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ABSTRACT
Freshness of results is important in modern web search. Failing to
recognize the temporal aspect of a query can negatively affect the
user experience, and make the search engine appear stale. While
freshness and relevance can be closely related for some topics (e.g.,
news queries), they are more independent in others (e.g., time in-
sensitive queries). Therefore, optimizing one criterion does not
necessarily improve the other, and can even do harm in some cases.

We propose a machine-learning framework for simultaneously
optimizing freshness and relevance, in which the trade-off is auto-
matically adaptive to query temporal characteristics. We start by il-
lustrating different temporal characteristics of queries, and the fea-
tures that can be used for capturing these properties. We then intro-
duce our supervised framework that leverages the temporal profile
of queries (inferred from pseudo-feedback documents) along with
the other ranking features to improve both freshness and relevance
of search results. Our experiments on a large archival web corpus
demonstrate the efficacy of our techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Performance

Keywords
Temporal profiles, Query classification, Freshness ranking

1. INTRODUCTION
The query stream seen by a web search engine and the interpreta-

tion of those queries change over time. Previous analysis has shown
that web logs clearly reflect daily events in user queries [6]. For ex-
ample, during seasonal events such as Halloween, there are always
spikes in the frequency of related queries such as “halloween”,
“halloween costumes” and “pumpkins”. For many of the queries
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that correspond to events, the best answer may change over time
(e.g., the latest SIGIR conference homepage for the query “sigir
conference”). In more extreme cases, the major intent behind the
same query can temporally vary; for instance, the query “US open”
is more likely to be targeting the tennis open in September, and the
golf tournament in June. Kulkarni et al. [22] referred to this class
of temporally ambiguous queries as shift topics.

News events, depending on their significance, can cause enor-
mous growth in frequency of related queries.1 It is also not uncom-
mon for news events to change the general meaning of a query. For
example, the query “ipad” which could be treated as a misspelling
for “ipod” in 2009, suddenly turned into a valid query with several
related websites in 2010.2 Therefore, making search engine results
appear current and fresh is important to satisfy users’ ever-changing
information needs.

In this paper, we focus on improving the ranking of results for
queries based on their temporal profiles. Of course, the impor-
tance of the temporal profiles of queries extends beyond web re-
sult ranking; advertisement rankers have to address similar prob-
lems; related search and auto-complete suggestions must provide
users with fresh and relevant alternatives to their queries; verti-
cal search [11] ranking and triggering can be affected by temporal
changes, and in general, the entire search experience can be influ-
enced according to the temporal aspect of a query.

Learning ranking functions that can respond effectively to di-
verse temporal dynamics of queries is challenging. One of the dif-
ficulties is that traditional machine learning ranking algorithms fail
to consider the interaction between freshness and relevance. While
relevance clearly quantifies the topical matchability between query
and web pages, freshness can be interpreted in different ways.
For certain temporal queries such as breaking news, freshness is
more meaningful when the actual page content reflects new infor-
mation. Whereas, for non-temporal (time-insensitive) queries, it
makes more sense to interpret freshness as the recency of page
maintenance with respect to the time point of generating ranking
lists (suppose web pages contain such information). Therefore,
these two interpretations for freshness may be correlated to some
extent but are not the same, considering that pages updated recently
tend to record fresh information. It is worthwhile pointing out that
both explanations can be part of the overall quality of search results
that influences user search experience. In this work, the definition
of freshness is sensitive to query temporal characteristics, varying

1For example, the traffic caused by queries related to Michael Jack-
son’s death in 2009, was so huge that Google mistook it as an attack
(Source: Google Blog, 26 Jun 2009).
2It is probably still the case that some people mistype ipod as ipad.
However, this group no longer represents the majority.



on whether human editors (judges) can identify temporal intents
concealed within queries. (See Section 4 for details.)

For certain temporal queries such as breaking news, relevance
and freshness are highly correlated. Therefore, a ranker optimized
for returning fresh documents may produce satisfactory results.
However, for queries that are not usually time-sensitive (e.g., “face-
book”, “machine learning”), paying too much attention to freshness
may significantly hurt ranking effectiveness in terms of relevance.
Among common ranking features, clicks, anchor-text and histori-
cal data might be the most powerful for answering time-insensitive
queries. For temporal queries however, other features such as the
rate of content change in documents may provide better signals
[22]. Therefore, a ranker optimizing either freshness or relevance
only may not be flexible enough to deal with the temporal dynamics
of queries effectively.

To address this issue, previous work [3, 12] suggested train-
ing separate rankers for different classes of queries. The query is
first classified according to its temporal profile, and then is sent to
the appropriate ranker that has been optimized for either relevance
or freshness. The main disadvantage of classification-based tech-
niques is that selecting a wrong ranker due to misclassification can
significantly degrade the performance.

We propose a machine learning model that optimizes freshness
and relevance simultaneously. Our flexible framework allows train-
ing multiple rankers with different optimization functions, and runs
each query against all rankers with the weights varying according
to the query’s temporal profile. This is in contrast with existing
solutions that suggest selecting one ranker per query, and conse-
quently has a lower risk of poor performance when queries are mis-
classified. In addition, instead of splitting the labeled data to train
separate rankers, our technique leverages the entire data in training
all rankers. To the best of our knowledge, this is the first attempt
to incorporate the trade-off between freshness and relevance into a
single ranking framework.

Our work can be regarded as an extension to the family of divide
and conquer (DAC) techniques for ranking [2]. In DAC, queries
are clustered based on their feature representations, and separate
rankers are trained with each for one cluster simultaneously. At
test time, the query is compared against the generated cluster cen-
troids and is ranked under all rankers with the weights depending
on query-cluster similarity values. We follow a similar path since
DAC enables specialized ranker training by considering query fea-
tures, but we incorporate multiple criteria (freshness and relevance)
into ranking optimization. We also modify the DAC loss function
by introducing a new query-document importance factor that em-
phasizes certain documents during training, and leads to further im-
provements in the results. Our experiments on a large web archive
demonstrate that the rankers trained by our techniques can achieve
better relevance and freshness compared to state-of-the-art alterna-
tives. The contributions of this paper are four-fold:

1. We extend an existing learning to rank framework to opti-
mize for both freshness and relevance.

2. We introduce a new loss function that emphasizes certain
query-document pairs for better optimization.

3. We investigate the correlation between freshness and rel-
evance and compare it across temporal and non-temporal
queries.

