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Abstract

Recent years have seen the success of applying word embedding algorithms to
natural language processing (NLP) tasks. Most word embedding algorithms
only produce a single embedding per word. This makes the learned embed-
dings indiscriminative since many words are polysemous. Some prior work
utilizes the context in which the word resides to learn multiple word em-
beddings. However, context-based solutions are problematic for short texts,
such as tweets, which have limited context. Moreover, existing approaches
tend to enumerate all possible context types of a particular word regardless
of their target applications. Applying multiple vector representations per
word in NLP tasks can be computationally expensive because all possible
combinations of senses of words in a snippet need to be considered.

Sometimes a word sense can be captured when the class information or
label of the short text is presented. For example, in a disaster-related dataset,
when a text snippet is labeled as “hurricane related”, the word “water” in
the snippet is more likely to be interpreted as rain and flood; when a snippet
is labeled as “hurricane-unrelated”, the word “water” can be interpreted as
its more general meaning. In this work we propose to use class information to
enhance the discriminativeness of words. Instead of enumerating all potential
senses per word in the text, the number of vector representations per word
should be a function of the future classification task. We show that learning
the number of vector representations per word according to the number of
classes in the classification task is often sufficient to clarify the polysemy.

Word embeddings learned from neural language models typically have the
property of good linear compositionality. We utilize this property to encode
class information into the vector representation of a word. We explore four
approaches to train class-specific embeddings to encode class information by

Preprint submitted to Journal of Supercomputing January 29, 2020

Brian D. Davison



utilizing the label information and the linear compositionality property of
word embeddings. We present a general framework consisting of a pair of
convolutional neural networks to utilize the learned class-specific word em-
beddings as input for text classification tasks. We evaluate our approach and
framework on topic classification of a disaster-focused Twitter dataset and a
benchmark Twitter sentiment classification dataset from SemEval 2013. Our
results show a relative accuracy improvement of 3-4% over a recent baseline.

Keywords: Word embeddings, Text classification, Polysemy

1. Introduction

Language is symbolic and discrete. To represent a word in human lan-
guage in a form for machines to understand has always been a challenge in
natural language processing (NLP). In the early (and simple) one-hot encod-
ing approach, the vector representation of a word has the same length as the
size of the vocabulary, thus naturally resulting in a sparse, high-dimensional
word representation. Such a word representation approach cannot reflect
the similarity or relatedness between words. The vector space model (VSM)
of semantics addresses the shortcomings of the one-hot encoding approach
by learning from the co-occurrence statistics from the word’s context [1].
The center assumption here is the distributional hypothesis: the context
surrounding a given word provides important information about its meaning
[2]. The words’ vector representations are constructed from the distributional
patterns of co-occurrence with their neighboring words. In recent years, word
vector representations learned from word embedding algorithms have demon-
strated improvements both as inputs to other learning algorithms and as word
features in NLP tasks, such as word similarity [3], part-of-speech tagging [4],
named entity recognition (NER) [5], dependency parsing [6] and sentiment
analysis [7]. Word embeddings typically learned from neural language models
are well-known for capturing the semantics of words by learning dense low-
dimensional vector representations [8, 3]. Since the introduction of the first
efficient and effective word embedding algorithm by Mikolov et al. in 2013,
multiple word embedding algorithms have been suggested, such as FastText
and ELMo [9, 10]. However, the significant improvements have been made
to unsupervised word embedding learning to generate universal embeddings.
We show in this work, in addition to word co-occurrence patterns, short text
labels can be a new source to provide semantics. Our work extends Mikolov
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et al.’s Word2Vec model.
There are two types of word embedding learning architectures in the

Word2Vec model: the first one uses context words to predict the target word,
such as the “continuous bag-of-words” (CBOW) model [3] and the “context-
specific vector” (CSV) model [11]; the second one is to use the target word to
predict the context words, such as the skip-gram model [3, 12]. These word
embedding algorithms also follow the assumption that it is valuable to learn
a word’s meaning from its neighbors. Unlike VSM, which represents words
from a co-occurrence matrix, word embedding algorithms represent words as
dense vectors for input to a neural network model. The word embeddings are
trained, taking the first type of word embedding algorithms for example, by
maximizing the log likelihood of actual context versus random chosen context
by using negative sampling [3].

Example 1 I decided to buy the apple without considering the others.
Example 2 This is the case.
Example 3 The water level is rising.

Table 1: Examples of Polysemous Words

However, despite the usefulness of word embeddings in NLP, most word
embedding algorithms suffer from a significant drawback. That is, most
models learn only a single embedding per word. The problem is that many
words are polysemous (have multiple senses). For example, in Example 1
of Table 1, “apple” can be interpreted either as fruit or as computer brand;
“case” in Example 2 of Table 1 is also ambiguous; “water” in Example 3
of Table 1 can be interpreted as referring to a flood or water in a sink or
bathtub.1 Thus in previous models such as the skip-gram and CBOW models,
all the different meanings of a polysemous word will be combined into a single
vector. In such a representation, quality of semantics will suffer.

Researchers try to solve the polysemy problem in word embedding algo-
rithms mainly in two ways: the first is to process all the local contexts of a
word in the corpus in a fine-grained manner and group contexts according to
their semantic similarity [14, 15]; the second is to provide more information
besides local contexts in the learning process to help interpret the sense of

1Example 3 in Table 1 is extracted from the disaster-focused Twitter corpus T6 [13]
which we describe in Section 4.1.
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the word [16, 17], such as an outside knowledge base [18, 19].
A short text snippet provides limited context. Moreover, a dataset of so-

cial communications, such as tweets, is full of newly-emerging words, acronyms
and emojis, etc., which makes it hard to comprehend word meanings effi-
ciently from context. We propose in this work to use label or class information
as a type of context. We train the number-of-classes vector representations
per word. We observe that the polysemy problem can be better managed
when class information or label of the sentence is presented. Take Example 3
in Table 1 for example: in a disaster related classification task, when it is la-
beled as “hurricane related”, the word “water” in the sentence is more likely
to be correctly interpreted as rain and flood; when it is labeled as “hurricane-
unrelated”, the word “water” can be interpreted with its common meaning.
Class information helps the system to interpret the correct sense of a word.

