel(Aiu; Hju) = � 0:85 if i == j0:15 otherwise� Term level: In term level, bothAiu andHju are represented
by the centroid of contexts within their domains, denoted ast(Aiu) and t(Hju) respectively. The relevance can be mea-
sured by the cosine similarity of their vector space represen-
tations. rel(Aiu; Hju) = t(Aiu)t(Hju)jt(Aiu)jjt(Hjuj (1)

In the last phase, we normalize the relevance measurement to
represent the transition probability fromAiu to Hju, and use it to
weight the corresponding edge in the page’s bipartite graph.nrel(Aiu; Hju) = rel(Aiu; Hju)P� :�2D(Hu) rel(Aiu; H�u) (2)

In the above equation,D(Hu) denotes the collection of the cate-
gory labels ofH units within pageu.

3.3 Propagating authority
The next question comes as how to propagate authority among

the newly constructed web structure. The solution is to imitate
and alter the behavior of PageRank’s “random surfer”. Imagine
a web surfer wanders on the web, who at each time is at someA
unit within a pageu, e.g.,Aiu, and decides what is next to visit.
With probabilityd, the surfer may jump to a randomly selectedA
unit from the entire web with probability 1/NA, assuming thatNA
is the number ofA units in the whole collection. Otherwise, the
surfer will pick one of the outgoing links, saying, the link towardsAjv. However, notice that the outgoing links cannot be reached
by the surfer directly, since there are severalH units blocking in
the middle. The solution is to take a 2-step transition: the surfer
first chooses anH unit, and then follow one of its outlinks. The

likelihood to choose a particularH is determined by its relative
relevance with the currentA; the probability of selecting an outlink
from H is uniformly distributed. Let’s take a look at the transition
from Aiu to Ajv. First of all, the surfer needs to hop fromAiu toHju within the pageu, the relative likelihood isnrel(Aiu; Hju), as
introduced in last section, which can be calculated in either “cat-
egory level” or “term level”. After arriving atHju, the surfer can
select uniformly one of its outlinksHju ! Ajv with probability1=O(Hju), whereO(Hju) is used to to denote the number of out-
links fromHju. In summary, the overall probability to transit toAjv
fromAiu is (1� d)nrel(Aiu; Hju) 1O(Hju) :

Since the authority score can be defined as the stationary prob-
ability of finding the random surfer atAiv, we can calculateAiv ’s
authorityHTR(Aiv) as follows, withD(Au) denoting the collec-
tion of category labels ofA units within pageu:HTR(Aiv) = (1� d) Xu:u!v HTR(Hiu)O(Hiv) + d 1NA (3)HTR(Hiu) = X� :�2D(Au)HTR(A�u)nrel(A�u; Hiu) (4)

By replacingHTR(Hiu) in 3 with equation 4, the authority calcu-
lation can be finalized asHTR(Aiv) = d 1NA+(1� d) Xu:u!v X� :�2D(Au)HTR(A�u)nrel(A�u; Hiu)O(Hiu) (5)

When the authority propagation converges, everyA unit is as-
signed an authority score with respect to its associated domain. The
next task is performed at query time; to be able to rank results for a
particular queryq, we need to calculate a query-specific importance
score for the page. This can be achieved by merging the scoresof A
units that belong to a page weighted by their affinity to this query.
The composite score can be calculated as follows:Sq(v) = X� :�2D(Av)HTR(A�v) � r(q; �) (6)

whereHTR(A�v) is pagev’s authority on domain� andr(q; �)
representsq’s relevance to domain� . r(q; �) is the� th compo-
nent in queryq’s probability distribution across the predefined cat-
egories, which can be generated by a textual classifier.

4. EXPERIMENTAL SETUP
In this section, we describe the datasets and experimental meth-

ods used to evaluate the performance. We will compare our ap-
proach versus well-known ranking algorithms, especially those
combining text and link analysis. Experimental results will be pre-
sented in Section 5.

4.1 Datasets
To avoid a corpus bias, two different data collections were used

in our experiments. One is the TREC GOV collection, which is
a 1.25 million page crawl of the .gov domain in the year 2002.
Among them, 1,053,372 are text/html files, which were used inour
experiments. This corpus was used as the data collection of the
TREC Web Track for a number of years. The second data set is



a 2005 crawl from the Stanford WebBase [7, 4]. It contains 58M
pages and approximately 900M links.

When conducting the experiments on the GOV corpus, we chose
the 2003 topic distillation task to test these algorithms, which con-
tains 50 queries. When doing experiments on the WebBase corpus,
we selected 50 queries from a set of consisting of those frequently
used by previous researchers, ODP category names, and popular
queries from Lycos and Google (shown in Table 2).

