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Abstract Natural hazards have the potential to cause catastrophic damage7

and significant socioeconomic loss. The actual damage and loss observed in the8

recent decades has shown an increasing trend. As a result, disaster managers9

need to take a growing responsibility to proactively protect their communities10

by developing efficient management strategies. A number of research studies11

apply artificial intelligence (AI) techniques to process disaster-related data for12

supporting informed disaster management. This study provides an overview of13

current applications of AI in disaster management during its four phases: miti-14

gation, preparedness, response, and recovery. It presents example applications15

of different AI techniques and their benefits for supporting disaster manage-16

ment at different phases, as well as some practical AI-based decision support17

tools. We find that the majority of AI applications focus on the disaster re-18

sponse phase. This study also identifies challenges to inspire the professional19

community to advance AI techniques for addressing them in future research.20
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1 Introduction22

Natural hazards have caused catastrophic damage and significant socioeco-23

nomic loss, showing an increasing trend (Hoeppe 2016). Statistics for 201724

indicate economic losses from natural hazards in the United States exceed25

$300 billion; Hurricane Harvey alone has caused $125 billion in socioeconomic26

losses (Wilts 2018). These adverse impacts pose challenges to disaster response27

managers, who face increasingly tight resources and an exhausted workforce,28

and such challenges force local authorities to re-evaluate their policies for dis-29

aster management.30

There are large volumes of data generated daily, including real data and31

simulation data. Both types of data can be used to support disaster manage-32

ment. The advancement of information communication technologies, such as33

social media, telecommunication data, and remote sensing, make large volumes34

of real data available (Eguchi et al. 2008; Boccardo and Tonolo 2014; Rawat35

et al. 2015; Adeel et al. 2018; Novellino et al. 2018). Sometimes, real data is36

scarce. In research communities, many computational models are developed37

to generate simulation data for estimating the disaster-induced impact and38

identifying vulnerable structures, such as IN-CORE (Ellingwood et al. 2016)39

and PRAISys (The PRAISys Team 2018). Regardless of data type, acquir-40

ing, managing, and processing big data in a short time is essential to support41

efficient disaster management. Using AI to analyze the voluminous data to42

rapidly extract useful and reliable information becomes increasingly popular43

for supporting effective decision-making in disaster management (Eskandar-44

pour and Khodaei 2017; Velev et al. 2018; Yu et al. 2018; Wang et al. 2018d;45

Barabadi and Ayele 2018).46

Some published studies have reviewed AI applications in disaster man-47

agement, with the topic targeted to certain types of hazard, infrastructure,48

and data. For example, Fotovatikhah et al. (2018) have discussed the status49

and challenges of applying computational intelligence methods to major flood50

control and disaster management. Zagorecki et al. (2013) have reviewed ap-51

plications of data mining and machine learning to disaster management, but52

there is no discussion on any practical AI-based decision support tools. Other53

studies review how computer vision methods have been applied for disaster54

management by analyzing remote sensing data, such as target recognition with55

deep learning (Zhang et al. 2016b), fire detection with wavelet analysis and56

neural networks (Yuan et al. 2015), and estimating three-dimensional struc-57

tures (Gomez and Purdie 2016). However, very few of them have explicitly58

discussed the progress and challenges of how AI has been applied in disaster59

management in different phases, by considering hazard and infrastructure as60

well as data in a general sense.61

In what follows, we describe the research background of AI methods and62

disaster management first, followed by the state of research and practice of63

applications of AI in disaster management in four phases, and the challenges64

therein. In particular, practical decision support tools for disaster manage-65

ment based on AI methods have been reviewed. This study can facilitate new66
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researchers to identify critical research gaps in this field and provide practi-67

tioners a comprehensive summary for selecting an appropriate AI model and68

practical decision support tool based on their community needs.69

2 Background70

2.1 AI methods71

This study reviews the state of research and practice of applying AI in dis-72

aster management, by classifying AI methods in six categories: supervised73

models, unsupervised models, deep learning, reinforcement learning, and deep74

reinforcement learning, as well as optimization.75

2.1.1 Supervised models76

Supervised models represent algorithms that are trained on pre-existing data77

with human input. Using labelled training data with known input and out-78

put pairs, supervised models infer a function from input to output using re-79

gression/classification methods to predict the value/category of the output80

variable (Russell and Norvig 2016). In general, supervised models have been81

used for information extraction, object recognition in computer vision, pattern82

recognition, and speech recognition, etc.83

2.1.2 Unsupervised models84

Without human input, unsupervised models use statistical methods to extract85

hidden structure in unlabeled data based on inherent characteristics (Rus-86

sell and Norvig 2016). Unsupervised models are suitable for detecting the87

abnormal data and reducing the data dimension, with wide applications to88

clustering and data aggregation problems. Clustering algorithms are used for89

pattern recognition by partitioning unlabeled data into multiple groups based90

on certain similarity features (Maulik and Bandyopadhyay 2002). Dimension91

reduction algorithms, such as principal component analysis (PCA), can reduce92

the complexity of data and avoid overfitting.93

2.1.3 Deep learning94

Deep learning is a class of algorithms that use multiple layers to extract fea-95

tures from the input data progressively, with improved learning performance96

and broad application scopes (Deng and Yu 2014; Pouyanfar et al. 2018). De-97

spite the drawback of requiring long training time, deep learning algorithms98

are particularly suitable to solve problems of damage assessment, motion de-99

tection, and facial recognition, transportation prediction, and natural language100

processing for supporting disaster management. For example, recursive neural101

networks (RvNN) and recurrent neural networks (RNN) have been successfully102
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applied to natural language processing (NPL) (Socher et al. 2011; Graves et al.103

2013). Convolutional neural networks (CNN) are suitable for image recogni-104

tion (Simonyan and Zisserman 2014), computer vision (Krizhevsky et al. 2017),105

NPL (Zhao and Wu 2016), and speech processing (Dahl et al. 2012).106

2.1.4 Reinforcement learning107

By learning from a series of reinforcements (using punishment and rewards as108

positive and negative signals), reinforcement learning algorithms are modeled109

in the form of Markov decision processes to address goal-oriented problems110

for making decisions in a sequential manner (Russell and Norvig 2016). Re-111

inforcement learning is suitable for solving problems that need to make a se-112

quence of decisions in an uncertain and complex environment, with successful113

applications in robotics, resource management, and traffic light control. The114

main challenge in reinforcement learning is preparing the suitable training115

environment that is closely related to tasks to be performed. Typical rein-116

forcement learning algorithms include Q-learning and SARSA (State-Action-117

Reward-State-Action), to name a few (Sutton and Barto 2018).118

2.1.5 Deep reinforcement learning119

Deep reinforcement learning combines reinforcement learning with deep neural120

networks with the aim of creating software agents that can learn by themselves121

to establish successful policies for gaining the most long-term rewards. Deep122

reinforcement learning has superior performance for solving problems with123

complex sequential tasks, such as computer vision, robotics, finance, smart124

grids, etc. Requiring a large amount of training data and training time to125

reach reasonable performance, deep reinforcement learning sometimes becomes126

extremely computationally expensive.127

2.1.6 Optimization128

While the focus of this study is how AI methods are applied for disaster129

management, optimization is an essential ingredient in most of AI methods to130

find the best model as measured by an objective function. For this reason, this131

study explicitly lists three optimization techniques as example methods and132

investigates their applications in disaster management.133

2.2 Disaster management134

2.2.1 Four phases of disaster management135

As shown in Fig. 1, disaster management involves four phases: mitigation, pre-136

paredness, response, and recovery. The mitigation phase refers to management137

activities for preventing or minimizing future emergencies and consequences138
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Fig. 1 Four phases of disaster management.

with long-term benefits. Examples of mitigation activities include enforcing139

advanced building codes and standards, retrofitting highway overpasses, hos-140

pitals, and shelters, informing and educating the general public and related141

stakeholders about hazards and potential mitigation strategies. The prepared-142

ness phase comes into place when an emergency or a disaster is likely to take143

place. It corresponds to preparatory activities prior to a disaster in order to144

save lives and help response and rescue operations, such as stocking food and145

water, posting emergency contacts, and preparing evacuations. With plans and146

strategies developed beforehand, the response phase mainly puts them into147

action. Response activities happen during a disaster, usually involving evacu-148

ating threatened areas, firefighting, search and rescue efforts, shelter manage-149

ment, and humanitarian assistance. After a disaster, the recovery phase refers150

to repair and reconstruction efforts to return to a normal or even better func-151

tionality level. Recovery actions usually include debris cleanup, precise damage152

assessment, and infrastructure reconstruction, as well as financial assistance153

from government agencies and insurance companies.154

2.2.2 Disaster management and disaster resilience155

The goals of disaster management are to implement operations and strategies156

to effectively prepare, rapidly respond and rescue, efficiently allocate resources,157

quickly correct damage and recover to full functionality, ultimately protect the158

community and minimize the adverse impact. That is to say that the efficient159

disaster management should strengthen the disaster resilience of a community.160

The term “disaster resilience” refers to the ability of an entity to anticipate,161

resist, absorb, adapt to, and rapidly recover from an unexpected disturbance162

(DHS 2010). Fig. 2 displays features of disaster resilience in terms of dimen-163

sions, stakeholders, disruption types, properties of resilient entities, and ben-164

efits. In case of a disaster, such as a hurricane or an earthquake, a resilient165
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Fig. 2 Features of disaster resilience.

