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Abstract. Domain adaptation has emerged as a crucial technique to
address the problem of domain shift, which exists when applying an
existing model to a new population of data. Adversarial learning has
made impressive progress in learning a domain invariant representation
via building bridges between two domains. However, existing adversarial
learning methods tend to only employ a domain discriminator or gen-
erate adversarial examples that affect the original domain distribution.
Moreover, little work has considered confident continuous learning using
an existing source classifier for domain adaptation. In this paper, we de-
velop adversarial continuous learning in a unified deep architecture. We
also propose a novel correlated loss to minimize the discrepancy between
the source and target domain. Our model increases robustness by incor-
porating high-confidence samples from the target domain. The transfer
loss jointly considers the original source image and transfer examples in
the target domain. Extensive experiments demonstrate significant im-
provements in classification accuracy over the state of the art.

Keywords: Adversarial learning · Unsupervised domain adaptation.

1 Introduction

There is a high demand for automatic recognition of multimedia data. The avail-
ability of massive labeled training data is a prerequisite for creating machine
learning models. Unfortunately, it is time-consuming and expensive to manu-
ally annotate data. Therefore, it is often necessary to transfer knowledge from
an existing labeled domain to a new unlabeled domain. However, due to the
phenomenon of data bias or domain shift [17], machine learning models do not
generalize well from an existing domain to a novel unlabeled domain.

Domain adaptation has been a promising method to mitigate the domain shift
problem. Existing domain adaptation methods assume that the feature distri-
butions of the source and target domains are different, but share the same label
space. These methods either aim to build a bridge between source and target
domains [4,35] or identify the shared feature space between two domains [23,11].

Recently, deep neural network methods have achieved great success in domain
adaptation problems. Adversarial learning shows its power within deep neural
networks to learn feature representations to minimize the discrepancy between
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Fig. 1: The scheme of our proposed adversarial continuous learning in unsupervised
domain adaptation (ACDA) model. It combines continuous learning and adversarial
learning in a two-round classification framework. Initially, the shared encoder will learn
a mapping from source images to target images and fool the domain discriminator
(which attempts to distinguish examples from source versus target domains). In the
second round, the shared encoder will be trained with a new training set which contains
the original source images and confidence transfer examples from the target domain,
resulting in an improved mapping. The yellow circle marks confident transfer examples.

the source and target domains [22,9]. These methods were inspired by the gener-
ative adversarial network (GAN) [5]. Adversarial learning also contains a feature
extractor and a domain discriminator. The domain discriminator aims to dis-
tinguish the source domain from the target domain, while the feature extractor
aims to learn domain-invariant representations to fool the domain discriminator
[12,34,9]. The target domain risk is minimized via minimax optimization.

Although adversarial learning achieves remarkable results in domain adapta-
tion, it still suffers from two challenges: (1) although the feature extractor is well
trained on the source domain, its applicability to the target domain is lower; that
is, the joint distributions of the two domains are not perfectly aligned; and, (2)
generating proper transfer examples during training has not been well explored;
such examples should enhance the positive transfer and alleviate the negative
transfer, and these transfer examples should not affect the distributions of the
original domains.

To address the above challenges, we take advantage of the source classifier,
and generate transfer examples from the target domain, and then adversarially
learn them during the second training. In this two-round paradigm, the feature
extractor is not only trained with source data, but also the positive samples
from the target domain. In addition, the transferred examples are adversarially
learned during the training.

In this paper, we employed a two-round paradigm, and utilize five loss func-
tions in one framework: classification loss, adversarial domain discrepancy loss,
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deep correlation loss, transfer loss and domain alignment loss. By aggregating
these loss functions, our model can reduce the domain shift effect and thus en-
hance transferability from the source domain to the target domain. The scheme
of our model is shown in Fig. 1.