We adopt the linear compositionality property to encode the class or
label information to learn class-specific word embeddings. Word embedding
algorithms learned from neural language models typically have the property
of good linear compositionality [3]. The linear compositionality property is
best illustrated by the famous example

vector(“King”)− vector(“Man”) + vector(“Woman”) = vector(“Queen”).

We observed that vector(“King”)-vector(“Man”) results in a vector close to
“Royalty”. And the vector representation of “Queen” combines the semantic
definitions of both “Royalty” and “Woman” through simple addition oper-
ation. Inspired by this observation, we generate class-specific word embed-
dings through the same operation.

A key problem remains as to how many vector representations per word
should be learned to express the senses of a word. Existing models try to
enumerate all possible senses of a word from the corpus while ignoring the
application task of the trained embeddings. To apply multiple vector repre-
sentations per word in future NLP tasks can be computationally expensive
because all possible combinations of senses of words in a sentence need to be
considered. For example, for a sentence of n words and l senses per word,
we need to enumerate ln sense combinations. Here we introduce the light
polysemy problem; that is, instead of enumerating all potential senses of a
word from the unlabeled corpus, we look to distinguish only a few vector rep-
resentations per word as a function of the classification task. We present a
framework which can input multiple vector representations per word for the
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classification task. Thus it runs in linear time. We only train the number of
vector representations per word that is appropriate to the classification task.
For example, in a disaster-related classification task, the task is to classify a
sentence as “hurricane related” or “hurricane unrelated”; We train two em-
beddings per word: one is for “hurricane related” and the other one is for
“hurricane unrelated”. Although a word like “water” might have more than
two senses, we show in experiments that only two vector representations,
one representing “hurricane related” context semantically close to rain and
flood, and another one representing “hurricane unrelated” context which is
trained from all non-hurricane related context, are able to capture enough
sense information needed for the classification task. We call the embedding
trained for each class per word, class-specific embedding. We show in the
experiments that class-specific embeddings can address the light polysemy
problem within the classification task.

In this work, we explore four approaches to learn class-specific word em-
beddings for classification using the linear compositionality property. We
extend our prior work [20] by defining the light polysemy problem and ad-
ditionally modifying the CBOW model to incorporate class information to
learn class-specific word embeddings. We show in the experiments that class-
specific word embedding is useful to address the light polysemy problem
in classification tasks. We modified the skip-gram and CBOW models in
Word2Vec [3] by introducing class information. For our classifier, we com-
bined two convolutional neural network (CNN) models [21], which take the
class-specific word embeddings from each class as input. Our contributions
include:

1. Our work is the first to use the linear composition property to build
class-specific embeddings.

2. We define the light polysemy problem in text classification tasks.

3. We propose the use of label information as global context to tackle the
light polysemy problem.

4. We present a general framework consisting of two convolutional neural
networks which take the class-specific word embeddings we trained as
input for a binary text classification task.

We compare our approach with multiple baselines on a disaster-related Twit-
ter dataset and a benchmark Twitter sentiment classification dataset from
SemEval 2013.
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2. Related Work

Many methods can obtain vector representation of words, such as La-
tent Semantic Analysis (LSA) [22] and Latent Dirichlet Allocation (LDA)
[23]. Word embeddings trained by neural language models are well-known
for their ability to represent words’ general semantic meaning. More re-
cently, Word2Vec, developed by Mikolov et al. [3], has been shown to pro-
vide a new state-of-the-art performance in NLP tasks. Many researchers have
contributed to the neural language model-based word embedding literature
[24, 7, 25, 26].

Most existing models only produce one vector representation per word,
which is problematic for words with multiple meanings. A single word em-
bedding does not address the polysemy problem. Several multiple-embedding
models have been proposed to alleviate the problem caused by polysemy.
Researchers typically address this issue by training multiple embeddings per
word according to their multiple senses [27, 15]. Most existing work utilizes
context-based models. That is, they learn various word embeddings per word
by discriminating among distinguishable contexts in the corpus. Huang et
al. [14] tackle this problem through k-means clustering. They heuristically
pre-define k senses for each polysemous word and cluster all the local con-
texts of a word into k clusters. Local context is defined as 5 words before
and after the target word. The local context limits the information we can
use to learn to distinguish the word’s sense, especially in a dataset consisting
of short text snippets such as tweets. Twitter is known for having a short
character limit.

Neelakantan et al. [15] further extend Huang et al.’s idea and apply a
context-clustering schema on the skip-gram model. They notice that in
Huang et al.’s work, the context-clustering schema is a pre-processing step;
the context vectors are not updated in the learning process. They propose
a joint model by concatenating the clustering algorithm and the skip gram
model. Their approach clusters all the contexts the word has and finds the
cluster centroid that is most close to the word’s current context as its sense
vector. Then the sense vector is sent to skip-gram model for learning and
updating. The learned sense vector is updated as the new centroid for that
cluster. Neelakantan et al.’s approach still suffers from the need to cluster
contexts for every word, which makes training expensive.

Guo et al. [28] also propose a multiple embedding model. They combine
the context-clustering schema with bilingual resources to learn multiple em-
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beddings per word. Motivated by the intuition that the same word in the
source language with different senses is supposed to have different transla-
tions in the foreign language, the authors obtain the senses of one word by
clustering its translation words, exhibiting different senses in different clus-
ters. Another bilingual word embedding (BWE) approach is proposed by
Su et al. [29]. Different from traditional BWE approaches which either dis-
tinguish the correct bilingual alignments from the corrupted ones or model
the joint bilingual probability, the authors introduce a latent variable to ex-
plicitly induce the underlying bilingual semantic space which generates word
tokens in both two languages.

Pelevina et al. [30] generate multiple embeddings per word by clustering
the related words in the ego-network. Similar to our approach, their method
relies on existing single-prototype word embeddings, transforming them to
sense vectors via ego-network clustering. An ego network consists of a single
node (ego) together with the nodes they are connected to (alters) and all the
edges among those alters. In their case, for each word w, they construct an
ego network with word w as ego node and w’s nearest neighbours calculated
by vector similarities as other nodes with connections to word w. Then the
authors use graph clustering method to obtain multiple senses for word w.

