
Efficient Pre-trained Features and Recurrent Pseudo-Labeling
in Unsupervised Domain Adaptation

Youshan Zhang Brian D. Davison
Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA

{yoz217, bdd3}@lehigh.edu

Abstract

Domain adaptation (DA) mitigates the domain shift prob-
lem when transferring knowledge from one annotated do-
main to another similar but different unlabeled domain.
However, existing models often utilize one of the ImageNet
models as the backbone without exploring others, and fine-
tuning or retraining the backbone ImageNet model is also
time-consuming. Moreover, pseudo-labeling has been used
to improve the performance in the target domain, while
how to generate confident pseudo labels and explicitly align
domain distributions has not been well addressed. In this
paper, we show how to efficiently opt for the best pre-trained
features from seventeen well-known ImageNet models in
unsupervised DA problems. In addition, we propose a re-
current pseudo-labeling model using the best pre-trained
features (termed PRPL) to improve classification perfor-
mance. To show the effectiveness of PRPL, we evaluate
it on three benchmark datasets, Office+Caltech-10, Office-
31, and Office-Home. Extensive experiments show that our
model reduces computation time and boosts the mean accu-
racy to 98.1%, 92.4%, and 81.2%, respectively, substantially
outperforming the state of the art.

1. Introduction

With the explosive growth of information in the current
era, there are massive amounts of data from multiple sources
and corresponding to varied scenarios. However, not all
tasks have enough annotated data for training, and collecting
sufficient labeled data is a big investment of time and effort.
Therefore, in order to build machine learning models it is
often necessary to transfer knowledge from one labeled do-
main to an unlabeled domain. Due to dataset bias or domain
shift [17], the generalization ability of the learned model on
the unlabeled domain has been severely compromised. Do-
main adaptation (DA) is proposed to circumvent the domain
shift problem.

Unsupervised domain adaptation (UDA) transfers knowl-

edge learned from a label-rich source domain to a fully
unlabeled target domain [16]. Most prior methods focus
on matching (marginal, conditional, and joint) distributions
between two domains to learn domain-invariant representa-
tions. Maximum Mean Discrepancy (MMD) is one of the
most popular distance metrics when minimizing differences
between two distributions. Long et al. [14] proposed a Deep
Adaptation Network (DAN) that considered multiple kernels
of MMD functions. Recently, Kang et al. [11] extended
MMD to the contrastive domain discrepancy loss. However,
these distance-based metrics can also mix samples of dif-
ferent classes together. Recently, adversarial learning has
shown its power in learning domain invariant representations.
The domain discriminator aims to distinguish the source do-
main from the target domain, while the feature extractor aims
to learn domain-invariant representations to fool the domain
discriminator [11]. Sometimes, pseudo-labeling is proposed
to learn the target discriminative representations [31, 32].
However, the credibility of these pseudo labels is unknown.

To address the above challenges, this paper provides two
specific contributions:

1. To reduce computation time, we extract features from
seventeen pre-trained ImageNet models and then design
a fast and efficient unsupervised metric to select the best
pre-trained features for the domain transfer tasks.

2. We develop a recurrent pseudo-labeling paradigm to
continuously select high confidence transfer examples
from the target domain and minimize the marginal and
conditional discrepancies between the two domains.

We conduct extensive experiments on three benchmark
datasets (Office + Caltech-10, Office-31, and Office-Home),
achieving higher accuracy than state-of-the-art methods.

2. Related work
Pre-training. Pre-training is one of the dominant compo-
nents of transfer learning. Recent deep networks often apply
a pre-trained network (typically trained on the ImageNet
dataset) as the initialization for object recognition and seg-
mentation. As in many computer vision tasks, it is often

slow and tedious to train a new network from scratch. Hence,
using a pre-trained model on one dataset to help another
is a major advantage of transfer learning. Traditional DA
methods relied on the extracted features from the pre-trained
ImageNet models and then aligned the marginal or condi-
tional distributions between different domains [34, 39, 35].
Recent deep networks frequently select ResNet50 as the
backbone network for UDA [30, 15]. Notably, other deep
networks are not investigated, even though different Ima-
geNet models affect the performance of UDA on traditional
methods [36, 40]. The impact of extracted pre-trained fea-
tures on deep networks are not well explored. In addition,
selecting the best pre-trained features based on performance
in the target domain requires significant computation to train
models in the supervised source domain and infer to the
unlabeled target.

Pseudo-labeling. Pseudo-labeling is another technique to
address UDA and also achieves substantial performance on
multiple tasks. Pseudo-labeling typically generates pseudo
labels for the target domain based on the predicted class
probability [20, 31, 32, 3, 37]. Under such a regime, some
target domain label information can be considered during
training. In deep networks, the source classifier is usually
treated as an initial pseudo labeler to generate the pseudo
labels (and use them as if they were real labels). Different al-
gorithms are proposed to obtain additional pseudo labels and
promote distribution alignment between the two domains.