Our principal contributions are three-fold:

1. We propose a novel method: adversarial continuous learning in unsuper-
vised domain adaptation (ACDA). The proposed ACDA model adversari-
ally learns high confidence examples from the target domain and confuses
the domain discriminator;

2. We are the first to propose a deep correlation loss to help ensure that pre-
dictions are locally consistent (with those of nearby examples);

3. To better represent the learned features and train a robust classifier, we
dynamically align both marginal and conditional distributions of source and
target domains in a two-level domain alignment setting.

Extensive experiments on three highly competitive benchmark image datasets
show that our ACDA model can significantly improve the classification accuracy
over the state of the art.

2 Related work

Domain adaptation has emerged as a prominent method to address the domain
shift problem. Recently, adversarial learning models have been found to be a
better mechanism for identifying invariant representations in domain adaptation.

Adversarial learning based models aim to define a domain confusion objective
to identify the domains via a domain discriminator, and the feature extractor
fools the discriminator [22,31]. The target domain risk is minimized via playing
the minimax game. The domain-adversarial neural network (DANN) considers
a minimax loss to integrate a gradient reversal layer to promote the discrimi-
nation of source and target domains [2]. The adversarial discriminative domain
adaptation (ADDA) method uses an inverted label GAN loss to split the source
and target domain, and features can be learned separately [22]. Zhang et al. [28]
reweighed the target samples using the degree of confusion between source and
target domains. The target samples are assigned by higher weights, which can
confuse the domain discriminator. Miyato et al. incorporated virtual adversar-
ial training (VAT) in semi-supervised contexts to smooth the output distribu-
tions as a regularization of deep networks [16]. Later, virtual adversarial domain
adaptation (VADA) improved adversarial feature adaptation using VAT and
harnessed the cluster assumption (decision boundaries cannot cross high-density
data regions). It generated adversarial examples against the source classifier and
adapted on the target domain [20]. Different from VADA methods, transferable
adversarial training (TAT) adversarially generates transferable examples that fit
the gap between source and target domain, yet these examples can affect original
distributions of two domains [9].
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3 Methods

3.1 Motivation

Existing domain adaptation theory shows that the risk in the target domain can
be minimized by bounding the source risk and discrepancy between source and
target domains (Theorem 1, from Ben-David et al. [1]). Inspired by GAN [5],
adversarial learning [22,9] is designed to reduce the discrepancy between two
domains. However, Tzeng et al.’s adversarial discriminative domain adaptation
(ADDA) model does not generate any examples during training, and it produces
hypotheses that require too large of an adaptability correction [22]. Although
Liu et al.’s transferable adversarial training (TAT) model generates adversar-
ial examples based on source classifier and domain discriminator, the generated
examples are not real examples in either domain, and it still affects the distri-
butions of both domains [9]. In contrast, we choose to identify high-confidence
examples from the target domain and use them to help train the classifier. This
not only confuses the domain discriminator, but also deceives the source classi-
fier to push the decision boundary towards the target domain without changing
the original data distributions.

Theorem 1 [1] Let θ be a hypothesis; εs(θ) and εt(θ) represent the source
and target risk, respectively.

εt(θ) ≤ εs(θ) + dH(DS ,DT ) + λ (1)

where dH(DS ,DT ) is the H-divergence of source and target domains, λ is the
adaptability to quantify the error in hypothesis space of two domains, which
should be sufficiently small.

3.2 Problem and notation

For unsupervised domain adaptation, given a source domain DS = {XS i,YS i}ns
i=1

of ns labeled samples in C categories and a target domain DT = {XT j}nt
j=1 of

nt samples without any labels (YT for evaluation only). Our ultimate goal is to
learn a classifier f under a feature extractor G, that provides lower generalization
error in target domain.

In this paper, we present our approach: adversarial continuous learning for
domain adaptation (ACDA). It incorporates two paradigms: it selects high-
confidence examples from the target domain for transferring to the training of
the source classifier, and then adversarially trains those high-confidence transfer
examples together with the original labeled source and unlabeled target domains,
while the number of categories (C) is the same as during training.