community is expected to be able to protect people, infrastructure, and socioe-166

conomic environment, with reliable performance and fast recovery capability,167

as well as minimal adverse consequence. The disaster resilience of a community168

can be enhanced by improving the rapidity, robustness, resourcefulness, and169

redundancy, as well as learning capability, in which learning refers to residents’170

changing expectations with respect to infrastructure performance and opera-171

tional adaptations of infrastructures to new circumstances during and after a172

disaster (Sun et al. 2020b). From the disaster management perspective, gov-173

ernments and other stakeholders organize their operations in multiple aspects174

(technical, organizational, economic, social, and health), various management175

plans and strategies are developed and implemented.176

A number of programs have been established to promote the research and177

practice of disaster resilience for supporting informed decision-making in dis-178

aster management. Some examples in the United States are described as fol-179

lows. Since 2013, the Campus Resilience Program has yielded successful tools180

and guidelines for evaluating the vulnerability of the academic community181

nationwide. The Hazard Mitigation Grant Program (HMGP) supports com-182

munities in implementing cost-effective hazard mitigation measures, such as183

structure retrofit and reconstruction, to eliminate the risk of loss of life and184

property damage from future disasters (FEMA 2018). The Community Re-185

silience Planning Guide presents a six-step process to help local community186

authorities identify gaps, create resilience plans, and implement strategies for187

better community resilience against future disasters (NIST 2018; Cauffman188
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et al. 2018). In addition, local authorities and private organizations have been189

implementing practices for resilience enhancement. For example, Los Angeles190

County in California has developed a community resilience toolkit to support191

decision-making in disaster management (Eisenman et al. 2014; Bromley et al.192

2017). The 100 Resilient Cities program supports city governments’ efforts in193

fostering urban resilience and addressing climate change and equity (The Rock-194

efeller Foundation 2019). In parallel, other countries have also been actively195

working in this direction. The Horizon 2020 Research and Innovation Pro-196

gramme has developed the European Resilience Management Guideline and197

tools for supporting effective disaster management and enhancing the resilience198

against disasters and climate change (EU-CIRCLE 2019). Under the Sendai199

Framework for Disaster Resilience Network, the Asia-Pacific region has been200

undertaking major reforms in developing disaster management policies with201

increasing applications of AI in disaster response (UN 2015; Renwick 2017;202

Pau et al. 2017; Izumi et al. 2019). All these guidelines and computational203

tools aim to support disaster management and enhance disaster resilience. AI204

has great potential to alleviate the burden of decision makers in disaster man-205

agement by processing large amounts of disaster-related data more efficiently206

and effectively.207

3 Applications of AI for Disaster Management208

Fig. 3 shows the increasing trend in the number of publications on World-209

Cat from 1991 to 2018 with regards to applying AI to disaster management.210

The greatest number of publication in disaster response among four phases211

indicates that applications of AI mainly focus on this phase. While AI will212

not replace the experience and wisdom of well-trained disaster professionals,213

at least in the foreseeable future, AI techniques can rapidly analyze big data214

and perform predictive analytics for supporting decision-making in disaster215

management.216

To illustrate how different AI methods have been applied in disaster man-217

agement, we have identified a total of 26 AI methods and 17 application areas218

as representative examples. By using every AI method and every application219

area as key words, we have searched for related literature on the websites220

of Google Scholar and Web of Science, requiring joint presence of both key-221

words. Figure 4 presents our findings on AI applications to the four phases222

and their sub-areas. In this figure, every solid line demonstrates the presence223

of applications of an AI method in a certain area. More solid lines connecting224

to Application Areas 1 ∼ 4 and 9 ∼ 13 mean that there are more studies225

applying AI methods in mitigation and response phases. Detailed application226

examples are presented as citations in Tables 1 ∼ 4. It is worth noting that227

only the most relevant/representative publications are presented in some cells228

in the tables due to space limits.229
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Fig. 3 An increasing number of publications on artificial intelligence in disaster manage-
ment.

Note: Publications refer to articles, books, and downloadable archive materials. The num-
ber of publications is determined by summing the number of publications every four years
between 1991 and 2018 when searching with the keywords in the legend on WorldCat
(http://www.worldcat.org/).

3.1 AI Applications in Disaster Mitigation230

In the disaster mitigation phase, decision makers need to identify hazard and231

risks (Application Area 1), predict possible impact (Application Area 2), assess232

vulnerability (Application Area 3), and develop mitigation strategies (Applica-233

tion Area 4), in order to create stronger, safer, and more resilient communities.234

AI methods have been widely applied to support disaster mitigation manage-235

ment in the four areas. In particular, supervised models and unsupervised236

models have been extensively used for Application Area 1, followed by Areas237

2 and 3. Conversely, reinforcement learning and deep reinforcement learning238

are rarely used in the four areas.239

Possible hazards and risks should be identified for the community of in-240

terest. For natural hazards, characteristics of terrain, lithology, meteorology,241

and even human activities should be analyzed, and hazard zone maps should242

be developed. Traditional methods, such as field monitoring, physics-based243

models, expert surveys, and multi-criteria decision-making methods, are ap-244

plied to identify hazards and risk factors. Sometimes, these methods are labor245

intensive, possibly with high false alarm rate (Bellaire et al. 2017). In this246

case, AI techniques can rapidly analyze large volumes of data to assess hazard247

risks in a timely manner (Pradhan 2009; Yilmaz 2010). There are extensive248

studies applying different AI methods to developing susceptibility maps for249

different types of hazards. For instance, snow avalanche predictions have been250

made using logistic regression (LR) (Gauthier et al. 2017), support vector251
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Fig. 4 Applications of artificial intelligence in disaster management.
Note: A solid link between an AI method and an application area represents the fact that there
are applications of the AI method to this area. Detailed application examples are presented in
Tables 1 ∼ 4.

machine (SVM) (Choubin et al. 2019), and neural networks (Dekanová et al.252

2018; Rauter and Winkler 2018). Landslide susceptibility can be assessed by253

SVM (Xu et al. 2012; Goetz et al. 2015; Zhou et al. 2018a), LR (Goetz et al.254

2015; Zhou et al. 2018a), random forest (RF) (Goetz et al. 2015), and neural255

networks (Dou et al. 2015; Zhou et al. 2018a). The aforementioned AI meth-256

ods have also been applied to other types of hazards, such as mapping forest257

fire susceptibility (Sachdeva et al. 2018), predicting fire size (Mitsopoulos and258

Mallinis 2017), and forecasting precipitation (Huang et al. 2018).259

AI techniques have been applied to estimate possible impacts and assess260

vulnerability. For instance, possible structural damage under natural hazard(s)261

can be predicted by using fragility curves, which were traditionally built from262



10 Wenjuan Sun et al.

statistical analyses of historical and simulation data and now can be estimated263

from the application of AI methods, such as LR (Ghosh et al. 2013; Kamesh-264

war and Padgett 2014; Mangalahtu et al. 2018), neural networks (Lagaros265

and Fragiadakis 2007; Mitropoulou and Papadrakakis 2011; Liu and Zhang266

2018; Mangalathu et al. 2018), and SVM (Mahmoudi and Chouinard 2016).267

Infrastructure service disruptions due to hazards can be predicted based on his-268

torical data using generalized regression models (Reed 2008; Liu et al. 2008),269

RF (Nateghi et al. 2014; Cerrai et al. 2019; D’Amico et al. 2019), decision270

tree (DT) (Wanik et al. 2015), and Bayesian additive regression tree (BART)271

(Cerrai et al. 2019). Using data from physical sensors and social sensing, the272

vulnerability of structures and communities can be assessed with spatial regres-273

sion models (Wang et al. 2019g), RF (Yoon and Jeong 2016), neural networks274

(Wu et al. 2008), deep neural networks (Nabian and Meidani 2018b), etc. In275

terms of the number of publications, there are fewer applications of AI methods276

to estimating hazard-induced impact and assessing community vulnerability277

(Application Areas 2 and 3), compared with those on hazard forecast and risk278

assessment (Application Area 1).279

Based on the impact and vulnerability analyses, decision makers can gain280

better situation awareness with more confidence and develop effective miti-281

gation strategies (Schwartz 2018), such as retrofitting vulnerable structures282

(Karamlou et al. 2016), elevating electric substations and using underground283

cables (Duffey 2019), and developing effective disaster-related policies (Sun284

et al. 2020a, 2021). In this process, AI techniques can support developing and285

comparing mitigation strategies. For instance, different AI methods have been286

applied to identifying management priorities (Canon et al. 2018), estimat-287

ing people’s needs during a disaster (Nguyen et al. 2019a), and recognizing288

human activities (Sadiq et al. 2018). Clustering algorithms are used for an-289

alyzing remote images and developing contingency plans (Dou et al. 2014),290

and optimization algorithms have been applied for developing effective plans291

of disaster response and restoration (Bocchini and Frangopol 2012a,b; Gama292

et al. 2016). So far, there are only a very small number of studies that apply293

AI to developing and comparing mitigation strategies (Application Area 4).294

3.2 AI Applications in Disaster Preparedness295

In the preparedness phase, decision-makers should send out early warnings296

and alert the public (Application Area 5) after identifying the disaster that is297

about to come (Application Area 6), utilize emergency training systems and298

tools (Application Area 7), and prepare for evacuations if needed (Application299

Area 8). Among the four areas, most AI methods have been applied to Areas300

5, 6, and 8, with very limited applications to Area 7.301

Identifying the coming disasters in real time and sending out early warnings302

are practical solutions for disaster preparations. These tasks usually rely on303

experts’ analyses and judgments of sensor measurements in the field, and AI304

techniques can serve as an alternative in a cost-effective manner to forecasting305
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Table 1 Example AI applications for disaster mitigation

AI Method 1. Forecast hazard and
risk

2. Estimate impact 3. Assess vulnerability 4. Develop/Compare
strategy

A. Linear regression &
extensions

Reed (2008); Chang
et al. (2010); Kim
et al. (2019)

