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ABSTRACT
The COVID-19 pandemic has been one of the biggest health crises
in recent memory. According to leading scientists, face masks and
maintaining six feet of social distancing are the most substantial
protections to limit the virus’s spread. Experimental data on face
mask usage in the US is limited and has not been studied in scale.
Thus, an understanding of population compliance with mask rec-
ommendations may be helpful in current and future pandemic
situations. Knowledge of mask usage will help researchers answer
many questions about the spread in various regions. One way to
understand mask usage is by monitoring human behavior through
publicly available webcams. Recently, researchers have come up
with abundant research on face mask detection and recognition
but their experiments are performed on datasets that do not reflect
real-world complexity. In this paper, we propose a new webcam-
based real-world face-mask detection dataset of over 1TB of images
collected across different regions of the United States, and we im-
plement state-of-the-art object detection algorithms to understand
their effectiveness in such a real-world application.
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1 INTRODUCTION
The COVID-19 pandemic emerged in December 2019 in Wuhan
City in the Hubei province of central China. Observing the virus’s
growth and spread among humans, the World Health Organization
declared the coronavirus (i.e., Sars-CoV-2) to be a world pandemic in
March 2020. Researchers experimentally found that wearing a face
mask and maintaining social distancing will help slow the spread of
the coronavirus [19]. As a result, various health departments across
the world started issuing guidelines for their respective countries.

It is crucial to observe face mask usage across various regions to
adequately provide information to policymakers and epidemiolo-
gists who project the progress of the outbreak. It is also essential to
understand the future upcoming waves of COVID-19 and any other

GoodIT ’21, September 9–11, 2021, Roma, Italy
2021. ACM ISBN 978-1-4503-8478-0/21/09. . . $15.00
https://doi.org/10.1145/3462203.3475903

Figure 1: Comparing the face mask images that are widely
being used for face detection (top half) versus webcam face-
mask images (bottom half).

such new viruses with the help of face mask usage activity, and to
have an early warning indicator so that society can act upon it. As a
result of COVID-19, the need has arisen to develop an efficient face
mask detection algorithm to track face mask usage in populated
areas. Numerous research publications have attempted to do so
with strategies ranging from single-stage detection to multi-stage
detection. COVID-19 motivates current research because it demon-
strated that existing object and face detection algorithms do not
perform well for face detection tasks as it becomes more difficult
for the algorithms to detect faces with partial facial visibility (as
we will show in Table 2). It is also a significant problem from a
dataset standpoint as there are few historical datasets available for
the face mask detection problem. Current dataset developments
focus on adding synthetic mask images over actual face images
using facial landmark annotations to infer the location of facial
structures [2, 24, 27] or images that have real masked faces but are
relatively easy to detect and close to the cameras. The difference in
complexity is highlighted in Figure 1.

Moreover, existing real masked face datasets cover some specific
regions of the world that could lead to models that would be prob-
lematic to deploy elsewhere. Xiong et al. [26] proposed a dataset
of 360K images but pulled from a population that is heavily biased
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toward Asians. However, current face mask detectors trained over
current datasets are scarce and would still need improvements for
complicated real-world tasks. This paper answers how well the
current models work in real-world public webcam image datasets.

One way to determine face mask usage without further spread-
ing the virus is to observe the publicly available webcams in bulk
and examine the faces for masks. The approach is scalable, safe to
execute, and provides a bigger picture of face mask usage in the
United States. An example of Times Square in New York is shown in
Figure 2. We gathered approximately 1016 Gigabytes of data from
74 webcams covering a variety of locations across the United States
of America. Our contributions are as follows:
• The paper presents a novel dataset with much higher difficulty

than existing Wider-Face hard category and COCO datasets.
• We have collected 1016 Gigabytes of data (i.e., 653,997 images)

from public US webcams from June 2020 to March 2021.
• We re-implemented state-of-the-art face detection algorithms for

face mask detection and demonstrate their effectiveness against
real-world webcam images.

• We estimate mask usage for the United States over time using
multiple state-of-the-art face mask detection algorithms.