3.3 Source classifier

The task in the source domain is trained using the cross-entropy loss in Eq. 2:

LS(f(G(XS)),YS) = − 1

ns

ns∑
i=1

C∑
c=1

YS iclog(fc(G(XS i))), (2)

where YS ic ∈ [0, 1]C is the probability of each class c among true labels, and
fc(G(XS i)) is the predicted probability of each class.
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Fig. 2: The architecture of our proposed ACDA model. We first extract features from
both source and target domains via G. In first round classification, the shared encoder
layers are trained with examples from the labeled source domain and the unlabeled
target domain. In the second round, the shared encoder layers are trained with addi-
tional high-confidence transfer examples with labels from the first round classifier in
the target domain. The domain alignment loss reduces the difference of the marginal
and conditional distributions between source and target domains. The red outline high-
lights the shared layers for both classifier f and domain discriminator D. YSpred and
YT pred are the predicted labels of the source and target domains after performing
domain distribution alignment.

3.4 Adversarial domain loss

Given the feature representation of feature extractor G, we can learn a discrim-
inator D, which can distinguish between the two domains in Eq. 3.

LA(G(XS), G(XT )) = − 1

ns

ns∑
i=1

log(1−D(G(XS i)))−
1

nt

nt∑
j=1

log(D(G(XT j)))

(3)

3.5 Deep correlation loss

Our features are extracted from a well-trained model using the last fully con-
nected layer; we assume that two highly similar examples should belong to the
same class:

Ym = Yn if Sim(G(Xm), G(Xn)) > Sim(G(Xm), G(Xn6=m)), (4)

where Xm and Xn are samples from the same domain. Sim is the cosine similar-
ity. We then rank all similarity scores and calculate the top-K cosine similarity
matrix for both source and target domains. Hence, we can compare correlated
labels with the predicted labels from the source classifier. The loss is defined as:

LC(Ypred,Ycorr) =
1

ns/t

ns/t∑
i/j=1

||Ypredi/j
−M(Ypred[Ycorri/j ])||, (5)
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where Ypred is the prediction of either source domain or target domain from the
first round source classifier, and Ycorr is the correlation label with the size of
ns/t ×K; it shows the top-K index, which is highly related to the instance that
should be in the same class. Ypred[Ycorr] is the updated matrix for the predicted
labels and M(·) selects the most frequent labels in the updated matrix as shown
in Fig. 3. Therefore, the loss measures how different the predicted label is to its
nearest neighbors, which are from the same domain. Notice that this loss can
be applied in both source and target domains for inference since we are able to
calculate the top-K correlated samples in each domain.

Fig. 3: An example of top-3 correlation labels in updating predicted labels. Given five
examples (X1 to X5), the prediction is the Ypred, which is from classifier f . The pre-
dictions of five examples are within two classes (0 and 1), and the true labels are all
zeros. There are two incorrectly predicted results (Ypred2 and Ypred5). The top-3 Ycorr

shows the top 3 instances that should be in the same class (e.g., X1 should have the
same class as X2, X3 and X4.). The M(Ypred[Ycorr]) changes the predicted labels and
is the same as the truth label.

3.6 Continuous learning

The purpose of continuous learning in unsupervised domain adaptation is to
bring high-confidence transfer examples (positive samples) from the target do-
main to the source domain with a high probability threshold. The high proba-
bility ensures fewer negative samples are from the target domain, which causes
negative transfer in the source classifier (f). In the first round prediction, we
get Y ′

Tp of XT (Y ′

Tp is the probability representation of prediction Y ′

T ). The

high-confidence transfer examples {X ′

Tk}
nk

k=0, where 0 ≤ nk ≤ nt, and nk is de-
termined by the hyper-parameter P. Therefore, we have the following definition.

Definition: one sample in target domain is considered a high-confidence transfer
example if and only if its prediction probability in the dominant class Y ′

Tpk
≥ P.