Kahn (2006); Simmons
and Sutter (2008);
Zahran et al. (2008);
Peduzzi et al. (2009);
Maliszewski et al.
(2012)

Yang and Yu (2011);
Geiß et al. (2014); Heß
(2017); Wang et al.
(2019g); Sun et al.
(2019)

NA

B. Non-linear
regression

Pradhan (2009);
Yilmaz (2010);
Trafalis et al. (2014);
Lin et al. (2017a);
Goetz et al. (2015)

Zorn and Shamsedin
(2015); Lee et al.
(2016)

NA NA

C. Logistic regression Bai et al. (2010);
Marjanović et al.
(2011); Ozdemir and
Altural (2013); Wang
et al. (2013b)

Eskandarpour and
Khodaei (2017);
Rosellini et al. (2018);
Yuan and Moayedi
(2019)

Ettinger et al. (2016);
Li et al. (2019b)

Khan and Sayem
(2012); Rakgase and
Norris (2014);
Cavalcante et al.
(2019)

D. Support vector
machine

Yilmaz (2010);
Marjanović et al.
(2011); Xu et al.
(2012); Lin et al.
(2017a); Zhou et al.
(2018a)

Galatzer-Levy et al.
(2014); Li et al. (2014);
Karstoft et al. (2015);
Tinoco et al. (2018)

Geiß et al. (2014); Sun
et al. (2019); Xiong
et al. (2019)

Guo et al. (2009);
Rudin et al. (2012);
Dou et al. (2014);
Pogrebnykov and
Maldonado (2017)

E. Näıve Bayes Shirzadi et al. (2017);
Chen et al. (2019);
Sankaranarayanan
et al. (2019)

Bawono et al. (2020) Geiß et al. (2014) Sadiq et al. (2018)

F. Decision tree Saito et al. (2009);
Marjanović et al.
(2011); Rhee and Im
(2017)

Wanik et al. (2015);
Yuan and Moayedi
(2019)

Sriram et al. (2019) Guo et al. (2009);
Sadiq et al. (2015,
2018)

G. Random forest McGovern et al.
(2011); Goetz et al.
(2015); Rhee and Im
(2017); Chen et al.
(2018)

Galatzer-Levy et al.
(2014); Nateghi et al.
(2014); Wanik et al.
(2015); Cerrai et al.
(2019)

Yoon and Jeong
(2016); Sriram et al.
(2019)

Rudin et al. (2012)

H. K-nearest neighbors Liu et al. (2016);
Sankaranarayanan
et al. (2019)

Cheng and Hoang
(2014)

Leon and Atanasiu
(2006); Kusumawardani
et al. (2016)

Sun et al. (2017); Sadiq
et al. (2015, 2018)

I. Logistic model tree Chen et al. (2018,
2019)

NA Yang et al. (2019d) NA

J. Neural networks Melchiorre et al.
(2008); Yilmaz (2010);
Dou et al. (2015);
Huang et al. (2018)

Karamouz et al.
(2014); Tinoco et al.
(2018); Oktarina et al.
(2019); Tinoco et al.
(2019)

Wu et al. (2008);
Pilkington and
Mahmoud (2016); Guo
et al. (2018); Wahab
and Ludin (2018)

Jones et al. (2008)

K. Hierarchical
clustering

Leśniak and Isakow
(2009); Trugman and
Shearer (2017)

NA Cavalieri et al. (2014);
Su et al. (2015); Kim
et al. (2017); Chang
et al. (2018)

NA

L. K-means clustering Iliadis (2005);
Melchiorre et al.
(2008); Leśniak and
Isakow (2009);
Jayaram and Baker
(2010)

Lam et al. (2016) Su et al. (2015);
Fernandez et al. (2016)

Pual2012 (2012)

M. Fuzzy clustering Zhang (2004); Shi
et al. (2010); Wang
et al. (2013b); Ansari
et al. (2015); Wang
et al. (2018c)

da Silva et al. (2008);
Wlwood and Corotis
(2015)

Alam et al. (2000); Wu
et al. (2013); Chen
et al. (2014b)

Dou et al. (2014)

N. Principle
component analysis

Chen and Hong
(2012); Shi et al.
(2015)

Li et al. (2014) Chen et al. (2014a);
Fernandez et al.
(2016); Heß (2017);
Uddin et al. (2019)

Moradi et al. (2019)

O. Hidden Markov
models

Wang et al. (2010b);
Khadr (2016); Wang
et al. (2018a)

Song et al. (2014,
2016)

NA Eicken et al. (2011)

P. Convolutional
neural networks

DeVries et al. (2018);
Padmawar et al.
(2019)

NA Crawford et al. (2018);
Han et al. (2019)

Pogrebnykov and
Maldonado (2017);
Nguyen et al. (2019a)

Q. Recurrent neural
networks

Ma et al. (2015b);
Asim et al. (2017);
Cortez et al. (2018);
Wang et al. (2020b);
Mutlu et al. (2019)

NA NA Canon et al. (2018);
Pechenkin and
Demidov (2018);
Nguyen et al. (2019a);
Yang et al. (2019b)

R. Deep neural
network

Sankaranarayanan
et al. (2019)

NA Nabian and Meidani
(2018b); Dogaru and
Dumitrache (2019)

NA

S. Multi-layer
perception

Zare et al. (2013);
Hernández et al.
(2016); Pham et al.
(2017)

Yuan and Moayedi
(2019)

Wahab and Ludin
(2018)

Sadiq et al. (2018)

T. Recursive neural
network

Mishra and Desai
(2006);
Hosseini-Moghari and
Araghinejad (2015)

NA NA NA

U. Q-learning Lin et al. (2013) NA Yan et al. (2016);
Otoum et al. (2019)

Zhang et al. (2019b)

V. Policy gradient NA NA NA NA
W. Deep Q-networks NA NA NA Elsayed and

Erol-Kantarc (2018)
X. Genetic algorithm Chang and Chien

(2007); Terranova
et al. (2015)

Tinoco et al. (2019) NA Tapia and Padgett
(2015); Yan et al.
(2017); Yang et al.
(2019b)

Y. Particle swarm
optimization

Romlay et al. (2016);
Padmawar et al.
(2019)

NA NA NA

Z. Simulated annealing Zhu and Wu (2013);
Hosseini et al. (2019)

NA NA Afandizadeh et al.
(2013); Ma et al.
(2015a); Gama et al.
(2016)

NA = no literature was found on the application area (column) using the AI method (row).
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Table 2 Example AI applications for disaster preparedness

AI Method 5. Early warning
system

6. Real-time disaster
prediction and detection

7. Training systems 8. Disaster evacuation

A. Linear regression Uunk et al. (2010);
Nolasco-Javier and
Kumar (2018); Pillai
et al. (2019)

NA NA NA

B. Non-linear
regression

Moon et al. (2018) NA NA NA

C. Logistic regression Wang et al. (2013a);
Hoot and Aronsky
(2006)

Agarwal et al. (2016);
Kong et al. (2016b);
Zhao et al. (2020)

NA Riad et al. (2006);
Nguyen et al. (2016)

D. Support vector
machine

Sakaki et al. (2012);
Chou and Thedja
(2016); Rafiei and
Adeli (2017); Wang
et al. (2019c); Mori
et al. (2013);
Pogrebnykov and
Maldonado (2017)

Arridha et al. (2017); de
Morsier et al. (2013);
Grasic et al. (2018);
Jhong et al. (2017);
Zhao et al. (2020)

NA Mori et al. (2013);
Higuchi et al. (2014);
Jiang et al. (2017);
Wang et al. (2019b)

E. Näıve Bayes Mane and Mokashi
(2015)

Muda et al. (2011);
Kumar et al. (2014);
Grasic et al. (2018)

NA NA

F. Decision tree Chen and Wang
(2009); Zhou et al.
(2017a)

Arridha et al. (2017) NA Burris et al. (2015);
Wang et al. (2019b)

G. Random forest Li et al. (2018b);
Moon et al. (2018)

Grasic et al. (2018); Yu
et al. (2017)

NA NA

H. K-nearest neighbors Pyayt et al. (2011);
Cheng et al. (2013);
Ali et al. (2019);
Tomin et al. (2013)

Muda et al. (2011);
Kumar et al. (2014)

NA Rahman and Hasan
(2018); Wang et al.
(2019b)

I. Logistic model tree NA NA NA NA
J. Neural networks Duncan et al. (2013);

Kong et al. (2016a);
Moon et al. (2018);
Muhammad et al.
(2018); Abdullahi
et al. (2018); Tomin
et al. (2013)

Ren et al. (2010); Bande
and Shete (2017);
Berkhahn et al. (2019);
Zhao et al. (2020)

Djordjevich et al.
(2008)

Sharma and Ogunlana
(2015); Nguyen et al.
(2016); Rahman and
Hasan (2018); Peng
et al. (2019); Wang
et al. (2019b)

K. Hierarchical
clustering

NA Ifrim et al. (2014);
Akhtar and Siddique
(2017)

NA Özdamar and Demir
(2012)

L. K-means clustering Naidu et al. (2018);
Tomin et al. (2013)

NA NA Andersson et al. (2012)

M. Fuzzy clustering Saad et al. (2014);
Tomin et al. (2013)

Ren et al. (2010) NA NA

N. Principal
component analysis

Peiris et al. (2010);
Wan and Mita (2010)

NA NA NA

O. Hidden Markov
models

Holgado et al. (2017) Beńıtez et al. (2007);
Toreyin and Cetin
(2009); Günay et al.
(2010); Heck et al.
(2010)