We make available our source code and dataset with annotations
at: github.com/eashanadhikarla/wfm.

2 RELATEDWORK
Face detection is a vital and primary step for face mask detection,
face recognition, masked face recognition, head-pose detection, and
numerous other applications related to faces. Thus typically face
mask detection algorithms are divided in two tasks; (i) Detecting
the faces in a given image, and (ii) then classifying the image as a
masked or no-masked face that is a binary classification task. We
define an additional third class to reflect uncertainty or when the
mask is not worn properly. This work is a form of image classi-
fication and feature extraction. For such tasks deep learning has
proven to be an incredibly powerful tool. Deep learning algorithms
help in extracting the most relevant features from the images for
image classification tasks. A lot of study has been accomplished
in the area of face detection and recognition [23], object detection
[20], analyzing road traffic via street object detection [25].

Recently, numerous Face Detection algorithms have been specif-
ically designed for face mask detection. Loey et al. [15] designed a
transfer learning model with ResNet-50 for feature extraction and
SVM for classification. Although the method achieved a high accu-
racy on multiple datasets, the datasets were not complex enough
to generalize for all types of complicated real-world applications
such as face detection on streets, public areas, etc. For example, one
dataset used (LFW) is a benchmark for face recognition and has very
clear faces in every image making the detection task easier, whereas
our challenge is to find faces in extremely complicated scenarios as
shown in Fig. 1. Nagrath et al. [17] proposed a Single-Shot Detector
with MobileNetV2 for face mask detection achieving an accuracy
of 92.64% on their self-prepared dataset that is a combination of
multiple publicly available datasets. Rodríguez et al. [18] designed
a method to detect medical masks in an operating room. The com-
bination of two detectors, one for faces and another for medical
masks, enhances the models’ performance, achieving 95% accuracy

Figure 2: A real-world webcam image of New York City’s
Times Square reveals the complicated nature of the problem.
Top: faces detected using RetinaFace [5]; Bottom: face mask
detection using Mask-RCNN [7].

in detecting faces with surgical masks. This fairly narrow method
would not work in cases with faces more than 5m away from the
camera. Loey et. al [14] used a YOLO-v2 with ResNet-50 model and
achieved 81% average precision for face mask detection. Overall,
most algorithms are using state-of-the-art face detection models
for the task of face mask detection. Hence, we plan to understand
the state-of-the-art models and widely used pre-trained networks
for our analysis.

Convolutional Neural Networks. Object recognition is a popular
task in computer vision. The purpose of any object detection model
is to detect a sub-region in a given image that contains an object,
create a bounding box and label the object with a class label. Deep
learning algorithms such as Convolutional Neural Networks (CNNs)
have shown impressive performance on visual recognition tasks and
have a phenomenal ability to extract latent features from images.

Single & Multi-Stage Detectors. A recent work, Retina-Mask [10],
uses a two-stage detector where the stage 1 detector extracts the
sub-regions of the image that have higher probability of containing
objects using the R-CNN [22] architecture. The sub-regions are
then passed on to the stage 2 detector that contains an SVM pre-
ceded by a CNN to extract features and perform classification. The
pipeline takes a resized input which passes through the classifica-
tion network which serves as a feature extractor. Then it is passed
through another classifier that contains an SVM for each class that
predicts the object (and a regressor is trained in the background
for corrections). The overall idea shows significant performance
improvement, but the overall choice of dataset used by the authors
is very small, and the evaluation performed on another dataset [4]
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Figure 3: Left-to-right: (a.) Cats and Meows Karaoke Bar, New Orleans, LA, (b.) Bourbon Street, New Orleans, (c.) Church Street
Market Place, Burlington, VT (d.) Times Square, New York. Labels are provided by YOLOv5x-TTA [11].

is fairly uncomplicated. Additionally, the authors do not provide
performance measures from any real-world dataset.