In the continuous learning setting, the new source domain consists of original
source data plus high-confidence transfer examples from the target domain X ′S =

XS + X ′

T with its new labels Y ′S = YS + Y ′

T .
Similar to training in the first round classification, we also train the new

source domain via adversarial learning (in which high-confidence transfer exam-
ples effectively belong to both the target and new source domains); hence the
transfer loss includes three new loss functions in the black box of Fig. 2.

LT (X ′S ,Y ′S ,XT ,YT corr) = L′S(f(G(X ′S)),Y ′S)

+ LC(Y ′Spred,Y
′
Scorr) + LA(G(X ′S), G(XT )),

(6)
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where L′S(f(G(X ′S)),Y ′S) = − 1
n′
s

∑n′
s

i=1

∑C
c=1 Y ′S iclog (f(G(X ′

Si))); Y
′
Spred and

Y ′Scorr are predicted and correlated labels of the new source domain, respec-
tively. The generated high-confidence transfer examples are together trained with
original source data and new domain discrepancy is minimized in Eq. 7.

LA(G(X ′S), G(X ′T )) = − 1

n′s

n′
s∑

i=1

log(1−D(G(X
′

Si)))−
1

nt

nt∑
j=1

log(D(G(XT j)))

(7)
The discriminator also distinguishes between the new source domain and original
target domain; the high-confidence transfer examples will further confuse the
domain discriminator.

LC(Y ′Spred,Y
′
Scorr) =

1

n′s

n′
s∑

i=1

||Y ′Spredi
−M(Y ′Spred[Y ′Scorri ])|| (8)

The deep correlation loss will also be minimized in the new source domain
and original target domain. We adversarially generate the high-confidence trans-
fer examples from the target domain, which not only maintains the distributions
of two domains but also against both source classifier and domain discrimina-
tor. As aforementioned, we can minimize target domain risk via bounding the
source risk and discrepancy between the source and target domains [1]. In the
first round classification, we have a labeled source domain and unlabeled tar-
get domain. In the second round classification, we have a labeled new source
domain (labels for high-confidence transfer examples are from the prediction of
the source classifier), and unlabeled target domain. Hence, the source classifier
trains with additional high-confidence transfer examples from the target domain;
these examples will push the decision boundary of source classifier towards the
target domain. Therefore, the target domain risk will be further reduced.

3.7 Shared encoder layers

The shared encoder layers begin with three repeated blocks and each block has
a Dense layer, a “Relu” activation layer, and a Dropout layer. The numbers
of units of the dense layer are 512, 128, and 64, respectively. The rate of the
Dropout layer is 0.5. It ends with a Dense layer (the number of units is the
number of classes in each dataset (10, 31, and 65 in our experiments)).

3.8 A two-level dynamic distribution alignment

After the two-round classification, we can get the prediction of the target domain.
However, we can further improve the predicted accuracy by employing a two-level
dynamic distribution alignment, which can dynamically update the predicted
labels in the target domain.

Manifold Embedded Distribution Alignment (MEDA), proposed by Wang
et al. [25], aligns learned features from manifold learning. However, Zhang et
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al. showed that there are defects in estimating the geodesic of sub-source and
sub-target domains [35]. We modified the domain alignment loss as follows:

LDA(DS ,DT ) = arg min(LG(f(G(XS)),YS) + η||f ||2

+ λDf (DS ,DT ) + ρRf (DS ,DT ))
(9)

where f is the classifier from the shared encoder, LG is the sum of squares loss;
||f ||2 is the squared norm of f ; and the first two terms minimize the structure
risk of shared encoder. Df (·, ·) represents the dynamic distribution alignment;
Rf (·, ·) is a Laplacian regularization; η, λ, and ρ are regularization parameters.