An asymmetric tri-training method for UDA has been pro-
posed to generate pseudo labels for target samples using two
networks, and the third can learn from them to obtain target
discriminative representations [20]. Xie et al. [31] proposed
a Moving Semantic Transfer Network (MSTN) to develop
semantic matching and domain adversary losses to obtain
pseudo labels. Zhang et al. [32] designed a new criterion
to select pseudo-labeled target samples and developed an
iterative approach called incremental CAN (iCAN), in which
they select samples iteratively and retrain the network using
the expanded training set. Progressive Feature Alignment
Network (PFAN) [3] aligns the discriminative features across
domains progressively and employs an easy-to-hard transfer
strategy for iterative learning. Chang et al. [2] proposed
to combine the external UDA algorithm and the proposed
domain-specific batch normalization to estimate the pseudo
labels of samples in the target domain and more effectively
learn the domain-specific features. Constrictive Adaptation
Network (CAN) also employed batch normalization layers
to capture the domain-specific distributions [11].

These methods highly rely on the pseudo labels to com-
pensate for the lack of categorical information in the target
domain. However, they did not check the quality of pseudo-
labels, as noisy pseudo-labeled samples hurt model perfor-
mance. In addition, most pseudo-labeling methods employ a

two-stage paradigm. The pseudo labels in the first stage are
generated and then used to train the model along with the
labeled source domain. Differing from previous work [14, 3],
we recurrently generate high confidence examples using a
novel scheme.

3. Methodology
3.1. Problem

Here we discuss the unsupervised domain adaptation
(UDA) problem and introduce some basic notation. Given
a labeled source domain DS = {X i

S ,Yi
S}
NS
i=1 with NS

samples in C categories and an unlabeled target domain
DT = {X j

T }
NT
j=1 withNT samples in the same C categories

(YT for evaluation only), our challenge is how to get a well-
trained classifier so that domain discrepancy is minimized
and generalization error in the target domain is reduced.

In UDA, a typical method would first select one of the
ImageNet models as the backbone network for feature ex-
traction. Then, more fine-tuning layers and loss functions are
added to minimize the discrepancy between XS and XT . In
addition, most pseudo-labeling algorithms do not check the
reliability of the generated pseudo labels. These approaches
face two critical limitations: (1) they did not explore other
pre-trained networks and did not select the best pre-trained
features. It is hence necessary to develop an unsupervised
metric to quickly determine the best pre-trained features
among different ImageNet models. (2) Noisy pseudo labels
can deteriorate domain invariant features, and the conditional
distributions of two domains are difficult to align at the cat-
egory level, and the marginal and conditional distributions
are not jointly well aligned.

To mitigate these shortcomings, we propose a recurrent
pseudo-labeling using the best pre-trained features (PRPL)
model. We also jointly align the marginal and conditional
distributions of the two domains.

3.2. Pre-training Feature Representation

Feature extraction is an easy and fast way to use the power
of deep learning without investing resources into training or
fine-tuning a network. It would be especially useful when
there are no powerful GPUs to train additional deep networks.
However, one disadvantage of feature extraction using pre-
trained networks is that it has lower performance than fine-
tuning the same network since feature extraction is a single
pass over the images. However, previous work [36] suggests
that a better ImageNet model will produce better features
for UDA. Therefore, we can extract features from a better
ImageNet model to compensate for the lower performance of
not fine-tuning. Moreover, feature extraction is significantly
faster than fine-tuning a neural network. Thus, our design
goal in feature representation learning is to find fast and
accurate features from well-trained ImageNet models.

Figure 1: t-SNE view of extracted features from four pre-
trained networks (AlexNet [12], ResNet50 [7], Xception [4]
and EfficientNetB7 [27]). Different colors represent differ-
ent classes. EfficientNetB7 has better features than others
since the classes are more separate (from Amazon domain
in Office31 dataset).

Since there are several well-trained ImageNet models, we
employ a feature extractor Φ to extract features from the
source and target images using a pre-trained model1. Fig. 1
shows extracted features using four different pre-trained Im-
ageNet models. EfficientNetB7 [27] has better performance
and better-separated features than others from visual inspec-
tion. However, we should have an algorithmic solution that
chooses the best pre-trained features. We thus design a fast
and accurate unsupervised metric. For a given feature extrac-
tor Φk, the mean distance between latent represented source
Φk(XS) and target domain Φk(XT) can be denoted as:

DistPre
k = || 1

NS

NS∑
i=1

Φk(X i
S)− 1

NT

NT∑
j=1

Φk(X j
T)||2. (1)

where Φk is the kth ∈ {1, 2, · · ·K} feature extractor from
seventeen pre-trained models (K = 17) and || · ||2 is the L2
norm. With a different Φk, such a distance can be varied.
DistPre

k is an easy and fast unsupervised metric to quantify
the quality of extracted pre-trained features.