Other than context-clustering schema, other approaches have also pro-
posed to generate multiple embeddings per word. The main idea is still to
obtain distinguishable context vector representations through other learning
models or outside expert annotators. Zheng et al. developed a convolutional
neural network to learn a new sense vector for a word if the cosine similarity
between the new context vector and every existing sense vector is less than
a threshold [11]. Tian et al. extended the skip-gram model from Mikolov’s
work and generated multiple vector representations for each word in a prob-
abilistic manner [12]. They added an item specifying the probability of the
sense of the given word to the original skip-gram objective function and used
the Expectation Maximization algorithm to train multi-sense vectors. Chen
et al. rely on WordNet glosses, which have summarized each word’s senses, to
initialize multiple embeddings per word and update the multiple embeddings
per word through a skip-gram model [19]. Instead of figuring out how many
latent senses a word may have, Bollegala et al. [31] take a different path by
directly learning the k-way co-occurrences embeddings. Most of the success-
ful word embedding models, such as Word2Vec [3] and Glove [32], depend
on word co-occurrences when k = 2. Bollegala et al. extend to the situation
when k ≥ 2; treat every context of size k as a bag-of-tokens and learn a
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vector representation for every context. Scheepers et al. [33] improve the
semantics represented in the word embedding by using outside lexicographic
definitions. All the context-based approaches suffers from same weakness.
That is to learn all the distinguishable contexts to discriminate word senses
regardless of the future application for the embedding and the computational
cost.

Unlike the above word-level construction of word embeddings, some re-
search work focuses on morphology, that is, the sub-word level, to learn mul-
tiple embeddings per word. Bojanowski et al. also extended the skip-gram
model [34], targeting the morphology of words. Unlike previous approaches
which train a single word vector for each word and ignore the internal struc-
ture of words, they modified the skip-gram model to represent each word as a
bag of character n-grams. Each character n-gram is trained to associate with
a vector representation. The vector for the word is the sum of the n-grams’
vectors. Athiwaratkun, Wilson and Anandkumar [35] combine Bojanowski
et al.’s FastText with a Gaussian mixture model [36]. They initialize each
word with a hyper-parameter of k Gaussian components. Each Gaussian
component represents a different sense of a word.

The polysemy problem not only exists in words but also in entity disam-
biguation. Chen et al. try to solve the challenging task of finding the correct
referential entity in a knowledge base (KB) [37]. The authors learn word and
entity embeddings by training a bilinear joint learning model. Their embed-
ding learning model is the same as the skip-gram model. The only difference
is that they propose a bilinear model to learn the semantic gap (a projection)
between word embedding and entity embedding.

Our approaches utilizes class labels as resource to comprehend word’s
sense. We think that a word’s sense such as “water” can be better interpreted
with the aid of class information as global context. For example, when the
tweet “The water level is rising” is labeled as “hurricane-related tweet”, we
would know that the “water” here means flood. We introduce the light
polysemy problem: instead of making efforts to enumerate all potential senses
per word from the unlabeled text, the number of vector representations per
word should be closely related to the number of classes in the future task.

In this work we address the light polysemy problem by utilizing the linear
compositionality property in four approaches. In the first approach, we build
separate word embeddings using data filtered by class label and feed the em-
beddings into the classification framework for a single class label prediction.
In the second approach, we build class-specific word embeddings by directly
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Figure 1: Skip-gram model architecture with word embedding dimension n = 4, vocabu-
lary size |V | = 6, window size 5 (c = 2). The input layer is a one-hot encoding I ∈ |V | × 1
denoting the target word in the context window. In the hidden layer, after multiplying I
with the vocabulary matrix P ∈ R|V |×n, the resulting vector is h ∈ n × 1. After multi-
plying h with the output weight matrix q ∈ n × |V | in the output layer and sending the
result vector to softmax function, a vector of probabilities O ∈ |V | × 1 in the output layer
specifies the likelihood of each word to appear in the context window.

adding the vector representation of the classification polarity to the vector
representing the general meaning of the word. In the third approach, we
modify the skip-gram architecture to train a class-specific word embedding.
In the fourth approach, we modify the CBOW model architecture to train a
class-specific word embedding.

3. Methodology

In this section, we introduce the details of generating class-specific word
embeddings. We incorporate class information into word embeddings by
utilizing the linear compositionality property shown by the word embeddings
learned from neural network based language models [3, 32]. Our work directly
extends the Word2Vec model architecture [3]. In the following sections, we
present three model architectures to generate class-specific word embeddings.
We then describe the use of the class-specific word embeddings in a framework
consisting of convolutional neural networks for text classification.

3.1. Skip-gram Model

Mikolov et al. [3] introduce the skip-gram model, which learns continuous
vector representations of words from the context in which the word resides.
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Figure 1 shows the skip-gram model’s architecture. The model takes word
wt as input and predicts the c words ahead of and behind wt by maximizing
the log likelihood function:

L =
∑
wt∈C

log p(Context(wt) | wt)) (1)

Where C is the corpus, the function tries to maximize the conditional proba-
bility of words appearing within a certain range of wt given the target word
wt. To address computational complexity, Mikolov et al. adopts hierarchical
softmax and negative sampling [3] to implement the skip-gram model. In
this paper, we address the skip-gram model trained with hierarchical soft-
max in the advanced model I. The vocabulary in the skip-gram model with
hierarchical softmax is initialized as a Huffman tree.

Besides the architecture difference in the skip-gram model and the CBOW
model, the skip-gram model generally performs better in semantic tests [3]
in terms of accuracy though more slowly than CBOW. Compared to CBOW,
skip-gram model trains over more data since each word in the corpus can be
a training tuple.