Unified Neural Networks. A work based on convolution neural
networks is the single shot detector [13] which is faster than Retina-
Mask but performance drops for images with relatively small ob-
jects. Another recent work, Unified Multi-scale Deep-CNN [3], uses
a unified network for face detection that is trained end-to-end. Un-
like a two-stage detector, the unified network uses sub-networks
for proposals and detection, and uses a multi-task loss to optimize
model training. The method uses less memory by replacing input
upsampling by feature upsampling using deconvolution.

3 WEBCAM FACE MASK (WFM) DATASET
An idealized dataset would incorporate 1) significant real-world
diversity (e.g., of location, time of day, distance to subjects, and
number of subjects); 2) authentic masked images (as opposed to
artificial masks over prior images); and, 3) annotations that are com-
patible with many existing models. Our dataset generally reflects
these goals.

Our overall goal was to collect real-world public images over
2020-2021 from different areas in the United States to provide infor-
mation about mask usage in the population. However, since no prior
source of faces in public with masks exists, such a dataset would
also have value in training and testing face and mask detection mod-
els. Figure 3 demonstrates four different locations with different
densities of faces, bounding box sizes, and lighting conditions.

3.1 Finding Webcams
Finding public webcams was a challenge as we needed to select
webcams where algorithms can detect faces and hence face masks
(i.e., we were only interested in webcams where public gathering
was seen in bulk).We identified ~100 webcams from locations across
the United States. Out of those webcams we filtered out a quarter
that either did not include good views of people and their face
masks or were restricted by website policy. Out of the remaining
74 webcams, 12 are from YouTube and the rest were from various
popular public websites such as Earthcam, Ocean City, IP24.net,
Skyline Webcams, and ipcamlive.

We selected sources with image sizes ranging from 480 to 2048
pixels in both dimensions, after manual inspection of each webcam
to ensure good data quality for training and analysis. Higher priority
was given to images with better quality as they would offer more
detailed features about the location. Hence, we use algorithms that
support different image sizes; for example, YOLO-v5x is good in
capturing image details using the CNN as feature extractor. Low
resolution images work well for webcams with a comparatively

less complex background in the images and faces that appear to be
much closer to the cameras.

3.2 Dataset Characteristics
Weperiodically retrieved image frames from our set of livewebcams.
The average period between fetched images from a single webcam
was between 400 and 500 seconds (i.e., 6.67-8.34 minutes). Due to
the long span of image collection, many webcams shut down after
a while and we added a few more later. Some images were captured
in greyscale; the vast majority were in color. Image sizes ranged
from 480 to 2048 pixels wide and which were subsequently resized
as needed for the algorithm. The resizing was performed uniformly
to preserve the ground truth bounding-box aspect ratios. In total,
653,997 images were collected, covering a wide variety of images
with a range of facial bounding-box sizes (from 1% to 60% of the
image width) and density of bounding boxes (from 1 to 83 in an
image). These images also offer diversity in terms of illumination
and capture all types of weather conditions from June 2020 toMarch
2021. Figure 4 shows scatterplots reflecting the distribution of 𝑥 vs.
𝑦 coordinates (i.e., the lower-left corner of where the face appears)
and width vs. height of the bounding boxes. Annotations were
recorded in multiple formats (xml, txt, normalized coordinates).

3.3 Data Labeling & Preprocessing
Since the data is collected without labels, we labeled a portion
for model training and comparison. We used the COCO Annota-
tor [1] to manually label images. First, we applied a pre-trained
YOLOv5x6TTA model over the dataset to filter out any images with
no faces detected (which naturally eliminates corrupted images
and useless, e.g., rain-smeared images) from the manually labeled
dataset. We randomly chose ~2500 images for the labeling task.
The selection process is constrained to select images at least 60
minutes apart if they are from the same source to prevent similar

Figure 4: Characteristics of the hand-labeled portion of the
dataset. Middle figure (x vs. y) and right figure (width vs.
height) are normalized coordinate values between 0 and 1.
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Table 1: Performance characteristics of all object detection models.