4. We introduce hybrid NDCG, a new variant of NDCG that
considers both freshness and relevance labels in evaluation.

The remainder of this paper is organized as follows. We review
prior work in Section 2, and continue by introducing our criteria-
sensitive ranking specialization framework in Section 3. Features
are summarized in Section 4. We describe our experimental results
in Section 5 followed by a more thorough discussion in Section 6.
Section 7 concludes the paper and suggests directions for future
research.

2. RELATED WORK
Pairwise learning to rank techniques have been widely studied in

recent years [5, 15, 19]. They cast learning to rank as a preferential
relation learning problem. Given a query and a pair of associated
documents, if one is more relevant than the other, then it is boosted
in the training process to get a higher rank. In most early work, the
query type information was ignored in ranking, which limits the ef-
fectiveness of ranking functions. For instance, navigational queries
target specific websites, while informational queries have a broader
range of relevant answers. Hence, their ranking models could be
optimized in different ways that depend on query intent [21].

Query-dependent loss/ranking functions were introduced to ad-
dress these issues [2, 3, 16]. The general idea is to adopt a query-
dependent loss or ranking function based on the query type (class).
Geng et al. [16] proposed a k-Nearest Neighbor based method
which trains a query-dependent ranking function for each query
based on its nearest neighbors in the training set.

Bian et al. [3] achieved better results by learning both mul-
tiple ranking functions (by minimizing query-dependent rank-
ing risks) and query categorization (navigational, informational,
transactional) simultaneously. Although the query-dependent loss
function has been found superior to the query-dependent ranking
method of Geng et al. [16], it still leaves a few issues unaddressed:
(1) query categorization and taxonomies may not be available or
could be too noisy; (2) external taxonomies may not necessarily
provide the best way of splitting queries for training specialized
rankers; and (3) such categories may not be fine-grained enough
for training and ranking purposes. To overcome these problems,
Bian et al. [2] proposed a divide-and-conquer framework (DAC)
for ranking specialization and instantiated it on RankSVM [19].

Divide and conquer for ranking. The DAC ranking frame-
work [2] can be summarized in three main steps: (1) identifying
ranking-sensitive query categories, (2) learning topic-specific rank-
ing models via minimizing a global ranking risk, and (3) running
each unseen query against all ranking models and merging the out-
puts to produce the final ranked list.

In the first step (divide), queries are categorized (clustered) in a
soft way to form ranking-sensitive topics. The queries in each clus-
ter have similar ranking characteristics and similar ranking feature
discriminativity. Bian et al. [2] suggested using the ranking fea-
tures aggregated from the top-ranked pseudo-feedback documents
that are generated by a reference ranking model to represent queries
for clustering. In this way, the queries that have similar features are
clustered together. The number of query clusters (topics) can be
pre-defined or could be determined according to gap statistics [27].

In the second step (conquer), a unified learning method is used to
train multiple ranking models, one for each cluster (topic). The au-
thors applied a global loss aggregated across all ranking topics, and
trained multiple rankers simultaneously by minimizing the global
ranking risk. Each query contributes to training all ranking models
though with the different weights that are determined by the prob-
abilities of belonging to each cluster.

In the last step, each unseen query is submitted to all ranking



models and a weighted combination is used to merge the final re-
sults.

While most previous work focused on optimizing relevance, we
propose an extended framework which optimizes freshness and
relevance simultaneously in a more adaptive way. We enhance
query representations by adding criteria-sensitive features that can
capture different aspects (relevance, freshness) of query-document
pairs. Each query is categorized according to both temporal and
relevance features, and the final ranking is produced by merging
the results generated from several different ranking models.

Multiple criteria ranking. Training ranking models for mul-
tiple criteria beyond relevance, such as diversity, freshness, and ef-
ficiency, has been the subject of many recent papers [12, 13, 17,
28]. Dong et al.’s work on recency ranking [12, 13] is among the
closest to our work; they consider freshness in instance labeling
for training effective ranking models. They argued that freshness
is especially important for breaking news queries and demoted the
relevance labels of stale pages for training. Empirical experiments
demonstrated that such demotion can result in significant improve-
ments on both relevance and freshness. We similarly generate hy-
brid labels for documents based on their relevance and freshness
grades, and show that the labels generated by our strategy are more
effective than those demoted for training. Despite this resemblance,
our optimization tasks are fundamentally different; Dong et al. [12,
13] studied learning single adaptive or over-weighting rankers that
can be trained with an imbalanced amount of training data for fresh-
ness and relevance primarily from the perspective of ranking adap-
tation. We investigate multi-criteria ranking problem in a divide
and conquer framework with balanced distribution of training data,
and emphasize adaptive balance between different criteria.

Temporal signals for ranking. Exploiting temporal signals
that capture the dynamics of queries, web pages, hyperlinks, and
user interaction to improve search quality has been widely stud-
ied. Several methods focused on complementing content-based
matching by utilizing the knowledge of query temporal charac-
teristics [1, 10, 20, 23, 24]. Typically this includes: (1) profiling
query temporal characteristics, e.g., generating a temporal distribu-
tion over pseudo-feedback documents or based on query popularity
over time; and (2) emphasizing documents whose temporal charac-
teristics are close to the query’s temporal profile, e.g., enhancing
document representation by adding temporal dimension and then
incorporating temporal based matching into search process.