3.2. Continuous Bag-of-words Model (CBOW)

Another neural language based model is the CBOW model, which is also
introduced by Mikolov et al. [3]. Figure 2 shows the architecture of the
CBOW model. It consists of three layers: an input layer, a projection layer
(also known as a hidden layer) and an output layer. Unlike skip-gram, the
CBOW model predicts the target word given the context words both c words
preceding and following the target word; in the input layer, the vocabulary is
represented as an input vocabulary matrix P ∈ R|V |×n; each column in P is
the vector representation of a word in the vocabulary; P is randomly initial-
ized from the uniform distribution in the range [−1, 1]. In the hidden layer,
the vector representation of the context, g, is calculated as the arithmetic
mean of the vector representation of all words hi in the context window with
c words before and after the target word, as shown in Formula 2.

g =
1

2c

∑
i∈[−c,−1]∪[1,c]

wi (2)

p(wt|g) is used to calculate the probability of the target word given context
vector representation g as shown in Formula 3, which is represented as a
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Figure 2: CBOW model architecture with word embedding dimension n = 4, vocabulary
size |V | = 6 and window size 5 (c = 2). It consists of three layers: input layer, hidden
layer and output layer. In the input layer, each Ii ∈ |V | × 1 is a one-hot encoding vector
of a context word in the context window surrounding the target word; in the hidden layer,
each one-hot encoding vector ITi multiplied against the vocabulary matrix P ∈ R|V |×n to
select the matrix row that represents the context word; g ∈ n × 1 is the average of the
context word vectors. After multiplying g with the output weight matrix q ∈ n× |V | and
sending the result to a softmax function, a vector of probabilities O ∈ |V |×1 in the output
layer specifies the likelihood of each word to be the target word in the context window.
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softmax function over the dot product of the vector representation of the
context g and target word wt.

p(wt|g) =
ewt·g∑

wi∈V ocab

ewi·g
(3)

Finally we can depict the loss function of the CBOW model in Formula 4.

L =
∑
wt∈C

log p(wt|g) (4)

where over all training tuples in the corpus C, we are maximizing the prob-
ability of finding the target word wt given g, its context. However, to go
over all the words in the vocabulary in Formula 3 is expensive. Instead of
comparing all words in the vocabulary, to only distinguish the target word
from several noise words largely reduces the computation load. This is called
negative sampling. The window size 2c+ 1 and the word embedding dimen-
sion n are all hyperparameters. In the advanced model II, we modified the
CBOW model to train class-specific word embedding.

3.3. Class-Specific Word Embedding

As described earlier, the standard word embedding approach is problem-
atic for words with multiple senses. In this section, we describe our proposed
models and frameworks based on the linear compositionality property of
modern word embeddings.

3.3.1. Linear compositionality property

Word embeddings learned from the skip-gram model show good linear
compositionality [3, 38]. A famous example would be that

vector(“King”)− vector(“Man”) + vector(“Woman′′)

results in a vector which is the closest to the vector representation of the word
“Queen” [3]. One interpretation is that the operation of vector(“King′′) −
vector(“Man′′) results in a vector which is close to the semantic definition
of “Royalty”; thus vector(“King′′) − vector(“Man′′) = vector(“Royalty′′);
then we add vector(“Royalty′′) to vector(“Woman′′), we get the semantic
information from both words, which is vector(“Queen′′). Based on this ob-
servation, the semantic information in the vector representation trained from
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a neural language model satisfies linear composition. Thus the vector repre-
sentation of a word, such as “Queen”, which combines the semantic meaning
of “Woman” and “Royalty”, could be obtained directly through the addi-
tion operation. We observe that the new vector representation combines the
semantic definitions of both sides. In our work, we use this linear composi-
tionality property to encode the class information into the word embeddings
by adding a vector that represents the class information.

3.3.2. Vector Representation of Class

Based on the linear composition property, we propose to obtain the class-
specific word embedding by adding the vector representation of the class to
the vector that represents the general meaning of the word. In this section,
we describe how we find the vector representation of the class information.

In the procedure to compute the vector representation of class, our first
step is to manually define the classification polarity of the task. Some classi-
fication tasks have one polarity while others have two or more polarities. For
example, in a basic sentiment analysis task, there are typically two polarities,
namely positive and negative; in a task to classify hurricane related Tweets
from general Tweets stream, there is only one polarity, namely hurricane.
Because for tweets that are labeled as hurricane-unrelated, we treat them
as ordinary tweets which have no semantic polarity inside the sentences in
terms of this task. In the second step, we manually select the word that is
most representative of classification polarity of the task. We define the word
as polarity word, such as “hurricane”. In this work, the polarity words are
defined with the help of the label information of the dataset. For example, in
a disaster-related dataset, the labeling task of the dataset is to classify a sen-
tence as hurricane-related or hurricane-unrelated. Thus we manually choose
the polarity word to be hurricane. If a dataset is used for sentiment analysis,
now the labeling task of the dataset becomes labeling positive sentences and
negative sentences. By briefly examining the labeled dataset, we found that
the polarity word good can be used for positive class and the polarity word
bad can be chosen for negative class. It is true that we generally need two
steps to manually decide the polarity word. One is to know the labeling task
of the dataset. The other one is to manually decide the polarity words.

In the third step, we adopt a heuristic approach to find the vector repre-
sentations of the classification polarities. We first use the original skip-gram
model from Word2Vec on our dataset to obtain class-independent word em-
beddings, providing a vector representation for each word in our vocabulary.
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Figure 3: Diagram of Basic Approach I.

From the class-independent word embeddings we retrieve the polarity words’
vector representations. Next, for each polarity word we use cosine similarity
to select the top n words’ vector representations that are most similar to the
polarity word’s vector representation from the vocabulary of the dataset:

similarity score =
vector(wpolarity) · vector(w)

‖vector(wpolarity) ‖‖ vector(w)‖
(5)

where w is a word in the vocabulary; wpolarity is the polarity word. According
to the similarity score, we choose n vector(w) which have highest similarity
scores. Then we calculate the arithmetic mean of the top n vector(w) as
the vector representation of the class:

V(class) =
1

n
(vector(w1) + vector(w2) + · · ·vector(wn)) (6)

where vector(·) denotes the embedding’s vector representation of a word;
V(·) denotes the vector representation of class information. In our work n is
100. Here n is a hyper-parameter that we set to 100. The number n is to
make sure that the vector representation of the class is general enough to be
representative when we calculate the arithmetic mean of the top n vectors.

3.3.3. Basic Approach I

In basic approach I, we do not use the vector representation of class to
build class-specific word embeddings. Our idea is simple as shown in Figure 3:
we first divide the training set into subsets according to the class label. For
example, in a sentiment analysis dataset, the training set is divided into two
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Figure 4: Diagram of Basic approach II.

subsets according to class label, namely positive and negative; next we train
a skip-gram model over the data in each subset to generate a particular set
of word embeddings for a specific class. In the sentiment analysis example,
we generate one set of word embeddings on the positive set and we generate
another set of word embeddings on the negative set. So for each class, we
have a separate set of word embeddings. We then apply the two sets of word
embeddings to our parallel CNN classification framework.