Specifically, Df (DS ,DT ) = (1−µ)Df (PS , PT )+µ
∑C

c=1D
c
f (QS , QT ), where µ is

an adaptive factor to balance the marginal distribution (PS , PT ), and conditional
distribution (QS , QT ), and c ∈ {1, · · · , C} is the class indicator [25].

For overall training procedures, we first train the labeled source examples
and unlabeled target examples using Equations 2, 3, and 5 in the first round
classification. We then train the labeled new source domain and unlabeled target
domain using Eq. 6 in the second round classification. Finally, we perform domain
distribution alignment using Eq. 9.

3.9 The overall training objective function

The architecture of our proposed ACDA model is shown in Fig. 2. Taken to-
gether, our model minimizes the following objective function:

L(XS ,YS ,XT ,YT corr) = arg minαLS(f(G(XS)),YS) + (1− α)LC(Ypred,Ycorr)

+ βLA(G(XS), G(XT )) + LT (X ′S ,Y ′S ,XT ,YT corr) + LDA(DS ,DT )
(10)

where f is the classifier from the shared encoder module; LS is the classification
loss, which is the typical cross-entropy loss in Eq. 2; Ypred is the predicted label
for the target domain and Ycorr is the correlated label, which shows the K most
highly related instances (YT corr is the correlated label for the target domain).
The LC , LT and LDA represent the correlation loss, transfer loss, and the domain
alignment loss, respectively. α and β are balance factors. {X ′S ,Y ′S} is the new
source domain.

4 Experiments

In this section, we show how the ACDA model can enhance image recognition
accuracy. Our model are evaluated using three public image datasets: Office +
Caltech-10, Office-31 and Office-Home [19,25]. These datasets are widely used
in many publications [6,4,25], and are the benchmarking data for evaluating the
performance of domain adaptation algorithms by training in one domain and
testing on another. In addition, we conduct ablation studies to investigate the
impact of each component in the ACDA model1.

1 Source code is available at https://github.com/YoushanZhang/Transfer-Learning/
tree/main/Code/Deep/ACDA.

https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/ACDA
https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/ACDA
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4.1 Datasets

Office + Caltech-10 [4] consists of 2,533 images in four domains: Amazon
(A), Webcam (W), DSLR (D) and Caltech (C) in ten classes. In experiments,
C�A represents learning knowledge from domain C which is applied to domain
A. There are twelve tasks in Office + Caltech-10 dataset. Office-31 [19] is an-
other benchmark dataset for domain adaptation, consisting of 4,110 images in
31 classes from three domains: Amazon (A), Webcam (W), and DSLR (D). We
evaluate all methods across all six transfer tasks. Office-Home [24] contains
15,588 images from 65 categories. It has four domains: Art (Ar), Clipart (Cl),
Product (Pr) and Real-World (Rw). There are also twelve tasks in this dataset.

4.2 Implementation details

We extract features for the three datasets from a fine-tuned Resnet50 network [7].
We add one more Dense layer and the number of units is the same as the number
of classes in each dataset. The 1,000 features are then extracted from the second-
to-last fully connected layer [29,33]. Parameters in domain distribution alignment
are η = 0.1, λ = 10, and ρ = 10, which are fixed based on previous research [25].
α = 0.5, β = 0.2, K = 3, P = 0.9999, batch size = 32 and number of iterations
= 1000 are determined by performance on the source domain. We also compare
our results with 19 state-of-the-art methods (including both traditional methods
and deep neural networks).

4.3 Results

The performance on Office + Caltech-10, Office-Home and Office-31 are shown
in Tables 1-3. For a fair comparison, we highlight in bold those methods that are
re-implemented using our extracted features. Our ACDA model outperforms all
state-of-the-art methods in terms of average accuracy (especially in the Office-
Home dataset). It is compelling that our ACDA model substantially enhances
the classification accuracy on difficult adaptation tasks (e.g., D�A task in the
Office-31 dataset and the challenging Office-Home dataset (which has a larger
number of categories and different domains are visually dissimilar)). In addition,

Table 1: Accuracy (%) on Office + Caltech-10 dataset
Task C�A C�W C�D A�C A�W A�D W�C W�A W�D D�C D�A D�W Ave.