Elsas and Dumais [14] incorporated the dynamics of content
changes into document language models and showed that their en-
hanced representations can improve retrieval effectiveness. Dai and
Davison [8] exploited the frequency of web content and hyperlink
changes over time for better estimation of web authorities. Dong et
al. [13] used Twitter data to detect and rank fresh documents.

3. CRITERIA-SENSITIVE RANKING
In this section, we introduce our criteria-sensitive divide-and-

conquer ranking framework (denoted as CS-DAC) that incorpo-
rates the balance between relevance and freshness into training cus-
tomized rankers that optimize both freshness and relevance.

CS-DAC framework. A typical ranking function f with ω pa-
rameters takes a query-document feature vector X as input and pro-
duces ranking scores of documents.

ŷ = f(X, ω)

The common goal of learning to rank systems is to find a rank-
ing model f∗ that takes query-document feature vectors as input,
and produces a document ranking—as close as possible to the ora-
cle ranking of documents according to their relevance labels y—by
minimizing the ranking risk aggregated from the loss L of all train-
ing queries.

f∗ = argmin
f

∑
q

L(f(Xq, ω), yq) = argmin
f

∑
q

L(ŷq, yq)

By considering query differences in the DAC framework, we es-
sentially cluster3 training queries based on their ranking character-
istics, and train one ranker per cluster. Each query contributes to
learning all rankers with different importance based on its topical
affinity to query clusters. Each ranker f∗i is learned via:

f∗i = argmin
fi

∑
q∈Q

I(q, i)Li(ŷq, yq) (1)

where Q is the training query set, and I(q, i) is the importance of
query q with respect to the ith ranking model.

To account for relevance and freshness simultaneously, we pro-
pose to use hybrid labels that are generated based on freshness and
relevance judgments.4 For this purpose, we exploit a weighted har-
monic mean function which maps relevance and freshness grades
(i.e., yRq,d and yFq,d on the query-document pair <q, d>) to a single
equivalent numerical score ỹq,d for training f∗i . We believe har-
monic mean is appropriate here since (1) it heavily biases towards
the minimum score; (2) it is more sensitive when yRq,d and yFq,d are
close; and (3) it has been shown as a good optimization metric for
tasks such as learning to rank for efficiency [28] and classification.
Formally, ỹq,d,i is defined as:

ỹq,d,i =
(1 + β2

i ) · yRq,d · yFq,d
yRq,d + β2

i · yFq,d
(2)

where parameter βi sets the trade-off between relevance and fresh-
ness for each ranker, and is learned during training. Allowing dif-
ferent values of β for rankers enables a flexible framework where
each ranker can assign different weights to freshness and relevance.
It also means that each query-document pair may affect the pair-
wise learning of each ranker differently.5 Therefore, we factorize
query-document pair importance as follows:

f∗i = argmin
fi

∑
q∈Q

I(q, i)×

∑
<d1,d2>∈Dq

U ′(q, i, d1, d2)Li
([

ŷq,d1,i
ŷq,d2,i

]
,
[
ỹq,d1,i
ỹq,d2,i

])
(3)

where, Dq is the set of preferential query-document pairs with re-
spect to query q, and U ′(q, i, d1, d2) is the importance of<d1, d2>
in training for query q with respect to the ith ranking model. For
simplicity, we assume <q, d1> and <q, d2> are independent, and
so factorize the importance of the preferential pair U ′(q, i, d1, d2)
as follows.

U ′(q, i, d1, d2) = U(q, i, d1) · U(q, i, d2)

where U(q, i, d1) is the importance of query-document pair

3We use query cluster, topic and category interchangeably.
4Generating hybrid labels (single aggregate objective functions), is
a simple form of multi-criteria optimization [26].
5Similar ideas can be applied to list-wise and point-wise ranking
learning algorithms.



<q, d1> in training for query q with respect to the ith ranking
model.6

Ensemble ranking. Given an unseen query q′, we first profile
its query characteristics, and then calculate its distances to the cen-
troids of existing query clusters c1, c2, . . ., cn. The trained rank-
ing functions are then scored according to the normalized distance
between the query and their corresponding clusters (a.k.a. query
importance I), given by:

Wi =
I(q′, i)∑n
i′=1 I(q′, i′)

The query q′ is run against all n rankers (one for each cluster), and
the final results θq′ are produced according to the ensemble ranking
of their outputs. That is,

θq′ =

n∑
i=1

Wif
∗
i (Xq′ , ωi)

where f∗i is the ith ranking model, Xq′ is the query-document fea-
ture vectors for query q′, and ωi is the feature weights.

The CS-DAC framework summarized in Equation 3 consists of
three main factors: query importance (I), ranker-specific query-
document importance (U), and the loss function (L). We continue
by describing each of these items.

Query importance (I). In the divide step of the DAC frame-
work, the query space is split into a few clusters based on criteria-
sensitive features. These are the features that are extracted from
the top-ranked documents of a basic reference ranker (BM25 [25]
in our work) for the query. We will provide more details about these
features in Section 4.

The I(q, i) values provide a Binomial distribution over each of
criteria-sensitive query clusters, and specify the importance of dif-
ferent ranking functions. We use Gaussian Mixture model as soft
k-means clustering to group queries into clusters. The importance
of query q with respect to the ith cluster is thus given by:

I(q, i) = 1−
‖pq − ci‖2

maxq′∈Q ‖pq′ − ci‖2
(4)

where pq and ci respectively denote the feature vectors of query
q and the centroid of the ith cluster, and Q represents the set of
training queries. Therefore, I(q, i) is scaled between [0, 1], and is
inversely proportional to the distance between query feature vector
pq and cluster centroid ci.