This approach is designed to allow us to test the effectiveness of the lin-
ear compositionality property. We expect that on the same dataset training
the embedding without utilizing the linear compositionality property would
dampen the classification framework’s performance. On the other hand, it is
the simplest of the four proposed approaches. We separate the dataset into
subsets, and build a Word2Vec model for each subset. For disadvantages, we
reduce the dataset to subsets separated by class labels. In this approach, we
do not really use the class label information to build word vector representa-
tions. A larger dataset results in more training data and thus leads to higher
accuracy; similarly, a smaller dataset results in less training data and leads
to lower accuracy [39].

3.3.4. Basic Approach II

Considered an unsupervised approach, the skip-gram model does not uti-
lize class information to learn word embeddings. For a binary classification
task, we aim to train two vector representations for each word; one for each
class. In basic approach II, we use linear composition to encode the class
information into general word embeddings.

In basic approach II, we integrate the class information into the general
word embedding by directly adding the vector representation of the classifi-
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cation polarities to the vector representing the general meaning of the word
based on the linear compositionality property. For example, in a task to
classify hurricane related tweets from a general tweet stream, we have ele-
ments of the training dataset labeled as “hurricane-related” or “hurricane-
unrelated”. Since there is only one polarity word “hurricane”, we obtain the
vector representation of the class hurricane according to Section 3.3.2; then
the class-specific word embedding is defined as:

h = V(hurricane) + w (7)

where h denotes the class-specific word embedding of word w; w denotes the
vector representing the general meaning of word w trained from skip-gram
model.

An advantage of this approach is that we use the linear compositionality
property to build word vector representations for each class training on the
whole dataset compared to Basic Approach I. For disadvantages, we calculate
the vector representation of the class V(class). Then V(class) is added to
the word’s general vector representation for each word appeared in that class.
The linear shift for every word in that class might be a problem: some words
have polysemy problems can be clarified in this process; some words that
have no polysemy problems might be shifted away from its position in the
latent semantic space. We next use non-linear models to solve the polysemy
problem.

3.3.5. Advanced Model I

Based on the linear compositionality property of word embeddings trained
on a neural language model, our basic approach II generates a class-specific
word embedding by adding V(·) directly, the vector representation of class
information to w, the vector representation of the general meaning of word
wt. The main issue with the original skip-gram model is that only a single
vector representation per word is not enough to tackle the polysemy problem.
In the proposed advanced models, we utilize the neural language model to
train class-specific word embeddings for each class in the corpus. In the
advanced model I, instead of adding the class information vector linearly,
we utilize skip-gram’s neural language model shown in Figure 5 to predict
the context words’ embeddings from a class-specific word embedding of the
target word.

Figure 5 shows the architecture of the advanced model I. For each class
in the corpus, we use the approach introduced in Section 3.3.2 to represent
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Figure 5: The architecture of advanced model I. Based on the linear compositionality prop-
erty, the class-specific word embedding of the target word is obtained by adding directly
V(class), the vector representation of class information to w, the vector representation of
the general meaning of word wt.

the class information in vector space denoted as V(class). We add V(class)
to the general vector representation of the target word, w as shown in Equa-
tion 8. Based on the property of linear compositionality, the summation of
V(class) and w should capture the semantic meaning from both sides. We
use the class-specific word embedding of the target word to update the word
embeddings of its context words in the modified skip-gram model.

hw,V(class) = w + V(class) (8)

Equation 9 is the objective function of the modified skip-gram model.

L =
∑
w∈C

log p(Context(w) | hw,V(class)) (9)

where over all training tuples in the corpus C, we are maximizing the proba-
bility of finding the context words around w given w and its class information.

We adopt the hierarchical softmax based skip-gram model [3], which uses
a binary Huffman tree to organize the words in the vocabulary. Each leaf in
the Huffman tree represents a word. The path from root to leaf represents
the Huffman encoding of the word. For each non-leaf node in the tree, a
binary classifier produces a probability to decide which path to take. As in
Mikolov et al.’s skip-gram model, we choose a logistic regression classifier for
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each non-leaf node. Thus the conditional probability in Equation 9 can be
further written as:

p(Context(w) | w,V(class)) =
lw∏
j=2

p(dwj |hw,V(class), θ
w
j−1) (10)

p(dwj |hw,V(class), θ
w
j−1) =

{
σ(hw,V(class)), dwj = 0

1− σ(hw,V(class)), dwj = 1
(11)

where hw,V(class) denotes the output of the projection layer in the advanced
model I, which is the summation of w and V(class); dwj is the binary Huffman
code at jth node of word w; θwj−1 is the vector representation of the (j− 1)th
non-leaf node of word w; lw is the number of non-leaf nodes for word w;
σ(·) is the sigmoid activation function of the logistic regression classifier at
non-leaf nodes. We use SGD (Stochastic Gradient Descent) to maximize L
and update hw,V(class) and θwj−1.

3.3.6. Advanced Model II

In advanced model II we modify the original CBOW model to train class-
specific word embeddings. The original CBOW model uses the averaged
word embeddings of the context words to predict the target word. Although
CBOW model is demonstrated to capture semantic information in the sin-
gle vector representation per word, it is problematic for polysemous words.
We take advantage of the architecture of the CBOW model to train class-
specific word embeddings to tackle the light polysemy problem existing in
the classification task.

For each class in the corpus, we first use the approach introduced in
Section 3.3.2 to represent the class information in vector space denoted as
V(class). Instead of representing the context using the average of the vector
representations of all the words in the context window, we learn class-specific
context gclass by adding the class vector V(class) to the context vector rep-
resentation g as shown in Equation 12 and 13.

g =
1

2c

∑
i∈[−c,−1]∪[1,c]

wi (12)

gclass = g + V(class) (13)

Figure 6 illustrates the architecture of the advanced model II. As opposed
to the architecture of the original CBOW model in Figure 2, we generate
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Figure 6: Architecture of Advanced model II. Based on the linear compositionality prop-
erty of wording embedding algorithm, we modify the CBOW model by adding V(class)
the class vector to the context vector representation g. The result, class-specific context
gclass, combines the local context g as well as global context, V(class).
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class-specific context gclass, which combines the local context g as well as
global context, V(class) to tackle the light polysemy problem.