GFK [4] 94.6 94.9 95.5 92.6 90.5 94.3 93.5 95.7 100 93.6 95.9 98.6 95.0
GSM [35] 96.0 95.9 96.2 94.6 89.5 92.4 94.1 95.8 100 93.9 95.1 98.6 95.2
TJM [13] 94.7 86.8 86.6 83.6 82.7 76.4 88.2 90.9 98.7 87.4 92.5 98.3 88.9

JGSA [27] 95.1 97.6 96.8 93.9 94.2 96.2 95.5 95.9 100 94.0 96.3 99.3 96.2
ARTL [10] 96.3 94.9 96.2 93.9 98.3 97.5 94.7 96.7 100 94.4 96.2 99.7 96.6
MEDA [25] 96.3 98.3 96.2 94.6 99.0 100 94.8 96.6 100 93.6 96.0 99.3 97.0

DAN [11] 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100 80.3 90.0 98.5 90.1
DDC [23] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 83.8 100 79.0 87.1 97.7 86.1

DCORAL [21] 89.8 97.3 91.0 91.9 100 90.5 83.7 81.5 90.1 88.6 80.1 92.3 89.7
RTN [14] 93.7 96.9 94.2 88.1 95.2 95.5 86.6 92.5 100 84.6 93.8 99.2 93.4

MDDA [18] 93.6 95.2 93.4 89.1 95.7 96.6 86.5 94.8 100 84.7 94.7 99.4 93.6

ACDA 96.2 100 100 93.9 100 100 93.9 96.2 100 93.9 96.7 100 97.6
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Table 2: Accuracy (%) on Office-Home dataset (A: Ar, C:Cl, R: Rw, P: Pr)
Task A�C A�P A�R C�A C�P C�R P�A P�C P�R R�A R�C R�P Ave.

GFK [4] 40.0 66.5 71.8 56.8 66.4 65.1 58.1 43.0 74.1 65.3 44.9 76.3 60.7
GSM [35] 49.4 75.5 80.2 62.9 70.6 70.3 65.6 50.0 80.8 72.4 50.4 81.6 67.5
TJM [13] 50.0 60.1 61.3 42.9 60.0 57.3 38.6 34.7 63.3 48.7 38.0 67.2 51.8

JGSA [27] 45.8 73.7 74.5 52.3 70.2 71.4 58.8 47.3 74.2 60.4 48.4 76.8 62.8
ARTL [10] 56.5 80.4 81.4 68.7 81.6 81.7 70.1 56.2 83.3 72.8 58.2 85.6 73.0
MEDA [25] 49.1 75.6 79.1 66.7 77.2 75.8 68.2 50.4 79.9 71.9 53.2 82.0 69.1

DAN [11] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [3] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [15] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN-RM [12] 49.2 64.8 72.9 53.8 62.4 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.5
CDAN-M [12] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

TADA [26] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SymNets [34] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

MDA [30] 54.8 81.2 82.3 71.9 82.9 81.4 71.1 53.8 82.8 75.5 55.3 86.2 73.3

ACDA 58.4 83.1 84.4 74.6 84.1 83.5 74.4 58.7 85.2 77.2 59.3 87.5 75.9

Table 3: Accuracy (%) on Office-31 dataset
Task A�W A�D W�A W�D D�A D�W Ave.