Document importance (U). In pairwise learning to rank
methods, the importance of a document with label y during training
depends on the number of times it is compared to other documents
with different labels. Due to the ranker-specific value of β which is
set during training, a query-document pair with the same relevance
and freshness grades can get unequal hybrid labels under different
rankers, and hence may contribute unequally in training various
rankers. Besides, centralizing hybrid label distribution within each
query cluster stabilizes the correlation between freshness and rele-
vance, which further emphasizes the effect of βi in Equation 2. To
factorize these impacts, we introduced the U component in Equa-
tion 3. We estimate the importance of a query-document pair with
label yq,d by the likelihood of visiting that label in the training
6The independence assumption is unrealistic, but we believe it is
not unreasonable because if two query-documents pairs are impor-
tant, then so is their preferential pair.

dataset, under the assumption that the importance of a hybrid la-
bel is proportional to the ratio of query-document pairs with that
label in the training dataset. We define the document importance U
as below.

U(q, i, d) =
∑
q′∈QN(q′, i, yq,d) ·N(q′, i,¬yq,d)∑

y’∈Yi
∑
q′∈QN(q′, i, y’) ·N(q, i,¬y’)

(5)

where Yi is the space of labels for ranker i, and Q denotes the
training query set. The number of documents with and without
label y are represented by N(q, i, y) and N(q, i,¬y). Equation 5
can be regarded as a function of the unique hybrid label yq,d, and
is denoted as w(yq,d) for short.

There are two potential problems with this type of normalization:
(1) additional inter-label dependencies may arise from comparing
common labels (e.g., ya and yb, versus yb and yc), and, (2) overem-
phasizing certain documents inevitably introduces bias in ranking.
To overcome these issues, we exploit a random walk approach to
determine U (instead of Equation 5) that has the effect of smooth-
ing document importance values.

To perform a random walk, we first construct a fully connected
bipartite graph G(V,E) (one graph per ranker) in which each node
(state) v stands for a unique hybrid label y (associated with the
weight w(y)), and each edge e is associated with a weight com-
puted according to the number of times the labels of the connected
nodes compare with each other during training. At each step, the
random walk surfer jumps to a random node with probability d
(selection among random nodes is proportional to w(y) values)
or follows some connected edge with probability 1 − d (the se-
lection among connected edges is proportional to the weights on
edges). The value of d can be pre-defined or set during the training
and validation. When d equals 1, the probability that the random
surfer reaches every node (state) is proportional to the direct com-
parison between preferential query-document pairs with different
hybrid labels. Whereas, d = 0 suggests document importance en-
tirely propagates through indirect comparison between preferential
query-document pairs. Parameter d actually controls the extent that
such propagation (from indirect comparison) influences the com-
putation of document importance. We analyze the importance of
U , with and without smoothed probabilities in Section 6.

Loss function (L). The core of each ranker in our CS-DAC
framework is a loss function that is trained for hybrid labels (Equa-
tion 2). We follow Bian et al. [3] and use RankSVM [19] as our
basic learning algorithm although it is important to note that the
framework is flexible and not restricted to any particular learning
technique.

RankSVM [19] is designed to maximize the margin between
positively and negatively labeled documents in the training data by
minimizing the number of discordant pairs. The RankSVM opti-
mization problem is defined as:

arg min
ω,ξq,i,j

1

2
‖ω‖2 + C

∑
q,i,j

ξq,i,j subject to

∀yqi � y
q
j : ωTXq

i ≥ ω
TXq

j + 1− ξq,i,j ,
∀q∀i∀j : ξq,i,j ≥ 0

where the non-negative slack variable ξq,i,j is used to approximate
the NP-hard optimization solution by minimizing the upper bound∑
ξq,i,j . Parameter C sets the trade-off between the training error

and the margin size. The query-document feature vectors for doc-
uments i and j are respectively represented by Xq

i and Xq
j . The

notation yqi � y
q
j implies that the document i is ranked higher than



document j with respect to query q in the training dataset (i has the
same or higher relevance than j).

CS-DAC modified the RankSVM loss function by incorporating
query importance (I) and document importance (U). Formally, the
ith ranking model of CS-DAC is optimized via:

arg min
ωi,ξq,j,k

1

2
‖ωi‖2 + C

∑
q,j,k

ξq,j,k (6)

subject to, ∀ỹq,j,i � ỹq,k,i : I(q, i)U(q, i, j)ωTi Xq
j

≥ I(q, i)U(q, i, k)ωTi Xq
k + 1− ξq,j,k,

∀q∀i∀j : ξq,i,j ≥ 0

where ξq,j,k is the slack variable and parameter C sets the trade-off
between training error and the margin size.

In CS-DAC, several rankers are trained simultaneously, and each
ranking function f∗k (see Equation 3) is optimized using the CS-
DAC loss function and hybrid labels. The β values are tuned via
hill climbing based on the hybrid NDCG values of the final ranking
lists merged from different rankers. That is, each ranker is trained
on different values of β and the best combination of rankers is cho-
sen by hill climbing on the training and validation data. Here, hy-
brid NDCG extends the commonly used evaluation metric NDCG
[18] to take hybrid labels for evaluation, since this new freshness-
sensitive metric can take into account both freshness and relevance
into a single measurement, aiming to quantify the overall search
quality. Formally, we define hybrid NDCG as below:

hybrid NDCG(n) = Zn

n∑
j=1

2(γyR+(1−γ)yF ) − 1

log2(j + 1)
(7)

where Zn is the oracle discounted cumulative gain at ranking cut-
off n, that bounds the NDCG values between 0 and 1. The yR, and
yF values—also known as gains—are assigned according to the
relevance and freshness labels of documents. Parameter γ specifies
the trade-off between relevance and freshness and is set to 0.5 in
our experiments. Note that γ = 1 turns hybrid NDCG into typ-
ical relevance-based NDCG, while setting γ to zero, makes it the
same as the NDCF metric [13]. Dai and Davison [8] also adopted
NDCG with freshness labels, although they did not refer to it as
NDCF. While other combination forms may better fit the search
utility that quantifies comprehensive users’ satisfaction, we leave
the best definition of hybrid NDCG for future work.

4. EXPERIMENTAL SETUP

Testbed data. Standard learning to rank datasets only contain
relevance judgments for query-document pairs without any infor-
mation regarding their freshness.

