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Abstract

Unsupervised domain adaptation leverages rich information from a labeled source
domain to model an unlabeled target domain. Existing methods attempt to align the
cross-domain distributions. However, the statistical representations of the alignment of
the two domains are not well addressed. In this paper, we propose deep least squares
alignment (DLSA) to estimate the distribution of the two domains in a latent space by
parameterizing a linear model. We further develop marginal and conditional adaptation
loss to reduce the domain discrepancy by minimizing the angle between fitting lines and
intercept differences and further learning domain invariant features. Extensive experiments
demonstrate that the proposed DLSA model is effective in aligning domain distributions
and outperforms state-of-the-art methods.

1 Introduction
Large amounts of labeled data is a prerequisite to training accurate predictors in most machine
learning techniques. However, manually labeling and training a model from scratch is tedious
and expensive. Fortunately, unsupervised domain adaptation (UDA) aims to deal with the
shortage of labels by leveraging a richly labeled source domain to a similar but different
unlabeled target domain. This task is usually challenged by the dataset bias or domain shift
issue because source and target domains have different characteristics. UDA can mitigate this
by establishing the association between domains and learning domain invariant features.

Recent advances in UDA witness its success in deep neural networks. It can learn abstract
representations with nonlinear transformations and suppress the negative effects caused by
the domain shift. In earlier work, deep learning based methods rely on minimizing the
discrepancy between the source and target distributions by proposing different loss functions,
such as Maximum Mean Discrepancy (MMD) [30], CORrelation ALignment (CORAL) [28],
Kullback-Leibler divergence (KL) [22]. Inspired by generative adversarial network (GAN)
[5], adversarial domain adaptation methods aim to identify domain invariant features by
playing a min-max game between domain discriminator and feature extractor [3, 31, 41,
42, 46]. However, these methods either cannot fully align the marginal and conditional
distributions between two domains or request additional components such as a domain
discriminator [31] or gradient reversal layer [3].
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Although many methods achieve remarkable results in domain adaptation, they still suffer
from two challenges: 1) the distributions of two domains cannot be intuitively represented,
and alignment processes are hidden; and, 2) the label information and latent structure of
the target domain are not fully considered, and how to better align marginal and conditional
distributions are not well addressed. To alleviate these challenges, we propose a deep least
squares adaptation (DLSA) model with a toy example shown in Fig. 1.

We offer two contributions:

1. We propose a simple and novel UDA approach, DLSA, to explicitly model the distribu-
tion of domains in the latent space with estimated fitting lines, which are parameterized
by estimated slope and intercept. We further theoretically and statistically show the
effectiveness of DLSA in estimating domain distributions.

2. We design and effectively integrate marginal and conditional adaptation losses to
impose distribution alignment. By minimizing angle and intercept differences between
source and target fitting lines, we enforce feature discriminability, which leads to
inter-class dispersion and intra-class compactness.

Experimental results on three benchmark datasets show that DLSA achieves higher classifica-
tion performance than state-of-the-art methods. We also statistically show the estimated least
squares parameters to model the distributions of source and target domains.

2 Related work

Figure 1: Schematic diagram of the proposed
least squares alignment. We first estimate the
least squares fitting lines of two domains and
then align the marginal and conditional dis-
tributions. By rotating and translating the fit-
ting lines, the distributions between the two
domains can be aligned, and domain discrep-
ancy is minimized (Mar.: marginal, Con.: con-
ditional, and Ada.: adaptation).

There are different deep techniques for UDA.
To learn domain invariant representations,
early methods attempt to propose distance-
based loss functions to align data distribu-
tions between different domains. Maximum
Mean Discrepancy (MMD) [30] is one of the
most popular distance functions to minimize
between two distributions. Deep Adapta-
tion Network (DAN) considered the sum of
MMD from several layers with multiple ker-
nels of MMD functions [15]. The CORAL
loss is another distance function, based on
covariance matrices of the latent features
from two domains [28]. Recently, Li et
al. [11] proposed an Enhanced Transport
Distance (ETD) to measure domain discrep-
ancy by establishing the transport distance
of attention perception as the predictive feed-
back of iterative learning classifiers.