NA Andersson et al.
(2012); Raymond et al.
(2012); Song et al.
(2015)

P. Convolutional
neural networks

Cheng et al. (2017);
Lohumi and Roy
(2018); Perol et al.
(2018); Long et al.
(2018); Giffard-Roisin
et al. (2018);
Muhammad et al.
(2018); Pogrebnykov
and Maldonado (2017)

Ali et al. (2019); Layek
et al. (2019); Wang
et al. (2019a);
Muhammad et al.
(2018)

NA NA

Q. Recurrent neural
networks

Hoot and Aronsky
(2006); Cheng et al.
(2017); Pogrebnykov
and Maldonado
(2017); Long et al.
(2018)

Chen et al. (2013);
Chang et al. (2014);
Jaech et al. (2019)

NA Rahman and Hasan
(2018)

R. Deep neural
network

Long et al. (2018) NA NA Jiang et al. (2017)

S. Multi-layer
perception

Khan et al. (2018) Tian and Chen (2017a);
Wang et al. (2019a)

NA NA

T. Recursive neural
network

NA NA NA NA

U. Q-learning NA Lingam et al. (2019) Khouj et al. (2011) Sarabakha and
Kayacan (2016); Yao
et al. (2019)

V. Policy gradient NA NA NA Zheng and Liu (2019)
W. Deep Q-networks NA NA NA Sharma et al. (2020)
X. Genetic algorithm Shirzaei and Walter

(2010); Terranova
et al. (2015)

Ahmad et al. (2009) NA Pourrahmani et al.
(2015); Sharma and
Ogunlana (2015); Gao
et al. (2019)

Y. Particle swarm
optimization

Huang and Xiang
(2018)

Lingam et al. (2019) NA Wang et al. (2010a);
Zheng et al. (2013b)

Z. Simulated annealing NA Zhang et al. (2016a) NA Jahangiri et al. (2011)



Applications of artificial intelligence for disaster management 13

the coming events (Ko and Kwak 2012), such as impending hurricane tra-306

jectories and storms (Ghosh and Krishnamurti 2018), earthquakes (Mousavi307

et al. 2019), ice jams (Zhao et al. 2012), floods (Yaseen et al. 2015), volcano308

eruptions (Parra et al. 2016), and fires (Muhammad et al. 2018). For instance,309

the UrbanFlood project in Europe has established an internet-based platform310

for early flood warnings, in which an AI component has been developed for311

detecting abnormal dike behaviours based on the analysis of thousands of sen-312

sor streams (Noymanee et al. 2017). Sakaki et al. (2012) performed semantic313

analysis of Japanese tweets with a tweet crawler, estimated the earthquake314

location, and developed a reporting system named Toretter that was faster315

than broadcast announcements by Japan Meteorological Agency. Based on316

the real-time analysis of smartphone accelerometer measurements of tilting317

motions, earthquake early warnings can also be sent out (Reilly et al. 2013).318

Prior to a disaster event, utility companies can use AI-based tools to estimate319

likely damage locations and service outage duration and get prepared before-320

hand. For example, Hydro One, a large utility company in Ontario, Canada,321

has successfully used such real-time predictive analyses in April 2018 and then322

positioned crews in key areas and effectively restored the power service within323

four days, significantly reducing the restoration time (McConnon 2018). With324

the implementation of IoT, cloud network services can also rapidly and accu-325

rately share information on disaster situations for early warnings (Chung and326

Park 2016).327

With respect to disaster evacuations, some situations may give people a day328

or two to prepare while others might call for immediate actions. To prepare329

for evacuations, possible problems should be carefully considered and coun-330

termeasures should be developed. For example, contraflow operations can be331

implemented for hurricane evacuations in coastal areas to move the most traf-332

fic towards inland safety, and AI methods can help practical implementations333

by determining when to activate contraflow lane reversals (Burris et al. 2015).334

While large crowds move in different routes during evacuations, it is necessary335

to estimate crowd dynamics (Jiang et al. 2017; Wang et al. 2019b; Zheng and336

Liu 2019), identify the best evacuation paths (Peng et al. 2019), and develop337

evacuation support systems (Higuchi et al. 2014). The most popular AI meth-338

ods applied for evacuations (Application Area 8) include SVM, DT, neural339

networks, and reinforcement learning, as well as optimization algorithms.340

3.3 AI Applications in Disaster Response341

Timely disaster responses are a matter of life and death. Decision-makers need342

to make best efforts to understand the situation and improve the efficiency343

of response efforts. This naturally requires situation awareness for effective344

decision-making (Application Areas 9 and 10) and user-friendly disaster in-345

formation systems for effective coordination (Application Area 12) to ensure346

disaster relief and address people’s urgent needs and concerns (Application347

Areas 11 and 13). AI methods can be applied to facilitate relief and response348
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efforts. In general, supervised and unsupervised models, and deep learning349

have been extensively applied to Areas 9 and 10, while other AI methods are350

rarely adopted for the two areas. Most AI methods have been applied to Area351

11. Mainly supervised models and deep learning algorithms have been applied352

to Areas 12 and 13.353

Developing maps of the impact area(s) is essential for situation awareness,354

supporting efficient disaster response efforts (Ramchurn et al. 2015, 2016).355

Event maps and damage information that are generated from different AI356

methods can provide vital information for planning search and rescue oper-357

ations, staging and deploying resources, and understanding short-term hous-358

ing needs (Vieweg 2012; Lin 2015; Kim et al. 2018c; Rizk et al. 2019). Huge359

volumes of disaster-related data are continuously generated from satellites360

(Eguchi et al. 2008), unmanned aerial vehicles (Aljehani and Inoue 2018),361

robots (Park et al. 2019), and social media (Cervone et al. 2016), based on362

which disaster event maps can be generated. For instance, satellite images have363

been used to generate maps of infrastructure inventory models (Eguchi et al.364

2008), damaged buildings and bridges (Adams et al. 2002; Hutchinson and365

Chen 2005; Balz and Liao 2010), and disaster-impacted regions (Casagli et al.366

2017; Rosser et al. 2017). By rapidly analyzing these data with computer vision367

methods, “live maps” are generated to represent disaster situations (Lucieer368

et al. 2014; Middleton et al. 2014; Fohringer et al. 2015; Valkaniotis et al. 2018;369

Xiao et al. 2018). When analyzing maps and images, classifier algorithms are370

often used (Vetrivel et al. 2016). By comparing maps and images pre-event and371

post-event, feature discrepancies can be extracted to assess damage of struc-372

tures and infrastructures for prioritizing response efforts (van Aardt et al.373

2011; German et al. 2013; Bevington et al. 2015; Koch et al. 2016; Axel and374

van Aardt 2017; Cresci et al. 2015; Cervone et al. 2016; Nguyen et al. 2017).375

Different databases have been established for supporting damage assessment376

for different structures and hazards, such as xBD for building damage assess-377

ment (Gupta et al. 2019), and HOWAS21 (Kellermann et al. 2020) and FIMA378

NFIP Redacted Claims Data Set (FEMA 2019) for flood damage assessment.379

Crowd-sourced information becomes increasing popular in supporting disas-380

ter response. Many volunteer efforts focus on speeding up the data analysis381

process to rapidly generate maps and provide invaluable crowdsourced infor-382

mation for situation awareness and damage assessment (Barrington et al. 2011;383

Ghosh et al. 2011; Butler 2013). By harnessing “crowds” of over 1000 experts384

from 82 countries, for example, the Humanitarian OpenStreetMap Team gen-385

erated devastation maps of the affected areas in the Philippines shortly after386

typhoon Haiyan, enabling rapid damage assessment and efficient response ef-387

forts (Butler 2013).388

In disaster rescue and relief, utilizing social media and robotics as well389

as mobile phone data often support timely and effective decision-making. So-390

cial media platforms are powerful communication tools for individuals and391

local communities to seek help and for governments and organizations to dis-392

seminate disaster relief information (Li and Rao 2010; Tatsubori et al. 2012;393

Takahashi et al. 2015). Social media data embed time and geo-location in-394
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formation as well as disaster-related information, serving as good information395

sources for building disaster information systems (Goodchild and Glennon396

2010; Srivastava et al. 2012; Laylavi et al. 2017). This ultimately supports397

decision-making for disaster relief and resource allocations (Castellanos et al.398

2018) and for building disaster information systems (Aydin and Fellows 2018).399

To analyze social media data, popular AI methods include classifiers, reinforce-400

ment learning, deep reinforcement learning, and other sentiment analysis tech-401

niques. However, there are concerns of using social media data as information402

sources due to issues of credibility, reliability, and difficulties in verifying infor-403

mation and processing big data into actionable knowledge (Acar and Muraki404

2011; MacEachren et al. 2011; Tapia et al. 2011).405

In the aftermath of a disaster, the harsh environment hinders human ef-406

forts of disaster rescue. Disaster robots allows responders and stakeholders to407

sense and act at a distance from the impacted areas (Murphy 2014). Robots408

can serve as remote sensing platforms for mapping and interacting with the409

destroyed environment (Adams et al. 2014; Kochersberger et al. 2014; Stefanov410

and Evans 2014), fight fires in dangerous conditions (Schneider and Wilder-411

muth 2017; Ando et al. 2018), search and rescue (Murphy and Stover 2007;412

Murphy et al. 2009; Steimle et al. 2009; Zhang et al. 2014; Bakhshipour et al.413