Model Size
(pixels)

Model
size (mb)

Inference
time (ms)

Precision
(P)

Recall
(R)

AP
(mask)

AP
(no-mask)

AP
(unsure)

mAP
@.5

YOLOv3-tiny 640 17.4 5.4 21.4 25.2 17.7 23.0 3.94 14.9
YOLOv3 640 123.4 13.8 27.5 36.6 35.2 36.6 8.44 26.8

Faster-RCNN 600 329.7 54.25 27.7 39.2 34.8 38.6 10.9 28.1
YOLOv3-SPP 640 125.5 13.2 27.9 38.7 35.7 37 10.7 27.8
RetinaNet 800 155 24.8 32.2 35.2 36.9 39.8 10.1 29

Mask-RCNN 600 176.3 237.8 33.1 36.8 39.7 42.2 11.3 31
YOLOv5x 640 175.1 36.1 36.1 33.5 37.1 40.2 10.3 29.2
YOLOv5x 1280 1055 35.7 32.6 37.7 42.8 46.7 11.7 33.8

YOLOv5x6TTA 1280 1130 39.2 37.0 41.6 46.5 47.4 11.2 35.1

images from being selected for labelling. In total, there were two
annotators per image for the labeling of the first ~300 images which
were found to be highly consistent. The remaining annotations
were performed by a single annotator per image.

4 EXPERIMENTALWORK
4.1 System Overview
Our overall implementation is comprised of eight object detection
and four face detection models. The object detection methods Mask-
RCNN [7], YOLO-v3 (Darknet-53) [20], YOLO-v3-tiny [20], YOLO-
v3-SPP (Spatial Pyramid Pooling) [9], RetinaNet [12], Faster-RCNN
[21], YOLO-v5x [11], and YOLO-v5x6-TTA (Test Time Augmen-
tation) [11] are widely popular object detection models and we
specifically fine-tune them for face mask detection. Object detec-
tors in our case are trained specifically for faces as objects that wear
masks and do not wear masks. On the other hand, we were also
interested to understand the efficacy of face detection algorithms
namely: Tinyface [8], RetinaFace [5], FaceBoxes [29], MTCNN [28].
For the object detectors, given an image, the task is to detect faces in
the image and classify the detected boxes as into three labels:with-
mask, without-mask, and unsure). Whereas, for face detection
algorithms, we measure their face detection efficacy.

YOLO stands for "You Only Look Once" and uses CNNs through-
out, unlike other two-stage detectors for object detection. On a
given image YOLO detects multiple objects using extracted fea-
tures, creates bounding boxes around them using box-regression
and assigns a label using object classification. There are various
versions of the YOLO architecture; we use three types of YOLO-v3
architectures as they are widely used in different applications, and
they improve upon their predecessors. Generally, YOLOs are pop-
ular mainly because they are fast despite having 106 layers in the
network, and they are capable of generalizing well to datasets with
slight distributional shifts versus that of the training set [20]. YOLO-
v3 contains a dense network, including 75 layers of convolutional-
2D, 31 layers of shortcut, routes, and up-samplings, resulting in
reduced localization errors and significantly improved detection
and classification accuracy.

Faster-RCNN uses region proposal networks (RPNs) to generate
anchor boxes that are filtered based on a top-k threshold value,
and compute the box regression and classification. A RPN predicts
whether an anchor will be in the background or foreground and
refines the anchor accordingly. In addition to the existing branch for

classification and bounding box regression in Faster-RCNN, Mask
R-CNN adds a branch for predicting segmentation masks on each
Region of Interest (RoI).

4.2 Intersection Over Union (IOU)
In all cases, to measure the bounding-box accuracy we use the
Intersection over Union (IOU) of the predicted and ground-truth
bounding boxes as an evaluation metric. The IOU metric is inde-
pendent of the algorithm used for predicting the bounding boxes.
IOU is computed as area of intersection divided by area of union. In
order to compute the areas, we need the ground-truth bounding
boxes (i.e., where the object is actually located in the image) and
the predicted bounding box that the algorithm generates as output.
IOU values are always greater than 0 and less than or equal to 1.