With the advent of GAN [5], adversarial learning models have been found to be an
impactful mechanism for identifying invariant representations in domain adaptation and
minimizing the domain discrepancy. The Domain Adversarial Neural Network (DANN)
considered a minimax loss to integrate a gradient reversal layer to promote the discrimination
of source and target domains [2]. The Adversarial Discriminative Domain Adaptation (ADDA)
method utilized an inverted labeled GAN loss to split the source and target domains, and
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features can be learned separately [31]. Xu et al. ([37]) mapped the two domains to a common
potential distribution and effectively transfers domain knowledge. There are also many
methods that utilized pseudo-labels to consider label information in the target domain [1, 9,
50]. They have not, however, intuitively studied the distribution adaptation as thoroughly as
we do in Fig. 3 of supplemental material.

Least squares estimation is also used in domain adaptation, but most are proposed to
solve regression problems. Huang et al. [8] proposed a domain adaptive partial least squares
regression model, which utilized the Hilbert-Schmidt independence criterion to estimate the
independence of the extracted latent variables and domain labels. The partial least squares
method was used to align the source and target data in the latent space via estimating a
projection matrix. Similarly, Nikzad-Langerodi et al. [23] considered UDA for regression
problems under Beer–Lambert’s law. They employed a non-linear iterative partial least squares
algorithm to minimize the covariance matrices difference of the latent sample between two
domains. Yuan et al. [38] proposed to use least squares distance to align marginal distribution
between two domains for classification problem. However, the so-called least-squares distance
is proposed by Mao et al. [21], aiming to push generated samples toward the decision boundary
and reduce the gradient vanishing problem during adversarial learning. Notably, we focus
on UDA for visual recognition and impose marginal and conditional distribution adaptation
losses based on slope and intercept differences from the least squares estimation.

3 Methodology

3.1 Problem and motivation

For unsupervised domain adaptation, given a source domain DS = {X i
S ,Y i

S}
NS
i=1 of NS

labeled samples in C categories and a target domain DT = {X j
T }

NT
j=1 of NT samples without

any labels (i.e., YT is unknown). Our ultimate goal is to learn a classifier F under a feature
extractor G, which reduces domain discrepancy and improves the generalization ability of the
classifier to the target domain.

To achieve it, existing methods usually attempt to align either marginal or conditional
distributions of the two domains. Moreover, the statistical estimation of distributions is not
well addressed. In contrast, we propose to align both distributions to further reduce domain
discrepancies. In particular, we employ least squares to estimate the latent space distribution,
which is parameterized by a slope and an intercept. We then design marginal and conditional
adaptation losses to enforce the distribution alignment both in inter-class and intra-class. In
turn, we can push the decision boundary of classifier F toward the target domain.

3.2 Source Classifier

For the labeled source domain, we minimize the following classification loss:

LS = J(F(G(XS)),YS), (1)

where F is the classifier, J(·, ·) is the cross-entropy loss and YSP =F(G(XS)) is the predicted
label in Fig. 2.
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Figure 2: The architecture of our proposed DLSA model. We first employ a ResNet50-based feature
extractor G to acquire the feature representations of two domains. DLSA consists of three loss functions
(classification loss LS , marginal adaptation loss LM, and conditional adaptation loss LC). The marginal
distribution is aligned via reducing the global angle and intercept differences between source and target
fitting lines. The conditional distribution is aligned by categorical angle and intercept differences of two
domains (BN.: BatchNormalization).

3.3 Least squares estimation

The feature extractor G maps samples from a given neural network layer into a d-dimensional
latent space (d > 1). The latent source and target samples can be denoted as: G(XS)∈RNS×d ,
and G(XT )∈RNT ×d , respectively. Next, we aim to model domain distribution via estimating
the fitting line of two domains in the latent space, which has the minimum error to all latent
samples. The latent samples can be encoded via G(XZ) = [G(XZ)

1,G(XZ)
d−1], where

Z can be either source domain S or target domain T . Let LZ
V = G(XZ)

1 ∈ RNZ×1 and
LZ

W = G(XZ)
d−1 ∈ RNZ×(d−1), Lz

V and Lz
W are each one of the elements, respectively, i.e.,

Lz
V ∈ R, which is a scalar and Lz

W ∈ Rd−1(z = 1,2, · · · ,NZ). To model the distribution of
latent space, we naively assume that there is a linear relationship between LZ

V and LZ
W . The

motivation is that we aim to use the slope and intercept to represent the distribution of the
latent feature G(XZ). Then, we can minimize the difference of slope and intercept of the
two domains. Moreover, such a linear fitting line can always be estimated (except when
there is only one sample for estimation). Here, we arbitrarily choose the first dimension as
the independent variable, and the remaining d −1 dimensions as dependent variables; other
dimensions are explored in supplemental material.