2017; Hu et al. 2019), and inspect damage (Devault 2000; Murphy et al. 2011;414

Torok et al. 2014; Ellenberg et al. 2015; Lattanzi and Miller 2015, 2017). Ma-415

chine learning has been widely used for robotics to acquire new skills and adapt416

to the surrounding environment (Lenz 2016). For example, deep learning has417

been applied to visual detection (Socher et al. 2008; Giusti et al. 2015), han-418

dling multiple input data (Ngiam et al. 2011; Noda et al. 2014), and robotic419

manipulation (Saxena et al. 2008; Gemici and Savena 2014; Lenz 2016). In ad-420

dition, optimization algorithms are often used for dynamic path planing and421

multi-robot communication and coordination (Liu et al. 2013; Takeda et al.422

2014).423

One of the first things people commonly do during a disaster is to contact424

emergency services (and loved ones). Therefore, telecommunications volume425

sharply increases, usually following the jump-delay pattern (Bagrow et al.426

2011). In disaster response, disaster management agencies need to rapidly427

classify information from such calls and share urgent needs of the public to428

relevant agencies and utility companies. Machine listening can help to au-429

tomatically recognize voices to identify key words with a high priority and430

rapidly process voice data from different regions (Ramchurn et al. 2016). With431

natural language processing algorithms, sentiment mining can help disaster432

managers perform crisis management and enable efficient disaster relief with433

better awareness of the situation, such as where to send first responders and434

distribute resources. Based on the location information of the nearby commu-435

nication network mast, mobile phone data have also been used to estimate436

population movements and track population displacement in the immediate437

aftermath of disasters (Gonzalez et al. 2009; Tatem et al. 2009; Bengtsson438

et al. 2011). Oftentimes, disasters may completely destroy the base stations of439

the mobile communication network, and so alternative base stations should be440
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rapidly established and allocated to support emergency communication, with441

different countermeasures proposed (Suriya and Sumithra 2019; Wang et al.442

2019d; Samir et al. 2019).443

Information sharing and coordination is often the bottleneck in multi-444

agency response due to the unpredictable and dynamic nature of the dis-445

aster environment (Chen et al. 2008a,b). As the disaster unfolds, the informa-446

tion of the disaster event and its impact, victims, and resources may become447

outdated with large uncertainty and unpredictability by the time of sharing,448

making life-and-death decision-making very challenging (Holgúın-Veras et al.449

2012). Disaster information systems with shared access across agencies and450

organizations can help address these issues, such as collaborative geographic451

information systems (Sun and Li 2016; Abdalla and Esmall 2018; Li et al.452

2019c), shared information management platforms (Bunker et al. 2015; Ra-453

souli 2018) and decision tools (Moskowitz et al. 2011). With the shared data,454

collaborative data analytics can be implemented to learn about the disaster455

situation and identify relief needs (Tucker et al. 2017). Disaster information456

systems with automatic data-sharing capacity can help decision-makers from457

different organizations coordinate response efforts in a timely manner. Such458

ideas have been implemented in the forms of various prototypes (Bartoli et al.459

2013; Lin and Liaw 2015; Foresti et al. 2015; Kim et al. 2018a; Hochgraf et al.460

2018). There are multiple applications for disaster information systems by us-461

ing supervised models and deep learning to extract information from social462

media data (Neppalli et al. 2018), mobile phone data (Sun and Tan 2019),463

remote sensing data and aerial images (Morito et al. 2016; Tian and Chen464

2017b). Example disaster information systems include MADIS (Yang et al.465

2012), Sahana (Careem et al. 2006), SPIDER (S̆ubik et al. 2010), CrowdHelp466

(Besaleva and Weaver 2013), and DMCsim (Hashemipour et al. 2017).467

A disaster causes not only physical damage to structures and infrastructure468

but also mental damage to people. Different types of feelings will make human469

focus their attention on very different information and lead to completely dif-470

ferent decisions and actions (Watson and Clark 1994; Greifeneder et al. 2011).471

Understanding feelings and psychological needs of victims would be helpful for472

effective disaster relief (Lin et al. 2017b; Li et al. 2019a). AI methods can help473

in this regard by analyzing social media data to track feelings and reactions474

of the public. Social media data embed emotional text and images, time and475

geo-location information, which as useful to identify the spatial and temporal476

evolution of public behaviors and population mobility, as well as psychological477

and healthcare needs (Bengtsson et al. 2011; Caragea et al. 2014; Ukkusuri478

et al. 2014; Wilson et al. 2016; Kuang and Davison 2017). Previous studies479

show that there are human activity abnormalities in the physical proximity of480

the disaster event with obvious spatial and temporal disparities (Chae et al.481

2014; Shelton et al. 2014; Kryvasheyeu et al. 2016; Neppalli et al. 2017; Liu482

et al. 2019b; Zou et al. 2019). There are many research efforts working on this483

area (Area 13), such as developing metrics with sentiment analyses to quantify484

people’s reaction/emotion in response to response efforts (Neppalli et al. 2017;485

Bhavaraju et al. 2019; Singh et al. 2019; Chen et al. 2020).486
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Table 3 Example AI applications for disaster response

AI Method 9. Event mapping 10. Damage assessment 11. Disaster rescue and
relief, resource
allocation

12 Disaster information
system and
collaboration

13. Understanding
people’s concern,
emotion and reaction

A. Linear regression NA NA Bagloee et al. (2019) NA NA
B. Non-linear
regression

NA NA Liang et al. (2001);
Luo et al. (2013);
Robinson et al. (2014)

NA NA

C. Logistic regression Yang and Cervone
(2019)

NA Zhang et al. (2010); Jia
and Zhang (2012);
Hung et al. (2016);
Reynard and Shirgaokar
(2019)

NA Gopnarayan and
Deshpande (2019); Yu
et al. (2019)

D. Support vector
machine

Moskowitz et al.
(2011); Ilyas (2014);
Cresci et al. (2015);
Ireland et al. (2015);
Jiang and Friedland
(2016); Yang and
Cervone (2019)

Tan et al. (2010);
Ashktorab et al. (2014);
Izadi et al. (2017);
Pogrebnykov and
Maldonado (2017);
Naito et al. (2018);
Zhang et al. (2018a);
Seydi and Rastiveis
(2019)

Kiatpanont et al.
(2016); Basu et al.
(2019a); Chaudhuri
and Bose (2020)

Maharjan et al. (2018) Yu et al. (2019);
Gopnarayan and
Deshpande (2019); Ruz
et al. (2020)

E. Näıve Bayes Ilyas (2014); Li et al.
(2018a)

Imran et al. (2013);
Mangalathu et al.
(2019)

Kiatpanont et al.
(2016); Yoon et al.
(2016); Basu et al.
(2019a)

Neppalli et al. (2018) Verma et al. (2011)

F. Decision tree Bahrepour et al.
(2010); Yang and
Cervone (2019)

Mangalathu et al.
(2019)

Kiatpanont et al.
(2016); Berawi et al.
(2019)

Barrientos and Sainz
(2012)

NA

G. Random forest Feng et al. (2019);
Yang and Cervone
(2019)

Conner et al. (2016);
Mangalathu et al.
(2019); Kellermann
et al. (2020)

Acuna et al. (2017) NA Ruz et al. (2020)

H. K-nearest neighbor Kim et al. (2016b);
Zhao et al. (2019)

Mangalathu et al.
(2019)

Kiatpanont et al.
(2016); Liu et al.
(2019a)

NA Gopnarayan and
Deshpande (2019)

I. Logistic model tree NA NA Ahmad et al. (2017) NA NA
J. Neural networks Yu et al. (2005);

Kovordányi and Roy
(2009); Yang and
Cervone (2019)

Bandara et al. (2014);
Conner et al. (2016);
Rudner et al. (2019)

Bayerlein et al. (2018);
Chaudhuri and Bose
(2020)

Datt et al. (2015);
Tian and Chen (2017b)

NA

K. Hierarchical
clustering

Middleton et al.
(2014)

Zhou et al. (2017b) Guha et al. (1998);
Kondaveti and Ganz
(2009)

Zheng et al. (2011,
2013a); Li et al.
(2016b)

Lodree and Davis
(2016)

L. K-means clustering Ganesan et al. (2016) Atasever (2017); Hou
et al. (2017)

ZIDI et al. (2019) NA NA

M. Fuzzy clustering Wang et al. (2012);
Ganesan et al. (2016)

Tan et al. (2010); Yu
and Zhu (2014); Zeng
et al. (2018)

Sheu (2007, 2010);
Ruan et al. (2016)

NA NA

N. Principal
component analysis

NA Hutchinson and Chen
(2005); Bandara et al.
(2014); Zhou et al.
(2018b)

Basu et al. (2019b) NA NA

O. Hidden Markov
models

Salmane et al. (2015) NA Suganya and Jayashree
(2018)

Qiu et al. (2014) NA

P. Convolutional
neural networks

Kim et al. (2016c);
Liu and Wu (2016);
Bejiga et al. (2017);
Kamilaris and Boldú
(2017); Lee et al.
(2017); Huang et al.
(2019c,b); Ahmad
et al. (2019)

Alam et al. (2017);
Kamilaris and Boldú
(2017); Nguyen et al.
(2017); Tian et al.
(2018); Vetrivel et al.
(2018); Xu et al.
(2019a); Zhang et al.
(2019a); Pogrebnykov
and Maldonado (2017);
Seydi and Rastiveis
(2019)

Basu et al. (2019a);
Hartawan et al. (2019);
Robertson et al.
(2019); Chaudhuri and
Bose (2020)

Neppalli et al. (2018);
Kumar et al. (2020)

Yu et al. (2019); Li
et al. (2016a)

Q. Recurrent neural
networks

Kundu et al. (2018);
Mao et al. (2019);
Rahnemoonfar et al.
(2018)

Nguyen et al. (2019b);
Moustapha and Selmic
(2007); Verma et al.
(2020); Biswas et al.
(2019); Pogrebnykov
and Maldonado (2017)