GFK [4] 81.5 82.7 73.5 97.8 72.2 95.3 83.8
GSM [35] 85.9 84.1 75.5 97.2 73.6 95.6 85.3
TJM [13] 87.5 62.2 64.3 97.4 61.3 92.3 77.5

JGSA [27] 89.1 91.0 77.9 100 77.6 98.2 89.0
ARTL [10] 90.9 93.0 77.1 99.6 78.2 98.3 89.6
MEDA [25] 91.7 89.2 77.2 97.4 76.5 96.2 88.0

JAN [15] 85.4 84.7 70.0 99.8 68.6 97.4 84.3
TADA [26] 94.3 91.6 73.0 99.8 72.9 98.7 88.4

SymNets [34] 90.8 93.9 72.5 100 74.6 98.8 88.4
SSD [32] 92.7 91.6 77.5 99.4 77.8 98.0 89.4
CAN [8] 94.5 95.0 77.0 99.8 78.0 99.1 90.6

ACDA 95.5 96.2 80.2 99.2 81.1 98.4 91.8

the improvement on the Office + Caltech-10 dataset is not large. This caused
by the high state-of-the-art classification accuracy (more than 97%, it is hence
difficult to make a significant improvement). However, our model still provides
more than 0.6% (absolute) improvement over the best baseline method, which
translates to a relative reduction in error of 20%. These experiments demonstrate
the efficiency of the ACDA model in aligning both the marginal and conditional
distributions of two domains.

‘

4.4 Ablation study

We first consider the effects of three different loss functions on classification ac-
curacy (LS and LA are required for adversarial learning). Different combinations
of loss functions are reported in Tab. 4, in which T represents transfer loss, C,
correlation loss, and DA, distribution alignment loss. “ACDA−T/C/DA” is im-
plemented without transfer loss, correlation loss, and distribution alignment loss.
It is a simple model, which only reduces the source risk without minimizing the
domain discrepancy using adversarial learning. “ACDA−T/C” directly aligns
the joint distribution of the two domains. “ACDA−DA” reports results with-
out performing the additional domain distribution alignment. We observe that
with the increasing of the number of loss functions, the robustness of our model
keeps improving. The usefulness of loss functions is ordered as LC < LDA < LT .
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(a) Speaker (b) Glass (c) Desk lamp

Fig. 4: Example images to illustrate the importance of probability threshold P. The
task is A�W, (a) and (b) is from Clipart domain, and (c) is from Art domain in Office-
Home dataset. When P = 0.9, (a) and (b) are mistakenly treated as high-confidence
examples in Desk lamp class, and these two examples will be excluded when P = 0.99.

Therefore, the proposed continuous learning approach and correlation loss are
effective in improving performance, and different loss functions are helpful and
important in minimizing the target domain risk.

We further study the use of high-confidence transfer examples. To show the
importance of selecting a high probability threshold P, Fig. 4 shows two unusual
examples, in which the task is from Art domain to Clipart domain. In our con-
tinuous learning setting, we bring high-confidence transfer examples into target
domain (Clipart). Examples (a) and (b) are from the Clipart domain, and if
P = 0.9, these two will be treated as high-confidence transfer examples. How-
ever, these two are wrongly classified as desk lamps, while the original classes
are speaker and glasses. When P = 0.9, these two examples are included. Hence,
P = 0.9999 is a sufficient threshold to eliminate these negative examples.

We also show the performance of different P on classification error rate in
Tab. 5 and Fig. 5. In Tab. 5, “−” lists the number of samples in the target domain
(e.g., in C�A, the number of samples in A is reported). With the increasing of
P, the number of high confidence transfer examples is decreased, and error rate
is first decreased and then increased. This phenomenon is induced by either the
negative transfer examples are included in the training when P is small or fewer
transfer examples are included in the training when P is too high. Therefore,

Table 4: Ablation experiments on Office-31 dataset

Task A�W A�D W�A W�D D�A D�W Ave.