Before formulating distribution alignment, we first review multiple linear regression
in Rd−1. Given the target variable (dependent variable) LZ

W taking values in Rd−1, and
independent variable LZ

V taking values in R, the multiple linear regression model is given by:

LZ
W = aZLZ

V +bZ + ε, (2)

where aZ ∈ Rd−1 contains the unobservable slope parameter, bZ ∈ Rd−1 holds unobservable
intercept parameter, and ε is unobservable random noise, which is drawn i.i.d.

Consider a data set of input LZ
V = {Lz

V}
NZ
z=1 with corresponding target value LZ

W = {Lz
W}NZ

z=1 ,
the least squares estimate of the slope âZ and intercept b̂Z via solving the minimization
problem in Eq. 3.

âZ , b̂Z = argmin
NZ

∑
z=1

||Lz
W −aZLz

V −bZ ||2 (3)

Let E = ∑
NZ
z=1 ||L

z
W −aZLz

V −bZ ||2, to estimate coefficients, we take the gradient of E with
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respect to each parameter, and setting the result equal to zero.

∂E
∂aZ

=−2
NZ

∑
z=1

Lz
V (L

z
W −aZLz

V −bZ) = 0,
∂E
∂bZ

=−2
NZ

∑
z=1

(Lz
W −aZLz

V −bZ) = 0 (4)

The estimation of the true parameters are denoted by âZ and b̂Z , solving Eq. 4, we can get

âZ =

1
NZ

∑
NZ
z=1 Lz

V Lz
W −LZ

V LZ
W

1
NZ

∑
NZ
z=1 Lz

V −LZ
V

2
, b̂Z = LZ

W − âZLZ
V (5)

where Z can be either S or T , LZ
V and LZ

W are the mean of LZ
V and LZ

W , respectively. Therefore,
we are able to model the fitting lines of two domains via LS

W = âSLS
V + b̂S and LT

W = âT LT
V +

b̂T . In the following section, we present the distribution alignment with the estimated key
coefficients (âS , b̂S , âT , b̂T ), which are the slope and intercept of the source and the target
domain, respectively.

3.3.1 Marginal adaptation loss

Before the alignment process, the marginal distribution of the two domains may partially
overlap. To learn a separable geometric structure of marginal or global distribution, we
consider the estimated parameters of two domains. It can be reached via maximizing the
similarities between slope and intercept of two domains, which can be achieved by minimizing
the following loss function:

LM = ||âS − âT ||2F + γ||b̂S − b̂T ||2F , (6)

where M denotes marginal distribution, || · ||F is the Frobenius norm and γ balances the scale
between two terms. The first term enforces small differences of slope between two domains,
which is equivalent to minimizing the marginal/global angle (θM) between two fitting lines
as in Eq. 7.

θM = arccos
âS · âT

|âS | · |âT |
(7)

We can reformulate Eq. 6 as follows:

LM = θM+ γBM, (8)

where BM = ||b̂S − b̂T ||2F represents the marginal intercept difference between two domains.
The marginal adaptation loss in Eq. 8 first minimizing the angle of the two fitting lines, which
is similar to rotating two fitting lines and leads to the same slope. It then minimizes the
estimated intercepts of the two lines, which is equivalent to translating b̂S to b̂T . As shown in
Fig. 2, there is a 2-dimensional space with 2 classes. Let {1,2} be the labels of “triangle"
and “cross". According to the goal of Eq. 8, the marginal distribution alignment of the two
domains can be achieved by finding a minimal θM and intercept difference BM.