NA Neppalli et al. (2018);
Kumar et al. (2020)

Hernandez-Suarez et al.
(2019)

R. Deep neural
network

Khan et al. (2017);
Bai et al. (2018)

Bai et al. (2018) NA Morito et al. (2016);
Neppalli et al. (2018)

NA

S. Multi-layer
perception

NA Seydi and Rastiveis
(2019)

Robertson et al. (2019) NA NA

T. Recursive neural
network

NA NA NA NA Dong et al. (2014)

U. Q-learning NA Zhao et al. (2017) Su et al. (2011);
Castellanos et al.
(2018); Liu et al.
(2019a); Hou et al.
(2019)

Qiao and Luo (2012);
Aydin and Fellows
(2018)

NA

V. Policy gradient NA Mao et al. (2016);
Wang et al. (2019e)

Rodriguez-Ramos et al.
(2019); Silver et al.
(2014)

NA NA

W. Deep Q-networks Baldazo et al. (2019);
Maciel-Pearson et al.
(2019)

Maciel-Pearson et al.
(2019)

Wang et al. (2020a);
Yang and Liu (2018);
Guo et al. (2019)

Huang et al. (2017);
Sun and Tan (2019);
Liu et al. (2018)

NA

X. Genetic algorithm NA Izadi et al. (2017); Tian
et al. (2018)

Pessin et al. (2009);
Zhao et al. (2009);
Wang (2018); Liu et al.
(2019a); ZIDI et al.
(2019)

NA NA

Y. Particle swarm
optimization

NA Xu et al. (2019b) Pugh and Martinoli
(2007); Sánchez-Garćıa
(2019); ZIDI et al.
(2019)

NA NA

Z. Simulated annealing NA NA Fiedrich et al. (2000);
Yadollahnejad et al.
(2017); ZIDI et al.
(2019)

NA NA
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Table 4 Example AI applications for disaster recovery

AI Method 14. Assess impact 15. Develop recovery
plan

16. Track recovery 17. Evaluate loss and
repair cost

A. Linear regression McCaslin et al.
(2005); Zhang and
Peacock (2009);
Rosellini et al. (2018)

NA Zobel (2014); Qiang
et al. (2020)

Barthel and Neumayer
(2012); Yu et al.
(2014); Kim et al.
(2016a); Kousky and
MichelKerjan (2015)

B. Non-linear
regression

Haraoka et al. (2012);
Mitsova et al. (2018);
Rosellini et al. (2018);
Cheng and Zhang
(2020)

NA Zobel (2014); Zhang
(2016); Wang et al.
(2018b); Jamali et al.
(2019); Yabe and
Ukkusuri (2019); Qiang
et al. (2020)

Smith and Katz
(2013); Kim et al.
(2015, 2018b)

C. Logistic regression Tunusluoglu et al.
(2007); Nabian and
Meidani (2018a);
Mitsova et al. (2019)

NA Gopnarayan and
Deshpande (2019)

NA

D. Support vector
machine

Gong et al. (2013);
Nabian and Meidani
(2018a); Moya et al.
(2018); Rosellini et al.
(2018); Sheykhmousa
et al. (2019); Zhang
and Burton (2019)

Oh et al. (2006) Yabe and Ukkusuri
(2019); Pogrebnykov
and Maldonado (2017);
Gopnarayan and
Deshpande (2019)

NA

E. Näıve Bayes NA NA Shibuya and Tanaka
(2019)

NA

F. Decision tree Merz et al. (2013);
Rosellini et al. (2018)

NA NA Stojadinovic et al.
(2017)

G. Random forest Rosellini et al. (2018);
Zhang et al. (2018b)

NA NA NA

H. K-nearest neighbors Khaloo et al. (2017);
Moya et al. (2018);
Nabian and Meidani
(2018a)

NA Gopnarayan and
Deshpande (2019)

NA

I. Logistic model tree NA NA NA NA
J. Neural networks Mehrjoo et al. (2008);

Khoshnoudian et al.
(2017); Padil et al.
(2017)

Asgary and Naini (2011) NA Chen and Huang
(2006);
Aghamohammadi et al.
(2013)

K. Hierarchical
clustering

NA NA NA NA

L. K-means clustering NA NA NA NA
M. Fuzzy clustering Yu et al. (2016) NA NA NA
N. Principal
component analysis

Yu et al. (2016); Cha
and Buyukozturk
(2015); Khoshnoudian
et al. (2017);
Yamaguchi and
Shirota (2019)

NA NA NA

O. Hidden Markov
models

NA NA NA NA

P. Convolutional
neural networks

Cha et al. (2017);
Liang (2018);
Ghaffarian et al.
(2019)

NA Yang et al. (2019c);
Pogrebnykov and
Maldonado (2017)

NA

Q. Recurrent neural
networks

NA NA Pogrebnykov and
Maldonado (2017)

NA

R. Deep neural
network

Fallahian et al. (2018) NA NA NA

S. Multi-layer
perception

NA NA Lin et al. (2008) NA

T. Recursive neural
network

NA NA NA NA

U. Q-learning NA Memarzadeh and Pozzi
(2019)

NA NA

V. Policy gradient NA NA NA NA
W. Deep Q-networks NA Joo et al. (2019); Ning

et al. (2019); Geng
(2019)

NA NA

X. Genetic algorithm Alfaiate et al. (2007);
Meruane and Heylen
(2011); Gomes et al.
(2019)

Xu et al. (2007);
Bocchini and Frangopol
(2012a,b); Tapia and
Padgett (2015);
Karamlou and Bocchini
(2016); Eid and
El-adaway (2017a,b); Li
and Teo (2018)

NA NA

Y. Particle swarm
optimization

Huang et al. (2019a) NA NA NA

Z. Simulated annealing Strauss et al. (2009) Hackl et al. (2018) NA NA
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3.4 AI Applications in Disaster Recovery487

Disaster recovery is a multifaceted process, involving governments and pub-488

lic authorities, as well as private organizations. This requires comprehensive489

decision-making to quickly understand the complexity of the situation, identify490

operational needs and recovery plans, and perform rehabilitation and recon-491

struction activities. As disaster recovery usually takes a long time, including492

precise damage assessment, budgeting, planning, permitting, design and con-493

struction, AI can be an important module for supporting disaster recovery494

management in less time. AI methods have been applied to disaster recovery495

management, by assessing the disaster induced impact in detail (Application496

Area 14), developing recovery plans (Application Area 15), tracking the recov-497

ery process (Application Area 16), and estimating loss and repair cost (Appli-498

cation Area 17). The increasing number of publications in recent years, shown499

in Table 4, indicates increasing attention to applying AI for disaster recovery500

management. Among them, more attention has been paid to Application Area501

14 than others (Application Areas 15, 16 and 17).502

Quick and accurate assessment of the disaster-induced impact is critical for503

rapid recovery. In addition to physical damage, a disaster causes psychological504

distress and economic disturbance. When assessing physical damage, visual in-505

spection is a primary method adopted in current practice for buildings (Pham506

et al. 2014; Choi et al. 2018; Lenjani et al. 2019), bridges (Yeum and Dyke507

2015), tunnels (Victores et al. 2011), storage tanks (Schempf et al. 1995), etc.508

However, the visual inspection method is often tedious and labor intensive.509

AI methods can help eliminate such human efforts based on aerial images,510

social media imagery data, and sensor measurement data (Khaloo et al. 2017;511

Khoshnoudian et al. 2017). When assessing the disaster-induced impact on512

human, sentiment analyses of social media data can track human activity pat-513

tern throughout the recovery (Caragea et al. 2014; Hasan and Ukkusuri 2014;514

Shelton et al. 2014; Resch et al. 2018; Liu et al. 2019b). When investigat-515

ing psychological distress following a disaster, the use of surveys is a primary516

method adopted in current practice. Both supervised and unsupervised mod-517

els, particularly regression methods, dimension reduction methods, and neural518

networks, are often adopted to analyze survey results to identify risk factors519

and assess the effectiveness of preventive interventions (Gao et al. 2006; Kim520

et al. 2008; Huang et al. 2010; Gong et al. 2013; Rosellini et al. 2018). In521

addition, AI methods have been applied to estimate the economic impacts of522

a hazard, in which supervised models are often used to establish quantitative523

relations between critical factors and the economy and identify possible stim-524

ulus for economic growth (Zhang and Peacock 2009; Yamaguchi and Shirota525

2019; Cheng and Zhang 2020; Qiang et al. 2020).526

After precisely assessing the disaster induced impact, establishing post-527

event recovery plans is essential for effectively conducting recovery and re-528

newal activities. While pre-event planning allows participation members to529

spend significant time and resources for fostering cooperative plans, post-event530

planning is often carried out in a relatively hostile environment with less time531
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and resources at hand. In current research, optimization techniques are often532

adopted to identify efficient plans of restoration, or to estimate human deci-533

sions of recovery planning (Sun et al. 2021), including genetic algorithms (Xu534

et al. 2007; Orabi et al. 2010; Bocchini and Frangopol 2012b; Karamlou and535

Bocchini 2016), and simulated annealing (Hackl et al. 2018), and other meth-536

ods (Sarkale et al. 2018; Zhong et al. 2018). Additionally, there are few studies537