L =
∑
w∈C

log p(w|gclass) (14)

Equation 14 is the objective function of the advanced model II. The objective
function tries to maximize the conditional probability of the target word given
the class-specific context gclass for all the training tuples in corpus C.

p(w | gclass) =
lw∏
j=2

p(dwj |gclass, θwj−1) (15)

p(dwj |gclass, θwj−1) =

{
σ(gclass), dwj = 0

1− σ(gclass), dwj = 1
(16)

where g is the context representation; gclass denotes the output of the pro-
jection layer in the advanced model II, which is the summation of g and
V(class); dwj is the binary Huffman code at jth node of g; θwj−1 is the vector
representation of the (j − 1)th non-leaf node of g; lw is the number of non-
leaf nodes for word w; σ(·) is the sigmoid activation function of the logistic
regression classifier at non-leaf nodes. We use SGD (Stochastic Gradient
Descent) to maximize L and update Xgclass and θwj−1.

In summary, compared with Basic Approach II, instead of adding the
class information vector linearly, the advanced approaches utilize skip-gram
and CBOWs neural language models to generate the class-specific word em-
beddings. The skip-gram model trains over more data since each word in
the corpus can be a training tuple. Thus the skip-gram model favors small
datasets. In our work, we use a labeled dataset to encode the class informa-
tion into embeddings. Labeled datasets are usually smaller (because of the
cost to acquire the labels), and thus an Advanced Model I that uses a skip-
gram model has advantages over an Advanced Model II that uses a CBOW
model.

3.4. Classification Framework

We apply class-specific word embedding for text classification under a su-
pervised learning framework. Our framework extends Kim’s work [21] which
introduced the use of convolutional neural networks (CNN) for sentence clas-
sification. In Kim’s work, the input is a sentence and for each word in the
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Figure 7: A general binary classification framework that takes two embeddings, namely
on-topic embedding and off-topic embedding as input.

sentence, Kim’s CNN takes one fixed length word embedding trained from
Word2Vec. It consists of a convolutional layer with multiple filters in different
widths, a max-pooling layer and a softmax output layer.

We aim to build a classifier framework which can take multiple sets of
class-specific word embeddings we trained as inputs. Since for each test sen-
tence its class label is not revealed yet, it is not known which word embedding,
for example class-specific word embedding or general meaning word embed-
ding, should be applied to a classifier. We design a classification framework
that takes multiple sets of word embeddings as input. The number of word
embeddings per word depends on the class polarities of the classification task.
For example, for sentiment analysis we have two class polarities; thus we have
two word embeddings per word: one embedding learned from positive class
and the other embedding learned from negative class. For a topic-related
classification task, such as a task to classify hurricane-related tweets, we also
have two word embeddings per word: one on-topic embedding trained from
hurricane-related tweets and one off-topic embedding trained from hurricane-
unrelated tweets.

In a multi-class text classification problem, for each word, we generate
one embedding per class using the proposed approaches; instead of a classifi-
cation framework takes exactly two embeddings per word, we would need to
build a text classification framework that takes in the number of embeddings
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per word corresponding to the number of classes in the dataset. If we consider
binary text classification, the proposed classification framework is illustrated
in Figure 7. We combine two CNNs with a softmax layer which takes con-
catenated feature vectors from the two max pooling layers and outputs the
probability distribution over class labels.

4. Experiment

We conduct experiments to evaluate the proposed four approaches to
learn class-specific word embeddings. We apply class-specific word embed-
dings to the supervised classification framework described in Section 3.4.

4.1. Experiment Setup and Datasets

We conduct experiments on two publicly available datasets. The first
dataset is a disaster-related Twitter dataset [13], called T6. T6 is labeled
by crowdsourcing workers according to disaster relatedness (as “on-topic”,
or “off-topic”) [13]. T6 contains 6 crisis events in 2012 and 2013. We choose
to test our approach on the hurricane Sandy dataset. The statistics of the
hurricane Sandy dataset is shown in Table 2. The other dataset is the bench-
mark Twitter sentiment classification dataset in SemEval 20132. Each tuple
in the SemEval dataset has three class label options: positive, negative and
neutral. Since we focus on the binary text classification task and we aim
to use the same classification framework for both datasets, we filter out the
tuples in the SemEval 2013 dataset which are labeled as neutral. We also do
a pre-processing step: we first eliminate all tweets in the two datasets that
are non-English, and then we eliminate tweets that contain fewer than five
words. Our pre-processing step is in line with Olteanu et al.’s work on the
same dataset [13]. For the parameters of our experiments, we choose a win-
dow size of 5 and word embedding dimension of 50. To reduce the random-
ness and the stochasticity in the experiments, we conduct each experiment
30 times and report the mean results of the 30 runs for each experiment. The
characteristics of the SemEval 2013 dataset are shown in Table 3.

4.2. Baseline Methods

To compare the quality of the class-specific word embedding, we imple-
ment the following baselines:

2https://www.cs.york.ac.uk/semeval-2013/
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Data On-topic Off-topic Total

Train 4911 3098 8009
Test 1227 772 1999

Table 2: Hurricane Sandy dataset characteristics

Data Positive Negative Total

Train 2256 849 3104
Test 330 172 502

Table 3: SemEval 2013 dataset characteristics

1. Sentiment-specific word embedding (SSWE): Tang et al. [7] introduce a
supervised method to learn sentiment-specific word embeddings based
on Collobert et al.’s unsupervised approach [24]. We build a word
embedding according to Tang’s method and test the embedding on our
classification framework. We use Attardi’s NLP pipeline to generate
this baseline [40].

2. Word embeddings trained using the skip-gram model: we train our own
embedding using Word2Vec’s original skip-gram model [3]. We apply
the word embeddings as features of a convolutional neural network [21].
A single embedding per word is trained on all training data without
use of the training labels.

Tang et al.’s approach [7] is the research work that is closest to our own.
Although their method is to generate a sentiment-specific embedding, we
found their method could be extended to any labeled dataset that has con-
trasting polarities.

4.3. Results and Analysis

Table 4 shows the results of the experiments on different approaches.
We choose convolutional neural networks over other classifiers. The reasons
are: since our proposed classification framework consists of two CNNs, it
is reasonable to compare our framework’s performance with a single CNN;
secondly, a CNN has achieved the state-of-art result in sentiment analysis
[21].