4.2 Evaluation
Since there are no standard relevance judgments available for

WebBase dataset, the relevance between query and search results
has to be inspected manually. For each randomly assigned query,
evaluators (members of our research lab) are required to determine
the relevance for every URL result associated with this query (blind
to the source ranking algorithm), using a five-value scale which
were translated into the integers from 0 to 4. If the average score
for this pair is more than 2.5, it is marked as relevant. The aver-
age fraction of relevant URLs within the top ten results across all
queries is defined as Precision@10. To further explore the quality
of retrieval, we also evaluated the ranking algorithms overthe Nor-
malized Discounted Cumulative Gain (NDCG) [8] metric. NDCG
credits systems with high precision at top ranks by weighting rele-
vant documents according to their rankings in the returned search
results; this characteristic is crucial in web search.

For GOV data, TREC provides relevance assessments; there are
10.32 relevant documents per query on average for the topic distil-
lation task of TREC 2003. In addition to P@10 and NDCG@10,
we add Mean Average Precision (MAP) as evaluation metric since
it is widely used in TREC and not restricted to the top 10 results.

4.3 Ranking methods compared
We compare our proposed approach HTR with five ranking algo-

rithms: PageRank (PR) [15], Topical PageRank (TPR) [11], Topic-
Sensitive PageRank (TSPR) [6], Intelligent Surfer (IS) [19] and
CommunityRank (CR) [12]. PR is used as the baseline; we ad-
ditionally chose TPR, TSPR, IS and CR because, similar to our
model, they measure a page’s reputation with respect to different
aspects (topic or term) instead of a generic reputation.

As discussed previously, our model may have several options;
the various resulting combinations are shown in Table 3. In the

harry potter college football diabetes
music lyrics george bush nfl
online dictionary britney spear pokemon
olsen twins diamond bracelet madonna
weight watchers windshield wiper brad pitt
playstation jennifer lopez maps
new york fireworks moto racer poker
halloween costumes iraq war tsunami
st patricks day cards four leaf clover games
the passion of christ tattoos jersey girl
automobile warranty fox news golf clubs
herpes treatments paris hilton pilates
skateboarding taxes seinfeld show
lord of the rings hilary duff american idol
angelina jolie star wars diets
final fantasy janet jackson poems
prom hairstyles musculoskeletal disorders

Table 2: Set of fifty queries used for relevance evaluation in
WebBase.

Link Domain
Method Context Relevance

AC Anchortext Category
EC ExtendedAnchor Category
FC Fulltext Category
AT Anchortext Term
ET ExtendedAnchor Term
FT Fulltext Term

Table 3: Different HTR models.

experimental section below, we study and compare their retrieval
quality over multiple performance metrics.

For each query, we rank all documents using the combination
of two different kinds of scores. One is the query-specific rele-
vance score and the other is the authority score calculated by link
analysis algorithms. The relevance score is calculated using the
OKAPI BM2500 [21] weighting function, and the parameters are
set the same as in Caiet al. [2]. We then select the top results
from the combined list as the final outputs. The combination could
be score-based, where a page’s final score is a weighted summa-
tion of its authority score and relevance score; it could alternately
be order-based, where ranking positions based on importance score
and relevance score are combined together. In our implementation,
we choose the order-based option; all ranking results presented in
this paper are already combined with IR scores.

4.4 Textual classification
We use a well-known naive Bayes classifier, “Rainbow” [10], to

decide the category for each hyperlink’s context for the purpose
of domain recognition as well as a given query’s affinity to vari-
ous topics. The classifier is trained on 19,000 pages from each of
twelve categories of the ODP hierarchy. We apply it to both con-
texts and queries and get a topic distribution for each. We label the
context by the dominant dimension of its topic distributionvector.

5. EXPERIMENTAL RESULTS
To evaluate the behavior of our proposed HTR model, we com-

pare its retrieval performance versus well-known ranking algo-
rithms. Results demonstrate that by preserving the heterogeneity
in topical authority flows, we can produce more accurate search
results.

5.1 Domain identification
As described in Section 3, each node in the web graph will be

partitioned into several “authority” (A) and “hub” (H) units with
respect to the different domains surrounding it. As a result, the 1.05
million nodes in GOV collection are mapped into 1.45 millionA
units and 3.16 millionH units. The 54.7 million nodes in Web-
Base are mapped into 82.3 millionA units and 167.1 millionH
units. (These numbers reflect the use of “ExtendedAnchor” con-
text representation.)

We definedomain in-degreeas the number of domains point-
ing to a page, anddomain out-degreeas the number of domains
pointed by a page. To illustrate, in Figure 2 we show the distribu-
tion of the domain in-degree and the domain out-degree when using
extended anchortexts on GOV. (Distribution on WebBase exibits a
similar pattern.) The distribution of domain out-degree issmoother
than the domain in-degree, indicating that it is more commonfor a
document to link to multiple topics than being known within many
domains.