Therefore, we built a new testbed based on a large archival web
corpus. Our dataset contains 158 million unique URLs and 12 bil-
lion links from the .ie domain, covering the time span from Jan-
uary 2000 to December 2007 (one snapshot per month and 88 in
total). We removed pages with less than five snapshots, and only
kept the remaining 3.8 million unique pages with 435 million links
in total.

We choose April 2007 as our time point of interest for ranking
evaluation. We constructed two temporal and non-temporal query
sets, each containing 90 queries. While the query size is small,
the queries in the temporal set are manually selected from Google
Trends suggestions for Ireland, which were popular during April
2007.7 For the non-temporal set, we first randomly sampled queries
7www.google.com/trends

Figure 1: The STL decomposition [7] of a time series into sea-
sonal, trend and remainder components. The data is generated
from the click histogram of the query jingle bells in a commer-
cial search engine.

from a 2006 MSN query log (i.e., generating a representative query
sample from a real-world search log), and then automatically fil-
tered out about 10% of them that were detected as potentially tem-
poral by a commercial classifier. The classifier has high precision
(almost all Google Trend queries are detected as temporal), and
uses several years of the query-frequency history extracted from
the query logs of a major commercial search engine.

Judgments and metrics. We have an average of 71 URLs per
query judged by one or more participants from Amazon Mechani-
cal Turk.8 Given a query-URL pair, the judges were instructed to
assess the quality of the URL with respect to both relevance and
freshness. For relevance, the selection was among highly relevant,
relevant, borderline, not relevant and not related, which was fur-
ther translated to integer gains ranging from 4 to 0. For freshness,
editors were instructed to judge the URL freshness for the given
query according to our chosen point in time (April 2007).9 Judges
could select between very fresh, fresh, borderline, stale, and very
stale, which we transferred into {4, 3, 2, 1, 0}. Judges were also
required to provide the confidence of their judgements by choos-
ing between high, medium and low. Table 2 shows the guideline
of query-URL pair judgments used by Mturk workers. Judgments
with low confidence were resubmitted for labeling. The standard
deviations of relevance and freshness judgements on a random sam-
ple of 76 query URL pairs among three judgers are 0.88 and 1.02
respectively.

Freshness and relevance are evaluated by hybrid NDCG, and so
when γ = 0 or γ = 1, this corresponds to NDCF [13] and NDCG,
respectively.

Ranking features. The features used by RankSVM for ranking
can be grouped into non-temporal and temporal features. The non-
temporal features (summarized in Table 1) include several com-
monly used text-similarity scores such as BM25 [25], and language

8http://www.mturk.com
9Admittedly, judging for freshness according to an arbitrary time
in past could be a difficult task. However, the choice was dictated
to us by the time span of our dataset.



Table 1: Non-temporal ranking features used by RankSVM in the CS-DAC framework and baseline methods. Body, title, heading
and anchor-text fields are respectively represented by B, T, H and A.

Feature name Feature description Feature name Feature Description
Okapi(B) Okapi BM25 score [25] for body-text. RQT(B) Ratio of covered terms in body-text.
RQT(H) Ratio of covered terms in heading-text. LM.JM(B) body-text language modeling (Jelinek-Mercer) score [31].
LM.Dir(B) Body-text language modeling (Dirichlet) score [31]. RQT(T) Ratio of covered terms in title-text.
InNum Number of inlinks. TF(B) Term frequency in body-text.
AvgNTF(B) Average normalized TF in body-text. LM.JM(T) title-text language modeling (Jelinek-Mercer) score
STFIDF(H) Sum of term TFIDF in heading-text. NumQT(A) Number of covered terms in anchor-text.
MaxNTF(B) Maximum normalized TF in body-text. PR PageRank score [4].
AvgNTF(T) Avgerage normalized TF for title-text. LM.Dir(T) title-text language modeling (Dirichlet) score.
MxTFIDF(T) Maximum term TFIDF in title-text. MaxNTF(T) Maximum normalized TF in title-text.
LM.Dir(H) heading-text language modeling (Dirichlet) score MaxTF(T) Maximum query term frequency in title-text.
ATFIDF(T) Average term TFIDF in title-text. AvgTF(T) Average query term frequency in title-text.
SumTF(T) Sum of term frequency in title-text. LM.JM(H) heading-text language modeling (Jelinek-Mercer) score.
L(B) Body-text length. AvgTF(H) Average query term frequency in heading-text.
SumTF(H) Sum of term frequency in heading-text.

Table 2: Relevance and freshness judging guidelines for mechanical turk editors.
1. Relevance Evaluation.
Imagine you searched for "Mechanical Turk" in Google and got back a list of URLs in your results.
• A result of "www.mturk.com" would be a highly relevant match.
• A blog entry or news about working on Mechanical Turk would be relevant.
• A story about a person’s daily life in which Mechanical Turk is mentioned in one sentence is treated as borderline.
• A story about an airplane in Turkey having had mechanical problems shortly after take off is not relevant.
• A story about a child eating fruits is considered not related.
2. Freshness Evaluation.
Use your knowledge about the query, combined with the time clues on the web page, including the time that the author wrote the story, the timestamp in
copyright areas, etc., to judge whether the page is fresh or not, suppose you are in around April 2007.
Imagine you searched for "2007 cricket world cup" in Google around April 2007 and got back a list of URLs in your results.
• A news reporting the story of 2007 cricket world cup on previous one day would be very fresh.
• A critique about the fact that the ireland cricket coach is murdered in April 2007 is fresh.
• An introduction about the preparation of ireland cricket team for the world cup written in September 2006 is treated as borderline.
• A comment about stories in 2003 cricket world cup written in 2004 is stale.
• The introduction about the schedule of 2003 cricket world cup is very stale.

modeling [31], computed over different fields of documents (head-
ing, title, body). The list also includes a few well-known link-based
static features such as the number of inlinks and PageRank [4].