For the SSWE baseline, we use Attardi’s implementation [40] of SSWE [7]
to generate hurricane-specific and sentiment-specific word embeddings. Al-
though our work and SSWE are both derived from neural language models,
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Method Hurricane Sandy SemEval 2013
SSWE+CNN [7] 85.54 69.92
Skip-gram [3] created embedding using unlabeled text +
single CNN [21]

86.00 70.72

Basic Approach I: Two skip-gram-generated embeddings
from class-filtered text + parallel CNN framework

88.15 71.35

Basic Approach II: Addition of class vector and general
meaning vector + parallel CNN framework

87.72 71.60

Advanced Model I: Modified skip-gram + parallel CNN
framework

88.19 73.15

Advanced Model II: Modified CBOW + parallel CNN
framework

87.91 71.99

Table 4: Comparison of classification accuracy across the two datasets using word embed-
dings from various models.

our model extends Mikolov’s skip-gram model, while SSWE extends Col-
lobert’s C&W model [24]. The skip-gram model has a simple architecture,
while C&W model keeps a look-up table for all the words in the vocabu-
lary and a fully-connected hidden layer, which makes SSWE slower to com-
pute and hard to scale to large datasets. In Basic Approach II, we use the
tweets in the training set to generate a general meaning word embedding
w. We then calculate V(hurricane) and add V(hurricane) to w to produce
a class-specific embedding for the second CNN. We then use the two sets
of embeddings in the classification framework. In the advanced model, we
use the same V(hurricane) from Basic Approach II and added to the input
word for each training tuple in the input layer to train the class-specific word
embedding.

In the SemEval dataset experiments, a slight difference is in the choice
of the polarity word when we try to calculate V(positive) and V(negative).
We choose the polarity word “good” for positive class and “bad” for negative
class for use in generating two sets of class-specific word embeddings for Basic
Approach II and the Advanced Model.

In both sets of experiments, the SSWE+CNN result is relatively weak
compared to skip-gram derived models. The result of Basic Approach I
using two sets of self-trained embeddings on our framework is better than
the result of the second baseline, which uses one single CNN. We ascribe
the reason to be that we combine more classifiers that use different features
(e.g., from different embeddings). It is similar to the ensemble method in
machine learning, thus improving the overall performance. The result of
the Basic Approach II is very similar to the result of the Basic Approach I.
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This indicates part of our concern that simply shifting all the embeddings in
the vector space by the same distance is insufficient to boost performance.
Results for the Advanced Model I is the highest, outperforming baselines, the
basic approaches and also Advanced Model II. Results for Advanced Model
II, the modified CBOW, are lower than the results of Advanced Model I,
the modified skip-gram. Compared to CBOW, skip-gram model trains over
more data since each word in the corpus can be a training tuple. Thus the
skip-gram model favors small datasets. Since both of our labeled datasets
are small, it is perhaps unsurprising that the results of Advanced Model I
are better.

Figure 8: Mean classification accuracy of thirty additional runs for the proposed models
in bar chart, with standard errors, compared to the two existing baseline approaches.

There is stochasticity in the proposed approaches. For example, all em-
beddings are initialized with random values. To reduce the uncertainty in
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our measured results, we performed thirty additional runs and present the
mean performance in Figure 8 along with standard errors on the proposed
models. Compared to SemEval 2013 dataset, results on the Hurricane Sandy
dataset tend to have tighter error bars. For the Hurricane Sandy dataset, the
mean Basic Approach I accuracy was more than 2 percentage points higher
than the results of baseline’s in Table 4. For both datasets, the advanced
model remains the best performer, achieving a mean relative improvement
of 3.1% (Hurricane Sandy) to 4.6% (SemEval 2013) over the SSWE+CNN
baseline. This suggests our proposed approaches to generate class-specific
word embeddings combined with the parallel CNN framework can improve
the performance on text classification tasks.

Moreover, to better measure the performance of the class-specific word
embeddings we trained, we compare word embeddings trained from the ad-
vanced approach I with the embeddings trained from skip-gram model, one
of our baselines in the first dataset Hurricane Sandy. Most tuples in the
test set that mention “hurricane”,“hurricane Sandy” and “Frankenstorm”
are recognized correctly in both advanced approaches and baseline models.
For example, “Frankenstorm was actually the name of the creator. This
hurricane should properly be called Frankenstorm’s monster.”, “Praying for
everyone in the path of Hurricane Sandy.” and “This hurricane blowing me
now.” To better verify the effectiveness of the proposed advanced approach
I, we look at some tuples from test set that are classified correctly (True
Positive) in advanced approach I but classified incorrectly (False Negative)
in the second baseline using skip-gram model as shown in Examples a, b
and c in Table 5. We found that after adding class information in the ad-
vanced approach I, tuples such as Example a, b and c can be recognized as
“hurricane-related” even without obvious words or hashtag indicators.

Example a My power was out for like 5 days when Irene hit.
Example b Stranger danger! My power’s out too. Be safe #drink-

ingtillifallasleep
Example c People on the other side of the country won’t see specif-

ically how #lbi is doing. It’s all grouped into the east
coast.

Table 5: Three tuples extracted from test set of Hurricane Sandy dataset
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4.4. Parameter Sensitivity

In order to evaluate how changes to the parameterization of the proposed
approaches affect its performance on classification tasks, we conducted ex-
periments on the binary text classification tasks.

4.4.1. Word Embedding Dimensionality

For this test, to focus on the performance of parameterization, we need to
remove the randomness introduced during the training procedure. We first
fix the seed parameter in the initialization of the word embedding vectors so
that the experiments could be repeated with identical starting points; then
we use only a single thread to eliminate randomness introduced by operating
system thread scheduling. To further reduce the randomness in word vector
initialization, during the experiments of trials with different word vector
dimensionality, we initialize the maximum dimension n of word vector so
that each word vector with different dimensionality s will be initialized by
selecting the top s numbers from the initialized word vector of size n. The
result of these steps was a process that repeatedly assigned exactly the same
random values regardless of the size of the word vector representation.