Many pages on the web are referenced by contexts from
different domains. For example, in our GOV dataset, the



Figure 2: Histogram of domain degrees for extended anchort-
exts on GOV.

page http://www.tourism.wa.gov/ is the official site
of Washington’s state tourism. We classified its parent pages
into either “Recreation” or “Business” domain. Another,
http://oa.od.nih.gov/, is the home page of “NIH Office
of Administration”, for which some parents belongs to “Health”,
while others belongs to the domain of “Business”. A broader ex-
ample ishttp://dc.gov/, the governmental homepage of the
District of Columbia. Information related to different topics can
be found on this page, and correspondingly we found parent pages
from various topics, such as “Recreation”, “Sports”, “Business”,
“Health” and “Computers”, pointing to it.

5.2 Global context versus local context
When determining how to distribute the authority introduced

through a particular incoming link among the targets, our model
makes its choice based on the relevance of each source to each
target. Instead of simply measuring the relevance based on the
contexts provided by individual inlinks and outlinks, we choose
to examine the relevance between domains. In this experiment, we
investigate whether a global view of context (provided by a com-
bination of all of the members of a link’s domain) is more helpful
than a local view of context (provided by a single link alone)in
determining relevance.

We randomly sampled 966 linked pages from the GOV web
document corpus. The relevance between source and target can
be measured by the similarity between the link pair’s local con-
texts (in “ExtendedAnchor” representation and with “term level”
measurement). Unfortunately, the description provided bya sin-
gle hyperlink is always short and not very informative, generat-
ing an extremely sparse term vector space. As a result, 604 out
of 966 sample pairs end with zero relevance score, indicating that
local context alone is not informative enough for relevancejudg-
ment. Global context provides a more detailed and comprehensive
interpretation by synthesizing viewpoints from multiple members.
When using global context, 323 out of 966 pairs have zero score.
Compared to local context, the global representation reduces cases
of zero by almost half or equivalently, increases cases of non-zero
relevance scores by more than 75%. In this experiment, the aver-
age length of local context is 7.9 terms, versus an average of187.1
terms for global context. In the remaining experiments, we use the
global context to describe domain-specific reputation and estimate
the inter-domain similarity.

5.3 Results on GOV dataset
The baseline performance (PageRank) on the three evaluation

metrics introduced in Section 4.2 is shown at the top of Table4.

Figure 3: Precision@10 performance on GOV as the combina-
tion of IR and importance scores are varied.

Below the baseline we present performance of our model with dif-
ferent configurations. All but one result is better than the baseline.
Thus we conclude that our model certainly has the potential to im-
prove search quality.HTR(EC)gets the best performance on all
measures. We also find that using “category level” to determine do-
main relevance outperforms or matches “term level” measurement
in all cases.

Table 4 additionally shows (when using “category level”) that us-
ing “ExtendedAnchor” to represent context exhibits betterperfor-
mance than using “Fulltext”, while the performance of “Anchort-
ext” lags behind. One possible reason is that the classifier performs
poorly on short documents (i.e., anchortexts) since they are less
informative and distinguishable, which may bring inaccuracy into
domain identification and relevance measurement. Expanding the
anchortext with surrounding information seems to improve perfor-
mance to be even better than using “Fulltext”.

Notably, when using “Fulltext” representation, only a single H
unit is generated for each page because every outgoing link shares
an identical contextual representation—the current page’s full con-
tent. Since the outgoing targets cannot be discriminated inthis case,
the authority score is always equally divided among them, contra-
dicting our intuition. Under this configuration, the HTR model de-
generates into our previous model CommunityRank, and regardless
of whether in “category level” or “term level” measurement,they
exhibit the same performance as CommunityRank. Compared to
“Fulltext”, “ExtendedAnchor” provides a more efficient andspe-
cific way to represent hyperlink contexts.

After considering both quality and efficiency issues, we choose
to use “ExtendedAnchor” to represent contexts in the following ex-
periments.

In the following experiments, we compare the best performance
of our model, with the other five rankers: PageRank, Communi-
tyRank, Topical PageRank, Topic-Sensitive PageRank and Intelli-
gent Surfer.

Method NDCG@10 P@10 MAP
PR 0.218 0.138 0.153

HTR(AC) 0.232 0.138 0.167
HTR(AT) 0.219 0.132 0.165
HTR(EC) 0.243 0.150 0.174
HTR(ET) 0.222 0.144 0.156
HTR(FC) 0.240 0.146 0.168
HTR(FT) 0.240 0.146 0.168

Table 4: Ranking performance of different HTR variations on
GOV.



Figure 4: Comparison of overall performance for GOV data.