Therefore, we can select the best pre-trained features if
DistPre

k has the shortest distance between two domains.
The performance of different pre-trained feature distances is
shown in Sec 4.2. The Φ in the following section refers to
the best feature extractor, i.e., EfficientNetB7.

3.3. Feature Alignment
3.3.1 Initial Source Classifier

The task in the source domain is to minimize the typical
cross-entropy loss in the following equation:

LS = − 1

NS

NS∑
i=1

C∑
c=1

Yi
Sc log(Fc(Φ(X i

S))), (2)

where Yi
Sc ∈ [0, 1]C is the binary indicator of each class c

in true label for observation Φ(X i
S), and Fc(Φ(X i

S)) is the
predicted probability of class c (using the softmax function
as shown in Fig. 2).

1Φ extracts features from the layer prior to last fully connected layer of
our examined pre-trained models.

3.3.2 Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) [16] is a non-
parametric distance measure to compare the distributions
of source and target domains by mapping data into reproduc-
ing kernel Hilbert space. After the initial classifier F , it is
expressed by

LMMD =
1

N 2
S

NS∑
i,j

κ(Li
S , L

j
S) +

1

N 2
T

NT∑
i,j

κ(Li
T , L

j
T)

− 2

NS · NT

NS ,NT∑
i,j

κ(Li
S , L

j
T),

(3)

where κ is the mean of a linear combination of multiple
RBF kernels and LS = F(Φ(XS)), and LT = F(Φ(XT)).
Therefore, the LMMD aims to minimize the marginal dis-
tance between two domains defined as follows:

DistMa = || 1

NS

NS∑
i=1

Li
S −

1

NT

NT∑
j=1

Lj
T ||2. (4)

3.4. Recurrent Pseudo-Labeling Learning
Initial feature alignment only trains the target domain

in an unsupervised fashion. To get reliable predicted target
domain labels, we train the networks with the instances of the
labeled source and pseudo labeled target domains. Pseudo
labels of target domain examples will be treated as if they
are true labels. The domain invariant features are effective
and better adapted in such a paradigm.

3.4.1 Confident Pseudo-Labeling

In this stage, we take advantage of the initial source classifier
F to generate confident pseudo labels and examples for the
target domain. In contrast to Hinton et al. [8], we do not
use the weighted sum of the soft posteriors and the one-hot
hard label to train the model since the prediction of the target
domain is not accurate when the classification decision from
F is incorrect. In recurrent pseudo-labeling learning, we
continuously bring confident examples and pseudo labels
from the target domain to the source domain. A confident
pseudo label is defined as

C(Yj
TP) = arg max

c∈C
{Fc(Φ(X j

T))} if max(Fc(Φ(X j
T))) > p,

where Fc(Φ(X j
T)) is the predicted probability of class c of

Φ(X j
T), max(Fc(Φ(X j

T))) is probability of the dominant
class, and it should be greater than probability threshold p
(0 ≤ p ≤ 1) for a confident pseudo label. Also, its corre-
sponding observation Φ(X j

T) is called a confident example
and denoted as C(Φ(X j

T)), where C means confident pseudo
labels or examples. The advantage of such confident ex-
amples and pseudo labels is to support the high quality of
predicted target labels and mitigate negative transfer of F .

Figure 2: Architecture of the PRPL model. We first extract features Φ(XS/T) for both source and target domains via Φ using
a pre-trained model, and then train the shared classifier F . In recurrent pseudo-labeling, confident pseudo-labeled examples
({C(Φ(XT t)), C(YT t

P
)}) are generated continuously in each t to form the updated label domain. During training, the updated

label domain will keep replacing {Φ(XS),YS} (the rectangle above updated domain). LS is source classification loss and
LMMD is maximum mean discrepancy loss. Best viewed in color.

Therefore, we construct an updated label domain DU =
{Xn
U ,Yn

U}
NU
n=1, which consists of the labeled source domain

and confident target examples with pseudo labels, where
NU ≤ NS + NT , XU = Φ(XS) + C(Φ(XT)) and YU =
YS + C(YTP), and NU is controlled by p. NU = 0 if p = 1,
and NU = NS +NT if p = 0.