Figure 9 shows the effects of performance when increasing the number
of dimensions in our three proposed models in classification tasks of two
datasets. During all the experiments, we have fixed the window size to be 5.
All the experiments are performed starting from word vector of dimension 5
to word vector of dimension 165 with an interval of 10. So altogether there are
17 points on each plot. We use standard Local Polynomial Regression Fitting
method (loess) in R to fit a polynomial surface for each plot to show the trend
of performance as dimensionality increases. Figure 9a, 9c and 9e examine
the effects of varying the dimensionality in the Hurricane Sandy dataset. As
shown in Figures 9a and 9e, the optimal dimensionality for Basic Approach I
and the Advanced Approach is obtained near 65 dimensions, while Figure 9c
shows a steady trend. Figures 9b, 9d and 9f examine the effects of varying
the dimensionality in the SemEval 2013 dataset. The experimental results
of Advanced model II in the Hurricane Sandy dataset in Figure 9g become
steady around 87.69% when the number of dimensions reaches 73. For the
SemEval dataset, the Advanced Model II achieves highest performance at
around 55 dimensions as shown in Figure 9h. The performance is quite con-
sistent between both Hurricane Sandy dataset and SemEval 2013 dataset in
the sense that the Advanced model I in both datasets shows a better per-
formance at a lower dimensionality (around 75 for Hurricane Sandy dataset
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and around 45 for SemEval 2013 dataset) compared to the other proposed
approaches.

4.4.2. Number of Most Similar Words to the Polarity Words

We have conducted grid search for hyper-parameters word embedding di-
mension and the number of words which have the highest similarity scores to
the polarity word. We denote the number of words which have the highest
similarity scores to the polarity word as n. We generated word embedding
dimension candidates from the list [30,50,65,80]. We generated the candi-
dates of n from the list [50,70,90,100,150,200]. We exhaustively generated
a grid of parameter values specified by the two lists above. Altogether we
have 24 (4*6) different combinations of word embedding dimension and n.
Other than the Basic Approach I which does not utilize the class vector, we
apply all 24 combinations on the Basic Approach II, the Advanced Approach
I and the Advanced Approach II on the two datasets, Hurricane Sandy and
Semeval. We performed grid search for the two hyper-parameters, word em-
bedding dimension and n, the number of most similar words to the polarity
words. We found that our approach is fairly robust to the choice of n. We
found that there are no obvious trending or conclusion can be made as to
which n and dimension is the best fit. In general, different approach in dif-
ferent dataset prefers a different combination of hyper-parameters. In all
cases, n = 100 seems to be a good setting (except for Advanced Approach
I in Semeval dataset, peak value is obtained at n = 150). But the accuracy
value does change with different word embedding dimension settings.

We performed additional experiments to use the polarity word itself di-
rectly as the class vector representation. We found that all the accuracy
values of Basic Approach II, Advanced Approach I and Advanced Approach
II dropped slightly. We think that if n is larger than one, the class represen-
tation might have a greater chance to incorporate the words that can most
accurately represent the classs semantic meaning.

4.5. Discussion
In this section we first compare and contrast the computational costs

of our approach and then consider some observations that could lead to
opportunities for future research.

4.5.1. Computational Complexity

We introduced in this paper simple but effective models to tackle the
light polysemy problem. Existing context-based word embedding algorithms
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utilize more complicated algorithms to search and generate all possible em-
beddings per word regardless of the future application task. For example,
Huang et al. adopted K-means to cluster all the contexts in which the target
word appears. By solving the light polysemy problem instead, we avoid the
complex computation in this step by taking advantage of the linear compo-
sitionality property. The linear compositionality property in our approaches
require only vector addition. Similarly, Huang et al. pre-defined k as the
number of embeddings (clusters) per word; the time complexity of k-means
is O(nkdi), where n is the number of d-dimensional vectors (in our case the
number of contexts a word has in the corpus), k is the number of clusters and
i the number of iterations needed until convergence [41]. Huang et al. need to
perform k-means on every word in the vocabulary. Thus the computational
complexity for Huang et al.’s approach is O(|V |nkdi), where |V | is the vocab-
ulary size of the corpus. When the corpus is large, Huang et al.’s approach
is hard to scale. In contrast, we do not need to iteratively re-compute the
centroids across the whole corpus for every single word. To generate a word
embedding per class, the computation for our work only needs the addition
operation, which takes linear time O(d). For space complexity, vectors repre-
senting the contexts and the centroids in Huang et al.’s approach need to be
stored. Specifically, the storage required is O(|V |(n+ k)d). Our approaches
need O(bd) since we only store the vector representation of class, where b is
the number of the classes in the corpus.

4.5.2. Future Research

To choose “good” and “bad” as the polarity words is risky. We found in
the Twitter dataset that people describe positive and negative emotion using
lexicons with great variety, such as “Gas by my house hit $3.99!! I’am going
to Chapel Hill on Sat!”, “Twitition Mcfly come back to Argentina but this
time we want to come to mar del plata!!!” and “Never start working on your
dreams and goals tomorrow......tomorrow never comes....if it means anything
to U, ACT NOW! #getafterit”3. These three tweets have no lexicon that are
associated with “good” or “bad”. Thus how to choose or generate polarity
words to produce a vector representation of the class is still an open question.

Another observation is that summation is best suited for elementary
words such as “water”. When an elementary word is added to a complex-

3These three tweets are extracted from SemEval 2013 training data.
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meaning word, such as “massacre”, we found the meaning of the elementary
word is often overwhelmed by the complex-meaning word. This problem is
best demonstrated by finding the most n similar words from the vocabulary
using cosine similarity. When we add vector(water) to vector(massacre),
the top ranked words are “massacres”, “killings” and “murders”. The se-
mantic of word “water” seems to have disappeared, which introduces another
research problem.

This work should also be extensible into a multi-class text classification
setting. Note that it would become non-trivial to decide manually the po-
larity words for each class in a multi-class text classification scenario. One
possible solution could be a topic-model-based approach to automatically
define the polarity words for each class. Then word embeddings could be
trained to represent the top words. The number of the top words would also
be a hyper-parameter.

5. Conclusion

In this paper, we used the linear compositionality property to improve
the learning of class-specific word embeddings for a text classification task.
We explored four models to learn class-specific word embeddings. We de-
vised a classification framework to take multiple sets of class-specific word
embeddings as input. We tested our methods on two Twitter datasets. Our
results showed that for text classification tasks with clear polarity words, our
proposed approaches can increase performance.
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Figure 9: Parameter Sensitivity Study of Word Embedding Dimensionality
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