3.3.2 Conditional adaptation loss

Eq. 8 can only minimize the marginal distribution divergences between the two domains. The
conditional distributions are not aligned. Therefore, we need to design a conditional adaptation
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loss to minimize the conditional distribution divergences between the two domains. Since
there are no labels in the target domain, the conditional distribution alignment is facilitated by
soft pseudo-labels for the target domain. Given the trained classifier F in Eq. 1, we can get
the dominant predicted class for each target sample as Y j

TP = argmax F(G(X j
T )). We hence

get the label information for the latent target samples G(XT ) and these soft pseudo-labels can
be refined via minimizing Eq. 1 and Eq. 8. To estimate the categorical slope and intercept, we
modified Eq. 5 as:

âc
Z =

1
N c

Z
∑

N c
Z

z=1 Lz
V Lz

W −LZc
V LZc

W

1
N c

Z
∑

N c
Z

z=1 Lz
V −LZc

V
2

b̂c
Z = LZc

W − âc
ZLZc

V (9)

where Z can be either S or T , N c
Z is number of samples in each class c. LZc

V and LZc
W are

the mean of LZc

V and LZc

W of class c. Lz
V and Lz

W naturally become one of the elements of LZc

V
and LZc

W . Therefore, we are able to model the categorical fitting lines of two domains with
LSc

W = âc
SLSc

V + b̂c
S and LT c

W = âc
T LT c

V + b̂c
T . Similar to Eq. 6, the conditional adaptation loss

is formulated as:

LC =
1
C

C

∑
c=1

||âc
S − âc

T ||2F + γ
1
C

C

∑
c=1

||b̂c
S − b̂c

T ||2F . (10)

Specifically, the estimated categorical slope and intercept are based on predicted pseudo-labels.
Intuitively, the first term can also be regarded as minimizing the categorical angle θ c

C between
fitting lines as follows.

θ
c
C = arccos

âc
S · âc

T
|âc

S | · |âc
T |

(11)

Hence, we can rewrite Eq. 10 as:

LC =
1
C

C

∑
c=1

(θ c
C + γBc

C), (12)

where Bc
C = ||b̂c

S − b̂c
T ||2F denotes the conditional intercept difference between two domains

of each class c. Therefore, the conditional adaptation loss considers each class, and minimizes
categorical angle and intercept differences; it is naturally similar to performing categorical
fitting line rotation and translation. As shown in Fig. 2, let θ 1

C be the estimated angle
between source and target fitting lines of “triangle", and θ 2

C be the estimated angle of “cross".
According to Eq. 12, the conditional distribution alignment of the two domains can be achieved
by seeking minimal θ 1

C ,θ
2
C and intercept difference (B1

C = ||b̂1
S − b̂1

T ||,B2
C = ||b̂2

S − b̂2
T ||).

3.4 Overall objective function
We integrate all components and obtain the following overall objective function of DLSA as:

L= argmin (LS +(1−α)LM+αLC), (13)

where LS is the cross-entropy loss of the classifier in the labeled source domain. LM and
LC represent the marginal and conditional adaptation loss, respectively. α is the penalty
parameter to balance conditional and marginal distribution.
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The overall training procedure is straightforward. We first train the labeled source domain
and unlabeled target domain using Eqs. 1 and 8 to reduce the marginal distribution discrepancy
between two domains. We then generate pseudo-labels (YTP ) for the target domain with the
trained classifier F , and minimize the conditional adaptation loss using Eq. 12. Finally, we
repeat the previous two steps until the loss function in Eq. 13 has converged.

4 Experiments

4.1 Datasets
Office + Caltech-10 [4] has 2,533 images in four domains: Amazon (A), Webcam (W),
DSLR (D), and Caltech (C) from ten classes. In experiments, A�W represents transferring
knowledge from domain A to domain W. We evaluate twelve tasks in this dataset. Office-31
[26] has 4,110 images from three domains: Amazon (A), Webcam (W), and DSLR (D) in
31 classes. We try six tasks in the Office-31 dataset. The Office-Home [32] dataset contains
15,588 images from four domains: Art (Ar), Clipart (Cl), Product (Pr) and Real-World (Rw)
in 65 classes. We also test twelve tasks in this dataset. VisDA-2017 [24] is a particularly
challenging dataset due to a large domain-shift between the synthetic images (152,397 images
from VisDA) and the real images (55,388 images from COCO) in 12 classes. We test our
model on the setting of synthetic-to-real as the source-to-target domain and report the accuracy
of each category.