3.4.2 Recurrent learning

Most existing pseudo-labeling methods only generate pseudo
labels in a single iteration. However, such a paradigm
cannot guarantee reliable predictions of the target domain.
Therefore, we propose recurrent pseudo-labeling to contin-
uously generate confident examples for T iterations. In
each iteration t, the updated label domain becomes: Dt

U =

{Xn
Ut ,Yn

Ut}NUt

n=1, where XUt = Φ(XS) + C(Φ(XT t)) and
YUt = YS + C(YT t

P
), and t ∈ {1, 2, 3, · · · , T}. To sup-

press potentially noisy pseudo labels, in each iteration t,
the sample size of updated labels is always not greater than
NS +NT , i.e., NUt ≤ NS +NT .

C(YT t
P

) = arg max
c∈C

{Fc(Φ(X j
T t))} if max(Fc(Φ(X j

T t))) > pt,

(5)

In addition, C(YT t
P

) is also updated using Eq. 5 for the
probability threshold pt, and should maintain the condition
of pt+1 ≥ pt(0 ≤ pt ≤ 1) since we only want to generate
reliable pseudo labels, which will further avoid negative
transfer via pushing the decision boundary toward to the
target domain. In all iterations, we have a sequence of pt,
and pT = {pt}Tt=1. Therefore, we can produce confident
examples and pseudo labels in each recurrent training.

During training, the updated label domain Dt
U will keep

replacing the original latent represented source domain
{Φ(XS),YS}. The parameters in the feature alignment mod-
ule will be updated via both labeled source domain and
pseudo labeled target domain. Therefore, the loss function
in each training iteration is given by:

Lt
U = Lt

S + Lt
MMD, (6)

where Lt
S = − 1

NUt

∑NUt

n=1

∑C
c=1 Yn

Ut
c
log(Fc(Xn

Ut)),

Lt
MMD =

1

N 2
Ut

NUt∑
n,j

κ(Ln
Ut , L

j
Ut) +

1

N 2
T

NT∑
n,j

κ(Ln
T , L

j
T)

− 2

NUt · NT

NUt ,NT∑
n,j

κ(Ln
Ut , L

j
T).

In Lt
S , Yn

Ut
c
∈ [0, 1]C is the binary indicator of each class

c for observation Xn
Ut in the tth training iteration, and

Fc(Xn
Ut) is the predicted probability of class c. In Lt

MMD,
LUt = F(XUt), LT = F(Φ(XT)), and it also measures the
discrepancy between updated label domain and the target
domain in each t. Unlike Eq. 3, Lt

MMD also includes the
confident examples from the target domain. The networks
will be jointly optimized using the updated domain, which is
equivalent to minimizing the following conditional distance
during training.

DistCo
t = Dist

C∑
c=1

(YSc |XSc , C(YT tc
P

)|C(XT tc))

=
1

C

C∑
c=1

|| 1

N c
S

N c
S∑

i=1

Φ(X i
Sc)−

1

C(N c
T t)

C(N c
T t)∑

n=1

C(Φ(Xn
T tc))||2

(7)

where C is the number of categories, YSc |XSc (or
C(YT tc

P
)|C(XT tc))) represents cth category data in the

source domain or confident pseudo labeled target domain.
N c
S or C(N c

T t) is the number of samples in the cth cate-
gory in the source domain or confident pseudo labeled target
domain in each t.

In each iteration, we first use the initial classifier to gen-
erate pseudo labels for the target domain. Then, the pseudo
labels will be progressively refined. We empirically demon-
strate that such iterative learning is effective and efficient in
improving target domain accuracy.

3.5. PRPL model

The framework of our proposed PRPL model is depicted
in Fig. 2. Taken altogether, our model minimizes the follow-
ing objective function:

L(XS ,YS ,XT) = arg min(LS + LMMD +
T∑

t=1

Lt
U) (8)

where LS is the source classification loss and LMMD min-
imizes the distance between initial source and target repre-
sented data. Lt

U is the loss function of each t. T represents
the number of iterations of training.

3.6. Domain Adaptation Theory

We formalize the theoretical error bound of the target
domain for proposed recurrent learning in Lemma 1.

Lemma 1. Let h be a hypothesis in a hypothesis space
H . εS(h) and εT (h) represent the source and target domain
risk, respectively [1]. We have

εT (h) ≤ εS(h) + dH(P (Φ(XS)), P (Φ(XT))) + γ,

where dH(P (Φ(XS)), P (Φ(XT))) is the H divergence be-
tween the probability distribution of the source and target
domain. γ = εS(h∗,YS)+ εT (h∗,F(Φ(XT))) is the adapt-
ability to quantify the error in ideal hypothesis h∗ space of
source and target domain, which should be small.

During the recurrent pseudo-labeling, we expect the H
divergence between the distributions of latent feature space
can be minimized, and that an ideal hypothesis exists with
low risk on both domains, which is corresponding to a small
β in Lemma 1. In addition, such a divergence is assessed by
dH(P (Φ(XS)), P (Φ(XT)))≈ DistMa + 1

T

∑T
t=1Dist

Co
t .