4.3 Non-Maximum Suppression and
Confidence Threshold

Typically, when identifying faces in an image, we use a sliding win-
dow to compute the feature map and provide scores to each window.
However, because we have too many candidate region proposals,
we filter them using a non-maximum suppression threshold
(NMS) which utilizes intersection over union as described in Sec-
tion 4.2. It takes input two boxes and computes the intersection
and the union of the two boxes and computes the ratio. Once we
have the intersection over union values, following are the steps to
evaluate over NMS threshold;
(1) We define a list 𝐾 of proposed bounding boxes and sort them

by confidence score in decreasing order.
(2) Take the proposal with the highest confidence score in list 𝐾 ,

remove it from 𝐾 and add it to an empty list 𝑋 .
(3) For each remaining proposal 𝑖 in list 𝐾 , calculate IOU between

𝑖 and the most recently added proposal in 𝑋 . If IOU is greater
than a defined threshold (0.5 in our case), then remove 𝑖 from 𝐾 .

(4) Now, we have removed all the proposals that are similar to the
proposal in 𝑋 , thus any proposals remaining in 𝐾 would refer to
a different object. So, repeat steps 2 - 4, with the most recently
added proposal in 𝑋 .

4.4 Training, Testing, and Evaluation
For training the model, the training and testing dataset is struc-
tured differently for each algorithm we used. Ultimately, all models
perform a multi-class object detection task where we provide three
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Table 2: Performance of the WIDER-Face pre-trained face
detection models on the webcam dataset (average precision
at different IOU thresholds).

Model AP.10 AP.20 AP.25 AP.30 AP.50 AP.75
MTCNN 20.1% 18.4% 17.3% 16.1% 8.5% 0.3%
Faceboxes 40.3% 39.8% 39.7% 39.4% 37.1% 9.2%
Tinyface 65.5% 63.1% 60.3% 56.5% 34.2% 3.7%
Retinaface 84.1% 80.3% 75.7% 69.4% 43.8% 7.9%

different labels for training and evaluation (with-mask, without-
mask, and unsure).

We divide the hand-labeled ~2500 image dataset with 3-fold
cross validation. We resize the images to 640, 1024, 1280 pixels
(height and width).1 We used a stochastic gradient descent (SGD)
optimizer with a momentum of 0.9 and a decay rate of 5e-4 for all
the algorithms except Faster-RCNN and Mask-RCNN with a decay
rate of 1e-4. To augment our hand-labeled dataset, we use ~1530
labeled images from Kaggle [16, 24] for model training and use
pre-trained models for weight initialization.

Table 1 shows the state-of-the-art object detection algorithms’
performance by computing the average precision as the accuracy
measure.We show the average precisionwith the IOU box-retention
threshold of 0.50 for each class, i.e., with-mask, without-mask, un-
sure, and calculate the mAP (mean average precision) averaging all
three classes. We also show the models’ precision, recall for each
class, model size, input size, and inference time of the model on
our dataset. The AP of the unsure class is consistently low for all
the architectures, making the overall-mAP lower. It can be inferred
from Figure 4 as we see the distribution of the imbalanced classes.
It is likely normal to have a low number of “unsure" class labels
as hand-labeling is performed mainly towards detecting people
with mask and without a mask. However, several conditions such
as pose, lighting condition at a specific part of the image, or have
obstructions such as hand on the face made it harder to label it.
Hence, it was labeled “unsure".

We used various popular models ranging from a model size
of 17.4MB, representing a lightweight model that can be easily
installed in an embedded device (YOLOv30tiny), to 1130MB, repre-
senting a very deep model (YOLOv5x6TTA). We show how different
model architectures perform on a dataset containing many highly
complex images. For all models, instead of random model initial-
ization, we use the pre-trained models as initial weights for our
model for faster convergence, corresponding to a type of transfer
learning. It is interesting to observe YOLOv3-tiny. Despite having
only seven convolutional layers and six max-pooling layers in the
backbone, with a mean-average precision of 14.9%. Furthermore,
we see a ~11% improvement with YOLOv3 Darknet-53 network,
which has 106 layers achieving 26.8% mean-average precision.