applying reinforcement learning and deep reinforcement learning to planning538

post-event recovery strategies (Joo et al. 2019; Ning et al. 2019).539

During the recovery process, practitioners need metrics and tools to mea-540

sure and monitor how well a community recovers from a disaster over time541

as a means of building community resilience (Curtis et al. 2007). Supervised542

models and deep learning algorithms are often used in this aspect by analyz-543

ing data from various sources. As social media data are attached with geotags544

or hashtags, using sentiment analysis methods and image classification tech-545

niques to analyze social media data can be very helpful for disaster recovery546

tracking (Eckle et al. 2017; Pogrebnykov and Maldonado 2017; Jamali et al.547

2019; Malawani et al. 2020; Mihunov et al. 2020). By comparing nighttime548

light data at different time, established regression relations between economic549

indicators and spatial variations in light intensity can provide valuable insights550

about how the regional economy recovers in a quantitative manner (Wang et al.551

2018b; Qiang et al. 2020). Using Google Street View to remotely track disas-552

ter recovery has also become increasingly popular (Curtis et al. 2010; Mabon553

2016).554

In the aftermath of a disaster, governments need to provide timely assis-555

tance to reconstruct homes and rebuild lives; there are urgent demands for a556

rapid assessment of loss estimate and repair cost (Eguchi et al. 1998; Ladds557

et al. 2017; Deryugina 2017). AI methods can help estimate disaster losses and558

repair costs. In particular, supervised models, such as regression and neural559

network, have been used to rapidly process imagery for detecting structural560

damage, identifying repair needs, and estimating repair cost; they have also561

been used to analyze historical dispersion data of disaster recovery funds for562

budget allocations, and process insurance claims in less time (Chen and Huang563

2006; Barthel and Neumayer 2012; Zagorecki et al. 2013; Stojadinovic et al.564

2017). The existence of only a small number of publications in this field indi-565

cates that AI applications to Area 17 is still in its infancy. In current practice,566

the disaster loss and repair cost are usually estimated based on real data from567

different sources, such as insurance claims, post-disaster assessment, and as-568

sistance grants and personal loans to victims (Eguchi et al. 1998; Kim et al.569

2015). The availability of big data and the rapid development of data analyt-570

ics offer an unprecedented opportunity to promote AI applications in rapid571

estimation of disaster loss and repair cost in the near future. However, the572

lack of standardized methods for collecting and recording data may lead to573

very different estimates of economic impacts (Ladds et al. 2017). Therefore,574

establishing policies and standards for data collection is an urgent need.575

After a disaster, disaster related rumors and fraud may appear, requiring576

the awareness and alertness of both disaster victims and governments. Data577
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mining can help to identify potential fraud (Bagde and Chaudhari 2016; Dutta578

et al. 2017) and rumors (Mendoza et al. 2010; Liu et al. 2015; Wu et al. 2015;579

Zubiaga et al. 2016, 2018), as well as track trends of information flow (Hong580

et al. 2011; Badmus 2020). For example, insurance companies and law enforce-581

ment agencies can use machine learning to quickly examine the truthfulness582

of a claim for a flooded house by making a before-and-after comparison of583

high-resolution satellite images (Gilmour 2019).584

4 Practical AI-based Decision Support Tools585

To ultimately facilitate informed disaster management in practice, many AI-586

based decision support tools have been developed by research institutes and587

industrial companies in the past few decades. By searching on websites of588

Google Scholar and Web of Science with keywords of “disaster management”,589

“decision support tool”, and “artificial intelliegence”, we have found related590

AI-based tools for decision-making in disaster management. Table 5 presents591

example tools that apply various AI techniques in disaster management. These592

tools make use of various data as input to extract useful information, including593

social media data, mobile phone data, sensor measurements, on-site reports594

from first responders, and crowdsourced information from volunteers. These595

tools cover different infrastructures and different types of hazards, contributing596

to the advancement of AI applications to fostering informed disaster manage-597

ment at different phases. A general trend is that there are more tools applicable598

for the disaster response phase than other phases. Most tools use social me-599

dia data as input; a small portion of tools use sensor measurements, remote600

sensing data, or mobile phone data as input.601

Some tools focus on predicting possible consequences under a hazard sce-602

nario for developing management plans of retrofit and evacuation in the dis-603

aster mitigation and preparedness phases. For instance, Optima predictTM
604

software simulates and predicts emergent medical service demand and ambu-605

lance availability changes in the wake of a disaster, helping dispatchers and606

operations personnel find possible optimal ways of preparing for unexpected607

emergencies (Mason 2013). Other tools provide comprehensive platforms for608

efficient communications with text, audio, and location services for professional609

response teams in the disaster response phase, as saving life is typically the610

most critical issue in the first few days after a disaster and requires commu-611

nication and situational awareness (Yin et al. 2012b). For example, Blueline612

Grid analyzes real-time mobile phone data for efficient disaster responses. One613

Concern predicts possible infrastructure damages and consequences based on614

infrastructure data and historical disaster data. Artificial Intelligence for Dis-615

aster Response (AIDR) automatically classifies crisis-related tweets along with616

crowdsourced information of aerial images to identify victims’ needs and infras-617

tructure damage for efficient disaster response management (Imran et al. 2014;618

Ofli et al. 2016). SensePlace3 is a geo-visual interface that can visualize time,619

location, and relationships of events, by applying data mining tools available620
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in Solr to process real-time Twitter data (Tomaszewski et al. 2011; Pezanowski621

et al. 2018). DeepMob simulates human behavior and mobility during natural622

disasters by learning from millions of users’ GPS records with deep belief net-623

works (Song et al. 2017). GeoQ is an open-source tool for assessing damage by624

crowdsourcing geo-tagged photos of the disaster-affected areas, developed in625

coordination with the National Geospatial-Intelligence Agency, the Presiden-626

tial Innovation Fellow Program, the Federal Emergency Management Agency627

(FEMA), and other analysts.628

In the meantime, there are some challenging issues of using these AI-based629

decision support tools in practice. First, these tools typically require large630

amounts of data as input, and data-related issues are a practical challenge.631

Input data might be available in different types and formats for different com-632

munities, or available for some communities but not available for others due to633

various reasons, such as legal ramifications and commercial competitiveness.634

For example, big cities and urban areas usually have documented data detailed635

enough and sufficient in size to make AI predictions accurate, which may not636

be the case for small cities and rural areas. Even if all input data are avail-637

able, some of it may be inaccurate, and there may be data ownership issues638

involved when using some of these tools. Therefore, policies and regulations639

need to be established for appropriate data collection, cleaning, protection,640

and management. Second, communities are exposed to different types of haz-641

ards and have different socioeconomic backgrounds. The AI-based decision642

support tools that are developed based on data from one community might643

not be suitable for another community. This naturally poses a challenge to644

the application generalization of AI-based decision support tools for a diverse645

set of communities. Third, some tools may require a high level of competence646

in deployment, making them less user friendly for practitioners. Many tools647

require advanced software and high performance computers to conduct big648

data analytics, which may not be available for many local governments and649

emergency agencies in economically disadvantaged regions.650

5 Discussion651

As shown in Tables 1 ∼ 4, all AI methods have been applied to disaster man-652

agement. However, there are many untouched application areas by some AI653

methods. For instance, very few AI methods have been used for disaster train-654

ing systems (Application Area 7); that is probably because there is very little655

training data of human responses in disasters available to build appropriate656

AI models for such purposes. Deep neural networks (method R) and recursive657

neural networks (method T ) are rarely applied for disaster preparedness and658

disaster recovery (Application Areas 5 ∼ 8 and 14 ∼ 17). Policy gradient-based659

algorithms have not been applied in disaster mitigation and disaster recovery660

(Application Areas 1 ∼ 4 and 14 ∼ 17). The absence of AI applications to661

untouched areas may attract future research attention for exploration.662
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Table 5 AI-based decision support tools for disaster management

Example tool Owner Input data Hazard Applicable phase Website / Reference

Optima
PredictTM Intermedix

Mobile phone data,
clinical data, and
others

General Mitigation
https://www.r1rcm.
com/optima

One Concern One Concern, Inc.
Public and private
infrastructure
data-sets

Seismic,
flood

Mitigation, and
response

https://www.
oneconcern.com

The Geospiza
Solution

Geospiza Inc.
Data of hazard
modeling, community,
and live event

General
Mitigation, and
response

https://geospiza.us/
solution

TweetTracker
Arizona State
University

Tweet General
Preparedness, and
response

http://tweettracker.
fulton.asu.edu/

EARS
National Research
Council, Italy

Twitter Earthquake Preparedness Avvenuti et al. (2014)

EAIMS
University of
Glasgow

Twitter General Preparedness
McCreadie et al.
(2016)

Ground Truth
Sandia National
Laboratories

Human decision input
via video games

General Preparedness
Djordjevich et al.
(2008)

Argus Rutgers University Smartphone data General
Preparedness, and
response

Sadhu et al. (2017)

CrisisMappers
Crisis Mappers
Net

Social media data General
Preparedness, and
response

https:
//crisismapping.
ning.com/

Dataminr Dataminr Social media data General
Preparedness, and
response

https://www.
dataminr.com/

Disaster
Management
Coordination
simulation
(DMCsim)
system

George
Washington
University

Infrastructure data,
GIS data, and
organization
capabilities

General
Preparedness, and
response

Hashemipour et al.
(2017)

Artificial
Intelligence
for Digital
Response
(AIDR)

Qatar Computing
Research Institute

Tweets General Response http://aidr.qcri.org

Blueline Grid WorldAware, Inc Mobile phone calls General Response
https://www.
bluelinegrid.com

Blueworx Blueworx Emergency calls General Response
https://www.
blueworx.com

CRED
Stanford
University

Seismogram data Earthquake Response Mousavi et al. (2019)

DeepMob

Multi-
government-
industry
collaborations

Disaster data, human
mobility data,
earthquake records,
transportation
network data

Earthquake Response Song et al. (2017)

ESA
Information
Engineering
Laboratory

Information
management system

General Response Yin et al. (2012a)