Therefore, with the implicitly minimized training risk, do-
main divergence, and the adaptability of true hypothesis h,
the generalization bound of εT (h) can be achieved.

4. Experiments
4.1. Setup

Datasets. Office + Caltech-10 [6] consists of Office 10
and Caltech 10 datasets with 2,533 images from ten classes

Table 1: Pre-trained feature mean distance (1.0e+05) between two
domains and feature extraction time (minutes) for three datasets
(MD: mean distance; OC10: Office + Caltech-10; IR: Inceptionres-
netv2; EB7: EfficientNetB7; NM: Nasnetmobile).

Networks
OC10 Office-31 Office-Home

MD Time MD Time MD Time
SqueezeNet [10] 41.93 0.79 32.61 1.16 28.38 7.23
AlexNet [12] 20.05 0.29 18.74 0.46 19.68 4.20
GoogleNet [25] 15.25 0.28 15.74 0.47 13.89 4.25
ShuffleNet [33] 24.97 0.32 25.81 0.54 21.82 4.47
ResNet18 [7] 19.27 0.29 18.99 0.48 17.27 4.30
Vgg16 [22] 15.92 0.40 16.11 0.64 16.70 4.80
Vgg19 [22] 15.49 0.43 16.17 0.68 16.86 4.94
MobileNetv2 [21] 8.53 0.34 8.13 0.57 8.17 4.62
NM [41] 6.03 0.90 5.44 1.21 6.66 6.21
ResNet50 [7] 18.94 0.39 19.62 0.64 18.13 4.78
ResNet101 [7] 20.25 0.48 20.17 0.75 19.11 5.18
DenseNet201 [9] 22.1 1.32 22.05 2.04 18.80 9.56
Inceptionv3 [26] 5.74 0.43 5.47 0.68 5.94 4.86
Xception [4] 6.02 0.70 5.75 1.13 7.03 6.76
IR [24] 5.40 0.81 5.73 1.19 6.80 6.29
NasnetLarge [41] 4.19 2.45 4.04 3.64 6.15 14.65
EB7 [41] 1.13 4.06 1.27 8.31 1.49 23.64

in four domains: Amazon (A), Webcam (W), DSLR (D)
and Caltech (C). There are twelve tasks in Office + Caltech-
10 dataset. Office-31 [19] consists of 4,110 images in 31
classes from three domains: Amazon (A), Webcam (W),
and DSLR (D). We evaluate methods across all six transfer
tasks. Office-Home [29] contains 15,588 images from 65
categories. It has four domains: Art (Ar), Clipart (Cl), Prod-
uct (Pr) and Real-World (Rw). There are also twelve tasks in
this dataset. Therefore, we have 30 tasks in our experiment.
In experiments, C�A represents learning knowledge from
domain C which is applied to domain A.

Implementation details. As in Zhang and Davison [36],
we first extract features from the last fully connected layer
from 17 different networks for the three datasets. Param-
eters in recurrent pseudo labeling are T = 3 and pT =
[0.5, 0.8, 0.9]. Learning rate (ε = 0.001), batch size (64),
and number of epochs (9) are determined by performance
on the source domain. We compare our results with 12 state-
of-the-art methods. For fair comparison, we highlight those
methods in bold that are re-implemented using our extracted
features, and other methods are directly reported from their
original papers. Specifically, we modify the architecture of
DAN [14], DANN [5] and DCORAL [23], and replace the
feature extractor with the best pre-trained features, while
maintaining original loss functions2. Experiments are tested
with a GeForce 1080 Ti.

2Source code is available at: https : / / github . com /
YoushanZhang / Transfer - Learning / tree / main / Code /
Deep/PRPL.

https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/PRPL
https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/PRPL
https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/PRPL

Table 2: Accuracy (%) on Office + Caltech-10 dataset
Task C�A C�W C�D A�C A�W A�D W�C W�A W�D D�C D�A D�W Ave.

DAN [14] 96.8 95.9 96.2 93.1 88.8 92.4 94.5 95.4 100 89.1 95.9 95.9 94.5
DANN [5] 96.7 94.9 97.5 95.8 94.9 91.1 94.7 94.5 100 94.9 92.4 93.9 95.1

DCORAL [23] 96.5 97.6 96.8 96.3 98.3 96.8 94.9 95.8 100 94.6 95.8 99.0 96.9
DDC [28] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 83.8 100 79.0 87.1 97.7 86.1
RTN [16] 93.7 96.9 94.2 88.1 95.2 95.5 86.6 92.5 100 84.6 93.8 99.2 93.4

MDDA [18] 93.6 95.2 93.4 89.1 95.7 96.6 86.5 94.8 100 84.7 94.7 99.4 93.6
PRPLt=0 96.7 98.6 98.1 95.5 99.0 100 95.3 96.7 100 95.1 96.2 99.7 97.6
PRPLt=1 96.7 98.6 99.4 96.2 99.3 100 96.4 96.6 100 96.1 96.1 99.7 97.9
PRPLt=2 96.8 98.6 100 96.4 99.3 100 96.4 96.5 100 96.1 96.2 99.7 98.0
PRPLt=3 96.7 99.0 100 96.6 99.3 100 96.6 96.6 100 96.2 96.2 99.7 98.1

Table 3: Accuracy (%) on Office-Home dataset
Task Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Ave.