On the other hand, RetinaNet with a ResNet-50 backbone has
comparatively similar performance to YOLOv3-SPP. We follow a
similar configuration for the convolutional layers by adding batch-
normalization after every convolutional layer. It helped in faster

1Mask-RCNN, Faster-RCNN, and RetinaNet keep the aspect ratio and pad with zeros
if the image is not square; the remaining models square the image as part of their
preprocessing.

convergence of the model and improved the mAP score by 1.2%.
Batch-normalization acts as a regularization technique that pre-
vents the model from over-fitting on the training dataset. We use
𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 2, which upsamples the output feature map from
the previous layer by a factor of 2 by bi-linear upsampling. More-
over, RetinaNet uses focal loss as a novel approach to address
the foreground-background imbalance in an image. RetinaNet is
a single-stage detector, unlike Faster-RCNN and Mask-RCNN that
are two stage detectors. YOLO-v5 with Test time augmentation
performs the best on our dataset with mAP=35.1% in Table 1.

4.5 Mask-wearing trends
Figure 5 shows the comparison between face mask usage trends
analyzed by the different mediums of data collection. The upper
(purple) line reflects data collected via surveillance, hospital data,
personal interview, etc. This dataset [6] from compiles multiple
resources (e.g., self-assessment surveys) with uncertain veracity
(e.g., it is not certain whether a subject told the truth about his/her
face mask usage). On the other hand, the lower three lines shows
our face mask dataset from an objective source, i.e., our Webcam
Face Mask (WFM) dataset, but utilizing different detection models.
We applied our model across ten months of the dataset (the same
ten months as for the self-assessment data) from June 23, 2020 -
Mar 31, 2021. Due to training the model for face detection and face
mask classification, the model is slightly biased towards detecting
non-masked faces compared to masked faces. Overall, we do see a
similar trend line for face mask usage using our webcam dataset.
We consider two other impacts on the model below in Section 4.6.
In general, the overall trend in all cases shows an increase in face
mask usage over time.

4.6 Sensitivity Testing
We are interested in knowing whether the number of faces in an
image and the size of bounding boxes in the webcam dataset will im-
pact the facemask detectionmodels’ efficacy.We use YOLOv5x6TTA

Figure 5: Comparison between face mask usage trends.
While the overall rates differ with different datasets, the
trends are quite similar. Purple dashed: data from self-
assessment surveys [6], and (Blue, Green, Red): dataset eval-
uation using facemask detection using the top threemodels
(YOLOv5x6-TTA, Mask-RCNN, YOLOv5x).
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for hypothesis testing as it performed best in Section 4.4.

Hypothesis 1. Testing the impact of the size of the bounding boxes.
We examined 500 images, divided into images with small (120 im-
ages) or large bounding boxes (380 images), and compared the
performance on each set (0.197 and 0.377 on small and large, re-
spectively). Using a two-proportion z-test to determine whether
the performance of the two sets differs, we found that 𝑝 << .001,
allowing us to reject 𝐻0 (which said that they were the same).

Hypothesis 2. Testing the impact of the density of bounding boxes.
Similarly, we divided 500 images into two sets, with more than 4
people, or four or fewer people. Performance on images with 𝑛 > 4
was .286 (averaged across 165 images) and with 𝑛 <= 4 was .327
(averaged across 335 images). A two-proportion z-test finds that
𝑝 = .353, i.e., we cannot reject 𝐻0, and conclude that although we
see decrease in average precision with higher density but it is not
significantly impacting the performance.

5 CONCLUSION
We presented a new webcam-based dataset that reflects real-world
complexity. We tested 12 different models to understand their ef-
ficacy. We also utilized three models to label the remaining data
to compare predicted mask usage trends and with another source
of data. The WFM dataset is valuable for potential COVID-19 re-
lated studies and offers diversity for AI-related datasets as this is
the first webcam dataset with face masks that has been collected.
The dataset provides a real-world challenge for developing better
AI models, incorporating real-world face masks for face detection
and face mask detection tasks, and is a collection of 10 months of
captured images, a small portion of which has been hand-labeled.
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