ACDA−T/C/DA 88.2 90.6 75.3 97.8 74.4 94.8 86.9
ACDA−T/DA 85.8 91.6 75.6 98.0 76.3 97.4 87.5
ACDA−T/C 91.9 88.5 78.3 98.1 77.8 97.3 88.7
ACDA−C/DA 91.4 91.6 78.3 98.8 78.4 96.9 89.2
ACDA−T 94.5 94.0 77.7 99.0 78.8 97.1 90.2
ACDA−DA 94.3 94.2 79.5 99.6 79.5 97.7 90.8
ACDA−C 95.4 95.1 79.1 99.0 79.8 97.9 91.1

ACDA 95.5 96.2 80.2 99.2 81.1 98.4 91.8
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Fig. 5: Error rate of different probability thresholds P in Office + Caltech 10 dataset
(x-axis is different P).

Table 5: The number of high-confidence transfer examples under different P on Office
+ Caltech-10 dataset

P C�A C�W C�D A�C A�W A�D W�C W�A W�D D�C D�A D�W
− 958 295 157 1123 295 157 1123 958 157 1123 958 295

0.5 956 295 157 1118 295 157 1112 950 157 1114 950 295
0.7 939 282 154 1076 278 150 969 894 157 1049 907 289
0.9 923 278 152 1056 272 147 804 675 156 900 685 273

0.9999 266 194 103 578 175 90 145 364 54 565 751 90
0.9999999 18 104 92 351 27 20 0 0 11 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0

P = 0.9999 is the best hyper-parameter value for our model (hyperparameter P
is tuned based on the top-3 correlated labels using the source domain data).

5 Discussion

There are two compelling advantages of the proposed ACDA model. First, we em-
ployed two-round classification and adversarially learned high-confidence trans-
fer examples from the target domain. Secondly, our model surpasses the other
models across all three datasets even using the same features, which reflects the
value of our model on domain adaptation for image recognition. We also present
the visualization of the W�A task in the Office-31 dataset to show the progress
of our ACDA model. In Fig. 6(a), the feature representation of domain W of
different methods is shown. For features of DAN, MEDA, JAN and Resnet50
model, the data distribution is not better aligned since data structures are mix-
ing together. Although the features of the GSM model are slightly better than
the first four methods, it is still worse than our features. Fig. 6(b) shows the
evolution of selecting high-confidence transfer examples (green color dots) using
our ACDA model. As the number of iterations increases, the more high con-
fidence transfer examples are adversarially generated from target domain (A),
which will be included in source domain (W). The accuracy in the target can be
improved via such an evolution.

To validate the assumption that “two highly correlated examples should be-
long to the same class” in Sec. 3.5, we further compare the classes and show
the matching class accuracy using the top-1 correlated labels in Tab. 6. This
demonstrates that the correlated labels are useful in updating predicted labels.
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(a) Visualization of different methods on domain W

(b) The evolution of our ACDA model in task W�A

Fig. 6: t-SNE view of task W�A in Office-31 dataset. Different colors in (a) and first
two images in (b) represent different categories. In the last four images of (b), black dots
represent domain A, red dots represent domain W and green dots are high-confidence
examples, which are adversarially learned in ACDA (Iter: iteration).

Table 6: Top-1 correlated label accuracy (%) on three benchmarking datasets.

Domain
Office + Caltech-10 Office-31 Office-Home

A C D W A D W Ar Cl Pr Rw
Correlated 95.7 96.6 100 100 88.4 99.0 99.2 76.7 76.0 93.3 85.0

Unfortunately, performance is not always better than other methods, which
is a function of the differences across specific domain adaptation tasks. Further-
more, we use the top-K highly correlated instances to construct the adjacency
matrix (top-3 in our experiments); other K could be further explored.

6 Conclusion
We propose novel adversarial continuous learning in unsupervised domain adap-
tation (termed ACDA) to overcome limitations in generating proper transfer
examples and aligning the joint distributions of two domains by minimizing five
loss functions. The generated transfer examples can help to further learn the
domain invariant of the two domains. As a component of our ACDA model, ex-
plicit domain-invariant features are learned through such a cross-domain training
scheme. Experiments on three benchmark datasets show the robustness of our
proposed ACDA model.
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