DAN [14] 55.0 72.5 79.1 66.5 72.9 74.3 69.7 57.4 82.7 76.1 59.1 85.4 70.9
DANN [5] 57.1 75.7 80.3 69.2 76.7 74.3 70.9 58.0 83.0 77.8 59.8 87.0 72.5

DCORAL [23] 59.1 78.4 82.3 71.1 79.0 77.4 71.2 57.8 84.3 78.7 60.4 87.0 73.9
CDAN-RM [15] 49.2 64.8 72.9 53.8 62.4 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.5

CDAN-M [15] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8
ETD [13] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

TADA [30] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SymNets [38] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

PRPLt=0 65.0 83.2 88.3 78.0 83.9 85.2 75.3 65.3 87.6 82.1 66.2 90.6 79.2
PRPLt=1 67.0 84.3 89.4 79.4 85.2 85.7 78.1 68.1 88.5 83.4 68.6 91.3 80.8
PRPLt=2 68.0 84.5 89.4 79.5 85.7 86.0 79.1 68.9 88.6 83.3 68.5 91.4 81.1
PRPLt=3 67.6 84.5 89.4 79.8 85.7 86.3 79.2 69.1 88.7 83.8 68.9 91.5 81.2

Table 4: Accuracy (%) on Office-31 dataset
TaskA�WA�DW�AW�DD�AD�WAve.

DAN [14] 85.8 88.0 75.7 98.4 74.7 95.0 86.3
DANN [5] 85.9 90.2 76.6 98.8 78.2 96.2 87.7

DCORAL [23] 90.7 90.6 79.0 98.8 78.7 97.1 89.2
RTN [16] 84.5 77.5 64.8 99.4 66.2 96.8 81.6
ETD [13] 92.1 88.0 67.8 100 71.0 100 86.2

TADA [30] 94.3 91.6 73.0 99.8 72.9 98.7 88.4
SymNets [38] 90.8 93.9 72.5 100 74.6 98.8 88.4

CAN [11] 94.5 95.0 77.0 99.8 78.0 99.1 90.6
PRPLt=0 92.1 96.0 80.4 98.6 80.1 96.1 90.6
PRPLt=1 95.4 97.0 81.8 99.2 82.1 97.0 92.1
PRPLt=2 95.6 96.8 82.2 99.2 82.8 97.1 92.3
PRPLt=3 95.9 97.0 82.4 99.2 83.0 97.1 92.4

Table 5: Ablation experiments on Office-31
Task A�W A�D W�A W�D D�A D�W Ave.
PRPLt=0-M 91.6 96.0 79.9 98.8 80.6 96.0 90.5
PRPLt=1-M 94.1 96.6 81.4 99.2 82.5 97.0 91.8
PRPLt=2-M 94.2 96.3 81.5 99.2 82.9 97.0 91.9
PRPLt=3-M 94.3 96.4 81.9 99.2 82.9 97.0 92.0
PRPLt=3 95.9 97.0 82.4 99.2 83.0 97.1 92.4

4.2. Results

Pre-trained feature selection. We first conduct experi-
ments to select the best pre-trained features for both the
source and target domains. We calculate the distance be-

tween two domains using the aforementioned pre-trained
feature distance in Eq. 1. The smallest distance between two
domains reveals the corresponding pre-trained network that
is the best for feature extraction. In Tab. 1, we first report the
mean distance between two domains of three datasets (for
Office + Caltech-10 and Office-Home, the mean distance is
the average of twelve tasks. For Office-31, the mean distance
is the average of six tasks). It is obvious that pre-trained
features from EfficientNetB7 have the smallest distance be-
tween two domains, which suggests the EfficientNetB7 is
the best deep network compared to the other 16 networks. In
addition, this observation is consistent with [36], that a better
ImageNet model will produce better pre-trained features for
UDA. Furthermore, we also list the computation time for
feature extraction of each dataset. We notice that Efficient-
NetB7 consumes more time than other networks since it has
more complex layers, and it needs more memory to process
images. However, the longest time is 23.64 minutes, and
these features will not be extracted again during the training.
Therefore, we opt for EfficientNetB7 as the feature extractor
to extract pre-trained features for the benchmark datasets.
We then use the extracted features Φ(XS) and Φ(XT) to per-
form the domain transfer tasks. In supplementary material,
we also validate the effectiveness of the proposed distance
function DistPre

k in choosing the best pre-trained features
by comparing to MMD and mean cosine distance function.