The temporal ranking features are generated by measuring the
changes in the contents of documents with respect to their previ-
ous snapshots. For this purpose, we build a time series of each
document’s content changes, by going through the entire time span
and comparing the TFIDF similarity of the document at each point
with the previous and next versions. We generate separate time se-
ries for different document fields (heading, title, body), and use STL
seasonal-trend decomposition [7] to decompose each time series τ
into trend (T ), seasonal (S) and remainder (R) components.

STL(τ) = Tτ + Sτ +Rτ

The same steps are repeated to decompose the time series gen-
erated based on link and page activities (create, remove, update)
[8]. Figure 1 depicts an example of STL decomposition on a time
series. In this instance, the time series (data) is generated from
the frequency distribution of the query jingle bells in the logs of
a commercial search engine. The same decomposition can be ap-
plied to a sequence of TFIDF scores, PageRank values or any other
type of time series data. We use the output of STL decomposition
for different time series to generate our temporal ranking features
as summarized in Table 3. The slope of τ captures the speed of
content changes, and has been suggested to be an effective feature
for ranking [9]. The amplitude feature can measure the scale of
content changes, and the position feature Rp(τ) is calculated with
respect to the distance to the nearest peak in the time series. The

confidence features are computed according to the distribution of
Sτ and Tτ values after decomposition. We also employ the Timed
PageRank of Yu et al. [30] as our temporally-sensitive static-rank
feature.

Query clustering features. The query importance I features
are used to cluster queries and assign the weights in each corre-
sponding ranking function. We follow the approach taken by Bian
et al. [2] and used the η top-ranked documents returned by a ref-
erence ranker (BM25 [25]) to generate our clustering features. We
set the value of η to 15 in all our experiments. Once the pseudo-
feedback documents are gathered, we compute the average value
of each ranking feature over them and use the final mean value as a
clustering feature. The feature importance is computed by training
a reference RankSVM model for hybrid NDCG (γ = 0.5) on the
training dataset.

Baseline methods. We compare the effectiveness of our CS-
DAC with four baselines:

• Single ranker (SinR).

• Separate ranker training and selection (SepR).

• Over-weighting model [12].

• TopicalSVM [2].

In SinR, we train a single RankSVM ranker with all features. This
could be regarded as a weak baseline that has no form of query cat-
egorization, and has been shown to perform more poorly than the



Table 3: Temporal ranking features used by RankSVM in the
CS-DAC framework and baseline methods. The features (ex-
cept for TPR) are produced from the STL decomposition [7] of
time series generated from the content changes in title, body,
heading, anchor, and page/link activities [8].

Feature name Feature description
Slp(τ ) Slope of trend component Tτ .
Amp(τ ) Amplitude of seasonal component Sτ .
Rp(τ ) Relative position in Sτ .
Cs(τ ) Confidence of seasonality.
Cr(τ ) Confidence of regularity.
TPR Timed PageRank [30].

other baselines in previous work [2, 16]. Nevertheless, we report
its results because it represents one of the most common learning
to rank architectures.

The SepR baseline is representative for the family of query-
dependent loss function methods [2, 3, 16], in which the loss
function is determined according to the temporal aspect of the
query. Separate RankSVM rankers are trained for temporal and
non-temporal queries, and each query is tested on the correct ranker
for its type. Note that using the correct query type information—
which is generally unavailable without manual effort—means that
the performance numbers for this baseline are unaffected by poten-
tial query type misclassification, and therefore are overstated.

Dong et al. [12] investigated several techniques for ranking op-
timization with imbalanced amount of training data for freshness
and relevance. Among their methods the over-weighting approach
was most effective. The over-weighting model combines relevance
and freshness labeled data to train a single ranker. This is similar
to SepR except that the training pairs of the criterion with fewer
labels are over-weighted. Dong et al. [12] used GBrank [32] as
their ranking model. However, we modify the over-weighting loss
function to RankSVM for consistency with the other methods in
our experiments as follows:

arg min
ω,ξq,i,j

1

2
‖ω‖2 + C

∑
q,i,j

ξq,i,j subject to

∀yqi � y
q
j :

{ α
NT

ωTXq
i ≥ α

NT
ωTXq

j + 1− ξq,i,j q ∈ QT
1−α
NN

ωTXq
i ≥ 1−α

NN
ωTXq

j + 1− ξq,i,j q ∈ QN
∀q∀i∀j : ξq,i,j ≥ 0

where QT and QN denote the sets of queries from Google Trends
and MSN query log. NT and NN are respectively the number of
preferential pairs of query-documents in each of those sets. α is
a parameter that controls the balance of Google Trends queries vs.
MSN queries, ranging over [0,1]. ω represents the feature weights
within the ranking model.

Our last experimental baseline is TopicalSVM [2] which is the
state-of-the-art in the family of divide and conquer techniques.
TopicalSVM trains all rankers using a global loss function, and
does not factorize the query-document importance U in contrast
to CS-DAC.

5. EXPERIMENTS
We start our experiments by investigating the performance of our

baseline techniques optimized for different goals. We then pick the
best-performing baselines and compare them against CS-DAC. In
all our experiments we run 5-fold cross-validation in which the first
three folds are used for training, and the remaining two folds are

Table 4: Freshness comparison on the temporal (top) and non-
temporal (bottom) query sets. All methods are trained using the
hybrid labels and the evaluation is based on the freshness rat-
ings (yF ). Symbols †, §, and ‡ respectively denote statistically
significant differences according to a single-tailed student t-test
(p-value<0.05) over the SepR, TopicalSVM and Over-weighting
baselines.