4.2 Implementation details
We implement our approach using PyTorch with an Nvidia GeForce 1080 Ti GPU and extract
features for the three datasets from a fine-tuned ResNet50 network [7], which is a neural
network well trained on the Imagenet dataset [10]. The 1,000 features are then extracted from
the last fully connected layer for the source and target features [40, 43, 44]. In the feature
extractor G, the outputs of the first two Linear layers are 512, and the output of the last Linear
layer is the number of classes in each dataset. The learning rate = 0.001, batch size = 32 and
number of iterations = 300.

During training, to balance the scale between slope and intercept, we return the value
of angle θM and θ c

C in radians, which is in the range of [0,π]. The optimal parameters are
α = 0.2, and γ = 0.1, and α ∈ {0.1,0.2, · · · ,0.9}, while γ is selected from {0.1,0.2, · · · ,1}
based on the parameter analysis in supplemental material.1 We also compare our results with
19 state-of-the-art methods (including both traditional methods and deep neural networks).

Table 1: Accuracy (%) on Office + Caltech-10 (based on ResNet50)
Task C�A C�W C�D A�C A�W A�D W�C W�A W�D D�C D�A D�W Ave.

GSM [49] 96.0 95.9 96.2 94.6 89.5 92.4 94.1 95.8 100 93.9 95.1 98.6 95.2
JGSA [39] 95.1 97.6 96.8 93.9 94.2 96.2 95.1 95.9 100 94.0 96.3 99.3 96.2

MEDA [33] 96.3 98.3 96.2 94.6 99.0 100 94.8 96.6 100 93.6 96.0 99.3 97.0
DDC [30] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 83.8 100 79.0 87.1 97.7 86.1

DCORAL [28] 89.8 97.3 91.0 91.9 100 90.5 83.7 81.5 90.1 88.6 80.1 92.3 89.7
DAN [15] 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100 80.3 90.0 98.5 90.1
RTN [16] 93.7 96.9 94.2 88.1 95.2 95.5 86.6 92.5 100 84.6 93.8 99.2 93.4

MDDA [25] 93.6 95.2 93.4 89.1 95.7 96.6 86.5 94.8 100 84.7 94.7 99.4 93.6
DLSA 96.6 98.6 98.1 95.4 98.9 100 95.3 96.6 100 95.1 96.2 98.3 97.4

1Source code is available at: https://github.com/YoushanZhang/Transfer-Learning/tree/
main/Code/Deep/DLSA.
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Table 2: Accuracy (%) on Office-Home dataset (based on ResNet50)
Task Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Ave.

GSM [49] 49.4 75.5 80.2 62.9 70.6 70.3 65.6 50.0 80.8 72.4 50.4 81.6 67.5
JGSA [39] 45.8 73.7 74.5 52.3 70.2 71.4 58.8 47.3 74.2 60.4 48.4 76.8 62.8

MEDA [33] 49.1 75.6 79.1 66.7 77.2 75.8 68.2 50.4 79.9 71.9 53.2 82.0 69.1
DANN [3] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [17] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN-M [18] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

TAT [14] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
ETD [11] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

TADA [35] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SymNets [48] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

DCAN [12] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
RSDA [6] 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
SPL [34] 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
ESD [47] 53.2 75.9 82.0 68.4 79.3 79.4 69.2 54.8 81.9 74.6 56.2 83.8 71.6

SHOT [13] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
DLSA 56.3 79.4 82.5 67.4 78.4 78.6 69.4 54.5 82.1 75.3 56.4 83.7 71.7

SHOT+DLSA 57.6 80.1 82.7 68.4 78.9 79.4 69.4 55.1 82.4 75.3 59.1 83.8 72.7

Table 3: Accuracy (%) on Office-31 (ResNet50)
TaskA�WA�DW�AW�DD�AD�WAve.