HAC-ER

University of
Southampton,
University of
Nottingham, and
University of
Oxford

Social media data and
first responder reports

General Response
Ramchurn et al.
(2015, 2016)

SensePlace3
Pennsylvania
State University

Tweets General Response
Pezanowski et al.
(2018)

Sahana
Sahana
Foundation

Information
management system

General Response Careem et al. (2006)

Disaster
Intelligence
product

Disaster
Intelligence

Images, data of
hazard, infrastructure,
and community

General

Mitigation,
preparedness,
response, and
recovery

https://www.
disaster-ai.com

Disaster City
Digital Twin

Texas A&M
University

Remote sensing data
and crowd-sourced
data

General

Mitigation,
preparedness,
response, and
recovery

Fan et al. (2019)

Disaster
Reporter

Federal
Emergency
Management
Agency

Photos and
descriptive text

General
Response, and
recovery

https://www.fema.
gov/disaster-reporter

FIU-Miner
Florida
International
University

Geospatial data General
Preparedness,
response, and
recovery

Zheng et al. (2013a);
Li et al. (2017a,b)

GeoQ

National
Geospatial-
Intelligence
Agency

Geo-tagged photos General
Response, and
recovery

https://github.com/
ngageoint

Tweet
Earthquake
Dispatch

United States
Geological Survey

Tweets Earthquake
Response, and
recovery

https://github.com/
usgs/earthquake-ted

Tractable Tractable Images
Flood, fire,
hurricane

Recovery https://tractable.ai

https://www.r1rcm.com/optima
https://www.r1rcm.com/optima
https://www.oneconcern.com
https://www.oneconcern.com
https://geospiza.us/solution
https://geospiza.us/solution
http://tweettracker.fulton.asu.edu/
http://tweettracker.fulton.asu.edu/
https://crisismapping.ning.com/
https://crisismapping.ning.com/
https://crisismapping.ning.com/
https://www.dataminr.com/
https://www.dataminr.com/
http://aidr.qcri.org
https://www.bluelinegrid.com
https://www.bluelinegrid.com
https://www.blueworx.com
https://www.blueworx.com
https://www.disaster-ai.com
https://www.disaster-ai.com
https://www.fema.gov/disaster-reporter
https://www.fema.gov/disaster-reporter
https://github.com/ngageoint
https://github.com/ngageoint
https://github.com/usgs/earthquake-ted
https://github.com/usgs/earthquake-ted
https://tractable.ai
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Many challenges of practical AI applications to disaster management are663

due to data-related issues, such accessibility, completeness, security, privacy,664

and ethical issues (Boyd and Crawford 2012; Crawford and Finn 2015). Mak-665

ing accurate predictions with AI techniques typically requires a large amount666

of good data for building the model. Such data is not always available. For667

example, some infrastructure data cannot be easily accessible due to reasons668

of national security and commercial competitiveness. Data trustworthiness669

is another issue. For instance, raw data from social networks often contain670

various inaccuracies and biases, requiring advanced information filtering and671

verification. One step further, collecting and analyzing personal data poses672

significant issues related to fairness, responsibility, and human rights. Even if673

the required data are available, data incompleteness is a common problem in674

disaster-related data analyses due to the dynamically changing environment675

of a disaster. To deal with the aforementioned issues, there have been various676

platforms and databases built to collect and share disaster-related data in a rel-677

atively standardized form. Some examples include ShakeMap and ShakeCast678

(USGS 2016b,a), GeoPlatform (GeoPlatform 2016), I-WASTE (EPA 2016),679

Lantern Live (DOE 2014), and Disaster Response Program (ESRI 2016), De-680

signSafe (NHERI 2019), xBD (Gupta et al. 2019), etc.681

There are three computation-related challenging issues. First, there may682

not be enough human labelled training data in time considering the increas-683

ing amount of data and the limited amount of manpower in the wake of a684

disaster (Pouyanfar et al. 2018). In this regard, applying and improving un-685

supervised learning approaches may be the way out for handling real-world686

data without manual human labels (Ranzato et al. 2013). Second, the compu-687

tational complexity sharply increases with the size, variety, and update rate688

of data, which challenges the capacity of processing, managing, and learning689

data within a reasonable response time in the disaster scenario. Efficiently690

managing, storing, and processing big data is essential for disaster manage-691

ment, particularly disaster response. Using cloud platforms to efficiently query692

and store big data is helpful to address this challenge. Developing more effi-693

cient AI methods would naturally be helpful. There have been efforts made to694

address this challenge, including reservoir computing (Tanaka et al. 2019) and695

using GPUs and AI accelerators (Wang et al. 2019f). Using crowd-sourcing696

with real-time AI analyses can help to complete the necessary computation697

within the time limit and eliminate the amount of necessary but tedious work698

that traditionally needs effort on-site (Bevington et al. 2015). Third, building699

user-friendly tools for disaster management is essential for practitioners. This700

means building AI-based tools with interfaces that require minimal technical701

expertise for practical use.702

Analysis results from AI models should be explainable and repeatable for703

supporting practical disaster management. To address this issue, there have704

been research efforts made to improve the interpretability and explainability of705

AI models, such as explainable artificial intelligence (Arrieta et al. 2020; Gun-706

ning et al. 2019). On the other hand, as AI solutions are developed for disaster707

management, we recognize that there are often challenges in reproducibility of708
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new results. For disaster related data, the non-reproducibility issue is a par-709

ticular challenge, because disasters happen irregularly with various impacts710

in different regions (Wang et al. 2016). Replication of experimental results is711

essential for trustworthy advancement in science generally and for AI mod-712

els specifically. To address this issue, there have been research efforts such as713

IBM’s AI OpenScale and OpenML (Vanschoren et al. 2014; Rossi 2019; Yang714

et al. 2019a). These efforts work toward making AI transparent and trust-715

worthy by capturing the processes, data, and parameters for experiments to716

become repeatable.717

6 Concluding Remarks718

This study focuses on AI applications in assisting in efficient disaster man-719

agement during four disaster management phases: mitigation, preparedness,720

response, and recovery. In particular, this study reviews applications of a total721

of 26 AI methods in 17 Application Areas in disaster management in all four722

phases. Both research and practice show that analysis results from AI models723

are very useful for supporting disaster management. In the current stage, the724

general trend is that most applications focus on disaster response, followed by725

disaster mitigation.726

AI is better than humans in terms of data analysis speed and thus the727

volume of analyzable data. It can make acceptable forecasts when the scope728

is within the range of the training data, but predictions when the scope is729

beyond the range may be unacceptable. This is especially true as both the730

hazard and the society are constantly evolving, which might fundamentally731

change the utility of attributes used to train the original model. Even if AI732

algorithms can make reasonably good predictions with the available data, a733

further concern is whether we should completely rely on the predictions and734

suggestions from AI algorithms to deploy resources and develop disaster plans.735

This question has no simple answer.736

For practical AI applications in disaster management, there are a number737

of challenging issues related to data and computation, as well as inseparability738

and replicability of analysis results. This study also identifies many untouched739

application areas of different AI methods. How to develop more powerful and740

cost-effective AI-based tools to support decision-making in practical disaster741

management with improved analysis accuracy and speed is an urgent problem742

for the research community. Despite these challenges and untouched areas,743

AI methods provide numerous opportunities and easy solutions for various744

successful applications in disaster management. By discussing the application745

status of AI methods in disaster management, this study aims to inspire fu-746

ture research to tackle the identified challenging issues and advance disaster747

management with AI for improving community disaster resilience.748
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Özdamar L, Demir O (2012) A hierarchical clustering and routing procedure for large scale1905

disaster relief logistics planning. Transportation Research Part E: Logistics and Trans-1906

portation Review 48:591–6021907

Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence1908

and logistic regression methods for landslide susceptibility mapping: Sultan Mountains,1909

SW Turkey. Journal of Asian Earth Sciences 64:180–1971910

Padil KH, Bakhary N, Hao H (2017) The use of a nonprobabilistic artificial neural network1911

to consider uncertainties in vibration-based-damage detection. Mechanical Systems and1912

Signal Processing 83:194–2091913

Padmawar PM, Shinde AS, Sayyed TZ, Shinde SK, Moholkar K (2019) Disaster predic-1914

tion system using convolution neural network. In: The 2019 International Conference on1915

Communication and Electronics Systems (ICCES), IEEE, pp 808–812, DOI: 10.1109/IC-1916

CES45898.2019.90024001917

Park YS, Kim J, Kim A (2019) Radar localization and mapping for indoor disaster environ-1918

ments via multi-modal registration to prior LiDAR map. In: 2019 IEEE/RSJ Interna-1919

tional Conference on Intelligent Robots and Systems (IROS), IEEE, pp 407–419, DOI:1920

10.1109/IROS40897.2019.89676331921

Parra J, Fuentes O, Anthony EY, Kreinovich V (2016) Use of machine learning to analyze1922

and – hopefully – predict volcano activity. Tech. Rep. UTEP-CS-16-80a, University of1923

Texas at El Paso, http://digitalcommons.utep.edu/cs techrep/10531924

Pau J, Baker J, Houston N (2017) Artificial intelligence in Asia: Preparedness and resilience.1925

URL https://www.asiabusinesscouncil.org/docs/AI briefing.pdf1926

Pechenkin A, Demidov R (2018) Application of deep neural networks for security analysis1927

of digital infrastructure components. SHS Web of Conferences 44:000681928

Peduzzi P, Dao H, Herold C, Mouton F (2009) Assessing global exposure and vulnerability1929

towards natural hazards: the Disaster Risk Index. Natural Hazards and Earth System1930

Sciences 9:1149–11591931
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