(a) Time of three datasets (b) Time of each task in Office31

Figure 3: Computation time comparison. (a) is the total computation time, that includes the pre-trained feature selection and
all transfer tasks (twelve for Office + Caltech-10, six for Office-31 and another twelve for Office-Home). (b) compares the
PRPL model with the other two baselines in each task of Office31 (feature extraction time is also included). On average, our
PRPL model is approximately 18 times faster than CAN [11], and 21 times faster than SymNets [38].

Domain transfer accuracy. The performance on Office
+ Caltech-10, Office-Home and Office-31 are shown in Ta-
bles 2-4. Our PRPL model outperforms all state-of-the-art
methods in terms of average accuracy (especially in the
Office-Home dataset). It is compelling that our PRPL model
substantially enhances the classification accuracy on difficult
adaptation tasks (e.g., W�A task in the Office-31 dataset
and the challenging Office-Home dataset, which has a larger
number of categories and different domains are visually dis-
similar). Our model also outperforms three re-implemented
baselines (DAN, DANN, and DCORAL), which use the
same EfficientNetB7 features as our model.

In Office + Caltech-10, although the final accuracy in
recurrent learning is 98.1%, it does not improve much from
97.6% to 98.1% (from first recurrent learning to the third
recurrent learning). One reason is the classification accuracy
is high (more than 97%). It is hence difficult to make a large
improvement). However, our model still provides a 1.2%
improvement over the best baseline (DCORAL). The mean
accuracy on the Office-31 dataset is increased from 90.6%
to 92.4%. We notice that accuracy is obviously improved
when t = 1, and then refined when t = 2/3. A similar
tendency is observed on Office-Home dataset. Therefore,
the best pre-trained features are powerful, and the recurrent
learning is effective in improving the classification accu-
racy. In addition, we also show the computation time of our
proposed PRPL model in Fig. 3. We require relatively less
computation time of all three datasets in Fig. 3a. In particu-
lar, we compare the computation time of our model with two
other methods (CAN [11] and SymNets [38]) on each task
in Office-31 datasets. Our model is obviously faster than
the other two (18 and 21 times faster). Therefore, our PRPL
model is fast and accurate in UDA tasks.

4.3. Ablation study

To demonstrate the effects of LMMD loss on classifica-
tion accuracy, we present an ablation study in Tab. 5. We
observe thatLMMD loss is useful in improving performance
during each training iteration comparing with Tab. 4.

4.4. Parameter Analysis

There are two hyperparameters T and pt in PRPL that con-
trol the number of recurrent learning repetitions and the prob-
ability of selecting the confident examples. To get the opti-
mal parameters, we randomly opt the task Rw�Pr and run a
set of experiments regarding different values of each param-
eter. Notice that it is inappropriate to tune parameters using
the target domain accuracy since we do not have any labels
in the target domain. Therefore, we report theH divergence
between two domains, as stated in Sec. 3.6. Since H di-
vergence can be assessed by dH(P (Φ(XS)), P (Φ(XT))) ≈
DistMa + 1

T

∑T
t=1Dist

Co
t , we calculate the marginal dis-

tance and recurrent conditional distance to tune these two
parameters. T is selected from {1, 2, 3, 4, 5, 6, 7, 8, 9}, and
pt is selected from {0.5, 0.6, 0.7, 0.8, 0.9}, we fix one pa-
rameter and vary another one at a time.

Results presented in Fig. 4 demonstrate that our PRPL
model is not very sensitive to a wide range of parameter val-
ues since theH divergence (dH) is not significantly changed.
In Fig. 4a, we first tune the parameter T across five different
pt, and it consistently shows that dH achieves the minimum
value when T = 3. Therefore, the hyperparameter T = 3
is the best since the discrepancy between two domains is
minimized. After fixing T , we then present the effect of
different pt on dH in Fig. 4b. When p1 = 0.5, p2 = 0.8
and p3 = 0.9, dH achieves the minimum value. In Fig. 4, a
large pt tends to have a larger dH (e.g., pt = 0.9 in Fig. 4a
and pT = [0.7, 0.8, 0.9] in Fig. 4b) since a larger pt will se-
lect relatively fewer examples during the training i.e., NU is
small, and the discrepancy between two domains cannot be
well minimized. Therefore, the parameter analysis is useful
in finding the best hyperparameters for our PRPL model.