GSM [49] 85.9 84.1 75.5 97.2 73.6 95.6 85.3
JGSA [39] 89.1 91.0 77.9 100 77.6 98.2 89.0

MEDA [33] 91.7 89.2 77.2 97.4 76.5 96.2 88.0
ADDA [31] 86.2 77.8 68.9 98.4 69.5 96.2 82.9

JAN [17] 85.4 84.7 70.0 99.8 68.6 97.4 84.3
DMRL [36] 90.8 93.4 71.2 100 73.0 99.0 87.9

TAT [14] 92.5 93.2 73.1 100 73.1 99.3 88.4
TADA [35] 94.3 91.6 73.0 99.8 72.9 98.7 88.4

SymNets [48] 90.8 93.9 72.5 100 74.6 98.8 88.4
SHOT [13] 90.1 94.0 74.3 99.9 74.7 98.4 88.6

SPL [34] 92.7 93.0 76.8 99.8 76.4 98.7 89.6
CAN [9] 94.5 95.0 77.0 99.8 78.0 99.1 90.6

RSDA [6] 96.1 95.8 78.9 100.0 77.4 99.3 91.3
DLSA 95.2 96.2 80.4 99.2 80.7 98.0 91.6

Table 4: Ablation experiments on Office-31 (M: marginal ada-
ptation loss, C: conditional adaptation loss).

Task A�WA�DW�AW�DD�AD�WAve.
DLSA−C/M89.0 87.4 75.2 97.2 76.5 95.4 87.9
DLSA−C 92.6 89.9 78.5 98.2 78.9 96.6 89.1
DLSA−M 95.1 95.1 79.1 99.0 79.8 97.2 91.0
DLSA 95.2 96.2 80.4 99.2 80.7 98.0 91.6

Table 5: Accuracy (%) on VisDA-2017 dataset (based on ResNet101)
Task plane bcycl bus car horse knife mcycl person plant sktbrd train truck Ave.

Source-only [7] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
MCD [27] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
DMP [20] 92.1 75.0 78.9 75.5 91.2 81.9 89.0 77.2 93.3 77.4 84.8 35.1 79.3

DADA [29] 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8
STAR [19] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
SHOT [13] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
DSGK [45] 95.7 86.3 85.8 77.3 92.3 94.9 88.5 82.9 94.9 86.5 88.1 46.8 85.0

CAN [9] 97.9 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
DLSA 96.9 89.2 85.4 77.9 98.3 96.9 91.3 82.6 96.9 96.5 88.3 60.8 88.4

CAN+DLSA 98.1 89.2 86.8 79.3 98.5 96.9 92.0 83.2 96.9 96.5 88.9 61.4 89.0

4.3 Results

Tables 1-3 display the results of Office + Caltech-10, Office-Home and Office-31 datasets.
For a fair comparison, we bold three re-implemented baselines (GSM [49], JGSA [39], and
MEDA [33]) using the same extracted features as our model. Our DLSA model still surpasses
all state-of-the-art methods in general (most notably in the challenging Office-31 dataset and
the Office-Home dataset).

In the Office + Caltech-10 dataset, compared with the best baseline MEDA, which is
tested using our features, the accuracy of our method increases by 0.4% on average. Although
the improvement is not large, we still achieve the highest accuracy so far. For Office-31, the
average accuracy of DLSA is 91.6%. It is superior to all other methods. If we focus on the
difficult tasks W�A and D�A, DLSA shows substantially better transferring ability than other
methods. Our model has a particularly obvious improvement in the challenging Office-Home
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(a) Estimated angle θ (b) Estimated intercept differences B
Figure 3: Least squares parameters comparison of task A�D in the Office-31 dataset. (a) is the estimated
angle θ of fitting lines between source and target domains. (b) is estimated intercept differences. DLSA
consistently shows the smallest estimated parameters than CAN [9], and SymNets [48]. Ave. is the
mean of 31 classes of θ c

C or Bc
C .

dataset. The average accuracy is 71.7%, which exceeds most SOTA methods. Our model also
outperforms SOTA models in the challenging large-scale VisDA-2017 dataset in Tab. 5. Our
DLSA model can be an additional component for other models. We conducted experiments
on two challenging datasets (Office-Home and VisDA-2017) and find that the combination of
previous models with our proposed DLSA achieves the highest performance in Tab. 2 and
Tab. 5 (SHOT+DLSA and CAN+DLSA). These two results demonstrate the effectiveness of
DLSA in improving existing SOTA UDA models. Therefore, these experimental results show
that our model outperforms all comparison methods, which reveal the DLSA is applicable to
different datasets.