Temporal Queries (Google Trends)
NDCF1 NDCF3 NDCF5 NDCF10

SepR 0.378 0.360 0.372 0.408
TopicalSVM 0.365 0.355 0.365 0.402
Over-weighting 0.340 0.348 0.363 0.404
CS-DAC 0.398‡ 0.364 0.376 0.411
CS-DAC(U) 0.416†§‡ 0.379‡ 0.388 0.400

Non-Temporal Queries (MSN logs)
NDCF1 NDCF3 NDCF5 NDCF10

SepR 0.348 0.411 0.434 0.475
TopicalSVM 0.355 0.408 0.430 0.485
Over-weighting 0.335 0.408 0.434 0.480
CS-DAC 0.427†§‡ 0.454†§‡ 0.473†§‡ 0.510§‡
CS-DAC(U) 0.452†§‡ 0.466†§‡ 0.488†§‡ 0.527†§‡

used for validation and testing. The number of ranking functions
(clusters) in CS-DAC and TopicalSVM to are set to three (k = 3),
since preliminary results demonstrate CS-DAC and TopicalSVM
perform the best when k = 3 and k = 4 (slightly outperforms the
case when k = 3) respectively.

Performance analysis for experimental baselines. We
investigate the performance of baseline techniques when trained
for one of four optimization goals:

1. Relevance (Rel): The baselines are trained using relevance
labels only.

2. Freshness (Fre): The baselines are trained using freshness
labels only.

3. Hybrid labels (Hyb): The baselines are trained using hybrid
labels (Equation 2).

4. Demoted labels (Dem): Dong et al. [12, 13] suggested de-
moting the the relevance grades of outdated documents. They
suggested that if a document is somewhat outdated, then its
relevance label should be demoted by one grade. For totally
outdated documents the relevance labels are demoted by two
grades. We followed the same strategy to compute our de-
moted labels. In essence, this is a special case of hybrid la-
beling.

The final results of each optimized ranker are evaluated sepa-
rately for freshness and relevance using NDCG with corresponding
labels.

Figure 2 shows the performance of baseline techniques on the
non-temporal query set (sampled from the MSN logs). As ex-
pected, when evaluating using the relevance labels (yR), it is more
effective to optimize for relevance (Rel) rather than freshness (Fre).
Similarly, optimizing for freshness produces results that have bet-
ter NDCF values. The methods optimized for demoted (Dem) and
hybrid (Hyb) labels consistently outperform those that are opti-
mized for either freshness or relevance. The results also suggest
that our hybrid labels are better for improving both relevance and
freshness compared to the demoted labels of Dong et al. [12, 13].



(a) Relevance labels (yR) (b) Freshness labels (yF )

Figure 2: Ranking performance of baseline systems on relevance (left) and freshness (right) for the non-temporal query set. Error
bars are the standard deviations of performance across five cross-validation folds.

(a) Relevance labels (yR) (b) Freshness labels (yF )

Figure 3: Ranking performance of baseline systems on relevance (left) and freshness (right) for the temporal query set. Error bars
are the standard deviations of performance across five cross-validation folds.

Among the baselines, SinR has overall the poorest performance
which is consistent with previous observations [3]. TopicalSVM,
over-weighting and SepR show similar effectiveness while the lat-
ter might be considered marginally better—not surprising given
that we use correct query type information in SepR.

We repeat the analysis on the temporal query set and the results
are illustrated in Figure 3; as in the previous experiment, SinR has
the lowest performance on both sets of labels while the other meth-
ods show similar effectiveness. Compared to the experiments on
the non-temporal query set, there is less variation in performance
when optimized for different types of labels. Our investigations re-
vealed that this is due to high correlation between relevance and
freshness labels on the temporal set. The Pearson’s correlation be-
tween relevance and freshness labels on the temporal query set is
0.912±0.004, statistically significantly higher than 0.429±0.021
for the non-temporal set.

Based on the summarized results, we choose hybrid labels for
training rankers in our remaining experiments. We also drop SinR
as it consistently showed inferior effectiveness compared to all
other methods.

Comparative performance on freshness. We use NDCG
with freshness yF labels (NDCF [13]) to compare the performance
of CS-DAC with the baselines on both temporal (Google Trends)
and non-temporal (MSN logs) query sets. We report the results

for CS-DAC in the presence and absence of the query-document
importance factor (U) described in Equations 3 and 5. We respec-
tively refer to these two versions as CS-DAC(U) and CS-DAC.

Table 4 includes the NDCF results on both query sets. The over-
weighting baseline performs worst than the other methods. This
is not surprising given that over-weighting is originally designed
for scenarios with imbalanced training data [12], and the fact that
it does not leverage any type of query classification or clustering.
Consistent with the observations in the previous section, SepR and
TopicalSVM produce similar results on the temporal queries, while
they are both outperformed by CS-DAC. Introducing the U factor
leads to further improvements in performance particularly at higher
cutoffs. On non-temporal queries, TopicalSVM and SepR and over-
weighting show similar effectiveness while CS-DAC consistently
outperforms all baselines significantly. It is interesting to observe
that CS-DAC improvements over the baselines are larger on the
non-temporal query set. This can be explained by two reasons: (1)
the documents returned for temporal queries tend to be fresher on
average than those returned for the non-temporal ones, and (2) the
high correlation between relevance and freshness labels in this set
leads to more effective learning by reducing impact of potential
noise in clustering and hybrid labels.

Comparative performance on relevance. We run a similar
analysis, and compare the NDCG values of different techniques as



Table 5: Relevance comparison on the temporal (top) and non-
temporal (bottom) query sets. All methods are trained using the
hybrid labels and the evaluation is based on the freshness rat-
ings (yR). Symbols †, §, and ‡ respectively denote statistically
significant differences according to a single-tailed student t-test
(p-value<0.05) over the SepR, TopicalSVM and Over-weighting
baselines.