We first conduct a parameter study to investigate how differ-
ent weights for importance and relevance scores will affectrank-
ing systems’ performance. Figure 3 shows the Precision@10 as�
is varied for the four ranking approaches, where� is the weight
of BM2500 score in the combination of text and authority. As
can be seen, HTR curve is almost always equal to or above other
curves in the graph, showing that our approach generally outper-
forms other approaches. All curves converged to the baseline when� is 1, which corresponds to the performance of BM2500. In GOV
dataset, for each approach, we tune the combining parameterfor
the best P@10 and output its results with this optimal combination
as final results. In contrast, for experiments on WebBase, wefix
the weight of IR score as 0.8 to save the cost of manual evaluation
across different values of�.

Figure 4 shows the overall performance comparison. HTR out-
performs other approaches on all metrics. An observation isthat
IS does not work well on TREC data, as it performs even more
poorly than PageRank. To determine whether these improvements
are statistically significant, we calculated several single-tailed t-
tests to compare HTR with all other approaches. A t-test shows
that HTR significantly exceeds both baseline and IS at a 90% con-
fidence level.

5.4 Result on WebBase dataset
From experiments conducted on the TREC dataset, we drew

the conclusion that using “ExtendedAnchor” to represent context
provides appropriate descriptions and a significant cost savings
compared to using full content. For WebBase, we only use “Ex-
tendedAnchor” to represent context, but we still compare the two
different options for relevance measurement: “category level” and
“term level”, as presented in Table 5. The baseline performance is
listed in the top row.

Again, both the results presented in Table 5 are better than the
baseline.HTR(ET)gets the best performance by outperforming the
baseline by 10.8% on P@10 and 5.3% on NDCG@10. In contrast
to the results shown in GOV dataset, “Term-Relevance” option out-
performed “Category-Relevance” on WebBase.

Method NDCG@10 P@10
PR 0.410 0.415

HTR(EC) 0.426 0.440
HTR(ET) 0.433 0.460

Table 5: Ranking performance for different HTR approaches
on WebBase.

Figure 5: Comparison of overall performance on WebBase
data.

Figure 5 shows the overall performance comparison. HTR out-
performs the other approaches on both metrics. Again we per-
formed t-tests to compare HTR with all the other approaches.A
t-test shows that HTR significantly outperformed most approaches
with a confidence level of at least 90% except for IntelligentSurfer.
However, Intelligent Surfer is quite expensive, since it needs to be
calculated for each dictionary term, while our model, like PageR-
ank, only need to calculated once. In addition, different from
HTR’s consistent superiority on GOV and WebBase, Intelligent
Surfer shows drastically different performance on the two datasets,
from the worst to nearly the best.

6. DISCUSSION
From the above experiments, we find that “Term level” rel-

evance measurement outperforms “Category level” measurement
on WebBase, but not on GOV. Intuitively, queries in WebBase
are broad and have lots of relevant documents, while queriesin
TREC are specific with only 10.32 relevant documents on aver-
age. As a result, there are different policies for “narrow” queries
and “broad” queries. On one hand, we expand the similarity judg-
ment from term-level to category-level for the purpose of including
more potential candidates for the “narrow queries” on GOV; on the
other hand, we focus on term-level to refine our search for “broad
queries” used on WebBase. Some intermediate form, such as a
finer-grained categorical representation, might be suitable for both
scenarios, but is left for future work.

Since text vector space is sparse, it is no surprise that two reputa-
tion domains may not have significant overlap in text; on the other
hand, even if two domains fall into the same broad category, the de-
gree of relevance varies from case to case. A possible compromise
is to combine the two relevance measurements so that we can de-
cide whether the source and target are relevant based on “Category
Level” results and further find out how relevant they are by exam-
ining the textual similarity at “Term level”. In the future,we plan
to explore a variety of ways to combine the two measurements.

Intelligent surfer exhibits quite poor performance on GOV
dataset. A possible explanation is to note that intelligentsurfer only
wanders in a term-specific subgraph consisting of pages containing
the particular term. Given a small dataset like GOV, it’s hard to
expect that such a graph will be well-connected and amenableto
link analysis. Based on our statistics, the average density(links
per node) of term-specific subgraphs in GOV (for terms in the 50
queries) is 3.11 versus 16.5 in WebBase.



7. CONCLUSION
In this paper we have proposed a novel ranking method that ex-

amines link contexts to divide the normal web graph into a finer-
grained domain-based subnode graph. Our approach associates
hyperlinks with particular reputation domains/topics andweights
them with importance, so that multiple topical authority flows are
propagated through the web graph heterogeneously. Experimen-
tal results on two real datasets indicate that this approachis con-
sistently promising in improving search engines’ ranking perfor-
mance.
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