Ablation study. To isolate the effects of marginal adaptation loss LM and conditional
adaptation loss LC on classification accuracy, we perform an ablation study by evaluating
different variants of DLSA in Tab. 4. “DLSA−C/M” is implemented without marginal
and conditional adaptation losses. It is a simple model, which only reduces the source risk
without minimizing the domain discrepancy using Eq. 1. “DLSA−C” reports results without
performing the additional conditional adaptation loss. “DLSA−M” trains the labeled source
domain and performs the conditional adaptation. As the number of loss functions increases,
the robustness of our model keeps improving. We can also conclude that LC is more important
than LM in improving the performance. Therefore, the proposed marginal and conditional
loss functions are helpful in minimizing the target domain risk.

Figure 4: Visualization of learned features using a 2D t-SNE view of Office-31 and Office-Home dataset.

To further investigate whether θ and B are minimized using DLSA, we also compare it
with top baseline methods CAN [9] and SymNets [48] with randomly selected task A�D in
Office-31 dataset in Fig. 3 (9 of 31 classes of conditional distribution are randomly reported).
We can find that the estimated parameters θ and B are consistently smaller than the other two
methods. Hence, we can find that DLSA can minimize marginal and conditional distribution
discrepancy between two domains.
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Feature Visualization. To intuitively present adaptation performance, we utilize t-SNE to
visualize the deep features of network activations in 2D space before and after distribution
adaptation. Fig. 4 shows two tasks: (a) A�W of Office-31 and (b) Pr�Rw of Office-Home
dataset. Apparently, the distributions of the two tasks become more discriminative after
adaptation, while many categories are mixed up in the feature space before adaptation. It
indicates that DLSA can learn more discriminative representations, which can significantly
increase inter-class dispersion and intra-class compactness.

5 Discussion
In these experiments, DLSA always achieves the highest average accuracy. Therefore, the
quality of our model exceeds that of SOTA methods, which reveals that DLSA can better
learn domain invariant features and exceeds the frequently used MMD loss and CORAL
loss. There are two reasons for this. First, DLSA can estimate the latent space distribution,
which is parameterized by slope and intercept. Secondly, to reduce the discrepancy between
domains in the latent feature space, we align the marginal distributions by reducing the
angle and intercept differences between fitting lines of the domains. In addition, conditional
distribution alignment is realized by generating soft pseudo labels. Then the categorical angle
and intercept differences are minimized, which further supports agreement in label space.
In terms of time, the major cost of estimating slope and intercept is in Eq. 5, which can be
calculated in O(1). More comparisons can be found in supplementary material.

However, one disadvantage of our DLSA model is that we assume a linear relationship
in the latent space. Other relationships may also improve the performance (e.g., polyno-
mial/nonlinear). Also, incorrect pseudo-labels may exist during training, affecting the quality
of the fitting line as shown in Tab. 6. We can find that there are small differences of esti-
mated parameters (θC and BC) using pseudo-labels versus true labels from the target domain.
Therefore, we can still improve the prediction using better pseudo-label generation methods.
Removing outlier labels in the target domain might improve performance. We leave this to
future work.

Table 6: Least squares estimated conditional parameters of task C�W on Office + Caltech-10 dataset us-
ing pseudo and true target labels (Cc: conditional distribution of each class c, where c= {1,2,3, · · · ,10}).

Parameters C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Ave.

θ
pseudo
C 29.786 35.871 24.615 16.451 7.202 11.924 37.778 0.355 33.137 16.594 21.371
θ true
C 31.847 36.301 26.824 17.730 7.074 9.634 36.169 0.726 35.393 18.824 22.052

Bpseudo
C 33.137 9.875 17.656 3.622 3.626 0.250 15.820 3.097 3.358 16.237 10.668
Btrue
C 30.936 10.159 19.546 5.778 2.557 0.337 13.239 5.036 4.088 19.536 11.121

6 Conclusion
In this paper, we propose a novel unsupervised domain adaptation method, namely deep least
squares adaptation. DLSA estimates the latent space distribution by finding the fitting lines of
two domains. We then develop marginal and conditional adaptation loss to reduce domain
discrepancy and learn domain invariant features. Experiential results illustrate the superiority
of DLSA in modeling the source and target domain distributions, resulting in outstanding
performances on benchmark datasets.
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