Temporal Queries (Google Trends)
NDCG1 NDCG3 NDCG5 NDCG10

SepR 0.373 0.359 0.375 0.411
TopicalSVM 0.342 0.354 0.365 0.408
Over-weighting 0.355 0.351 0.368 0.411
CS-DAC 0.385 0.365 0.377 0.417
CS-DAC(U) 0.401†‡ 0.375 0.389 0.426†

Non-Temporal Queries (MSN logs)
NDCG1 NDCG3 NDCG5 NDCG10

SepR 0.481 0.517 0.532 0.562
TopicalSVM 0.490 0.508 0.521 0.566
Over-weighting 0.476 0.510 0.538 0.570
CS-DAC 0.493 0.520 0.541 0.574
CS-DAC(U) 0.509 0.522 0.541 0.574

measured by the relevance labels (yR) in Table 5. For non-temporal
queries, the CS-DAC results are marginally better than the base-
lines, although none of the differences are statistically significant.
On the temporal query set, SepR has the edge over the other base-
lines while CS-DAC outperforms the three of them at all cutoff
values. Adding the U factor significantly improves the results for
NDCG@1 and NDCG@10. As in the NDCF numbers on this query
set, the NDCG values could be also affected by the high correlation
between freshness and relevance.

6. DISCUSSION
We showed that our CS-DAC method could significantly im-

prove both freshness and relevance of the results compared to state-
of-the-art baselines. In this section, we investigate the impact of
random walk smoothing in improving the query-document factor
U for training. We also compare CS-DAC and the baselines in
terms of hybrid NDCG by assigning various weights to relevance
and freshness. Finally, we report the most effective features ac-
cording to our experiments for ranking temporal and non-temporal
queries.

Smoothing query-document importance. We described
earlier how original query-document importance values can be
smoothed by random walk, where the probability d of random
jumping can be tuned during training and validation. Figure 4
shows how choosing different fixed values for d may affect the re-
sults. On the non-temporal query set, different degrees of smooth-
ing have little advantage over no smoothing (d = 0). On the tem-
poral query set however, random-walk helps to smooth inter-label
dependencies, and hence improves the results on both freshness and
relevance.

Hybrid labels for evaluation. In Section 5 we showed that
training for hybrid NDCG (γ = 0.5) was effective for improv-
ing both freshness and relevance. Here, we provide the evalua-
tion results on hybrid NDCG, the metric we used for optimizing
the ensemble ranking. Although we used γ = 0.5 for training,
we report the evaluation results for different values of γ in Fig-
ure 5 to account for scenarios where freshness and relevance are

(a) Temporal queries (b) Non-temporal queries

Figure 4: The impact of changing the random jump proba-
bility d during smoothing of the query-document importance
values U . The results are evaluated on temporal (left) and non-
temporal (right) queries using both relevance and freshness la-
bels.

weighted differently. The results are consistent with our previous
experiments; CS-DAC outperforms the baselines, and the weight-
ing between freshness and relevance is less important for temporal
queries. Increasing the γ value grows the overall hybrid NDCG
almost monotonically because the relevance-based NDCG values
are generally greater than those computed based on the freshness
labels. It is worthwhile of pointing out that this observation does
not suggest that ranking performance benefits the most when only
optimizing for relevance.

Feature Analysis. CS-DAC relies on several temporal and non-
temporal features for query clustering and document ranking. We
examined all cross-validation folds to find the features that are as-
signed with highest weights during training. Among the temporal
features, the confidence values for the seasonality CS(τ ), and regu-
larity Cr(τ ) of STL decompositions were generally the most effec-
tive. Furthermore, the features generated from the time-series de-
composition of changes in anchor-text and inlinks were more suc-
cessful than those similarly produced based on other fields (e.g.,
title, body, heading). The effectiveness of temporal link-based fea-
tures for improving relevance and freshness has been also acknowl-
edged previously by Dai and Davison [8].

Between the non-temporal features, BM25 and language model-
ing scores had the highest weights and were most effective when
computed over the body and title text.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a learning to rank approach (CS-

DAC) for optimizing for relevance and freshness simultaneously.
We extended the state-of-the-art in divide and conquer ranking [3]
by adding two new key elements; first, instead of optimizing for
relevance labels, we generated and used hybrid labels based on rel-
evance and freshness grades. Second, we introduced a new query-
document importance factor (U) that allows each ranker to set dif-
ferent importance to relevance and freshness. Compared with tradi-
tional metasearch engines, divide-and-conquer ranking frameworks
generate merged ranking lists on the model level instead of the
result level. It enables automatic identification of effective rank-
ing features for individual type of queries. Our experiments on
a large web archive demonstrated that CS-DAC can improve both
relevance and freshness compared to existing baselines. In the fu-
ture, we plan to compare with data fusion methods, i.e, training
two separate rankers with each utilizing judgments based on one
criterion (relevance or freshness), and then merging results into a
single ranking list. We also plan to consider the document diversity



(a) Temporal queries

(b) Non-temporal queries

Figure 5: Hybrid NDCG5 values for different values of γ on the
temporal (top) and non-temporal (bottom) query set. Similar
trends were found for NDCG at different cutoff values.

problem that is especially important for answering time-sensitive
queries, e.g, a news-related query may have many news articles
which may incur document duplication.

We studied the correlation between relevance and freshness
grades, and its implications on the training effectiveness. Our re-
sults revealed high correlation between relevance and freshness la-
bels in temporal queries, suggesting that the choice of document
labels is less important for training on that set. We modeled doc-
ument importance by the likelihood of visiting each unique hybrid
label, and surprisingly found that it can improve ranking perfor-
mance, especially for temporal queries. However, in what way that
such document weighting strategies influence ranking performance
is still unclear. We will leave it as one of our future work.

Our work can be considered as the simplest form of multi-
objective (multiple-criteria) optimization [26], where multiple ob-
jective functions (freshness, relevance) are combined to form a sin-
gle optimization goal (hybrid labels). These kinds of aggregated
functions require the weight of each objective to be known in ad-
vance (γ in our case), and are incapable of finding all optimal so-
lutions. Deploying more sophisticated multi-objective optimization
techniques may lead to more significant improvements in relevance
and freshness. Further work includes adopting other learning to
rank architectures such as boosted decision trees [29] for multi-
objective optimization of freshness and relevance.
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