4.5. Feature Visualization

To further investigate the quality of invariant representa-
tion learned during the transition from the source domain
to the target domain, Fig. 5 visualizes embeddings of the
task Rw�Pr in the Office-Home dataset. In this figure, the

(a) Effect of different T on dH (b) Effect of different pt on dH

Figure 4: Parameter analysis for T and pt. In (a), dH is minimum when T = 3. In (b), the x-axis denotes different pt, and in
each array, it contains p1, p2 and p3 since T = 3. dH is minimum when pT = [0.5, 0.8, 0.9].

Figure 5: t-SNE of feature visualization of the task Rw�Pr in our recurrent pseudo-labeling learning when T = 3. Our PRPL
model improves the consistency of representations across domains. Also, the number of updated label domain NU is growing
with the increasing of time t (magenta color: source domain, cyan color: target domain). Best viewed in color.

magenta dots represent the source domain, and the cyan dots
denote the target domain. We can observe that the represen-
tation becomes more discriminative when t = 1, compared
with t = 0 (no recurrent learning). Although the representa-
tions of t = 2 and t = 3 are slightly improved, PRPL keeps
producing confident examples in Dt

U since N t
U is increasing.

5. Discussion

What can we learn from PRPL? Recurrent learning is
effective and accurate to improve target domain accuracy.
The architecture of our proposed PRPL is neat and straight-
forward. However, our model outperforms state-of-the-art
methods and achieves the highest accuracy so far. There
are two compelling advantages: 1) we extract pre-trained
features from 17 well-trained ImageNet networks, and we
select the best pre-trained features based on the domain dis-
tance. EfficientNetB7 produces high-quality features for the
datasets. 2) the proposed recurrent pseudo labeling effec-
tively keeps improving the target domain accuracy in each
iteration. Therefore, the generated confident pseudo labels
are useful in updating the network parameters, which further
reduces the domain discrepancy.

Is a pre-trained ImageNet model helpful? Yes. Ima-
geNet pre-training is important in improving the quality
of extracted features. Most existing work focused on fine-
tuning the ResNet50 network to perform domain transfer
tasks. One underlying reason is that ResNet50 is not a very
complex model, and it is easier to re-train the network with-
out the need of multiple GPUs. However, as we can see from
the results, the pre-trained features are efficient and easy to
use. Therefore, we recommend selecting better pre-trained
features for UDA.

6. Conclusion

In this paper, we efficiently and effectively select the best
pre-trained features among seventeen well-trained ImageNet
models in an unsupervised fashion. The EfficientNetB7
model shows the highest quality in extracting image features.
We then propose recurrent pseudo-labeling training to pro-
gressively generate confident labels for the target domain.
Extensive experiments demonstrate that the proposed PRPL
model achieves superior accuracy, noticeably higher than
state-of-the-art domain adaptation methods.

References
[1] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis

of representations for domain adaptation. In Advances in
Neural Information Processing Systems, pages 137–144, 2007.
5

[2] W. Chang, T. You, S. Seo, S. Kwak, and B. Han. Domain-
specific batch normalization for unsupervised domain adapta-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7354–7362, 2019. 2

[3] C. Chen, W. Xie, W. Huang, Y. Rong, X. Ding, Y. Huang, T.
Xu, and J. Huang. Progressive feature alignment for unsuper-
vised domain adaptation. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, pages 627–636, 2019. 2

[4] F. Chollet. Xception: Deep learning with depthwise separable
convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1251–1258,
2017. 3, 5

[5] M. Ghifary, W. B. Kleijn, and M. Zhang. Domain adaptive
neural networks for object recognition. In Proceedings of
the Pacific Rim International Conference on Artificial Intelli-
gence, pages 898–904. Springer, 2014. 5, 6

[6] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow
kernel for unsupervised domain adaptation. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2066–2073. IEEE, 2012. 5

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016. 3, 5

[8] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.
3

[9] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 4700–4708, 2017. 5

[10] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size. arXiv
preprint arXiv:1602.07360, 2016. 5

[11] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann. Con-
trastive adaptation network for unsupervised domain adapta-
tion. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4893–4902, 2019. 1, 2, 6, 7

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems, pages
1097–1105, 2012. 3, 5

[13] M. Li, Y. Zhai, Y. Luo, P. Ge, and C. Ren. Enhanced transport
distance for unsupervised domain adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13936–13944, 2020. 6

[14] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transfer-
able features with deep adaptation networks. arXiv preprint
arXiv:1502.02791, 2015. 1, 2, 5, 6

[15] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional
adversarial domain adaptation. In Advances in Neural In-

formation Processing Systems, pages 1647–1657, 2018. 2,
6

[16] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsupervised do-
main adaptation with residual transfer networks. In Advances
in Neural Information Processing Systems, pages 136–144,
2016. 1, 3, 6

[17] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering,
22(10):1345–1359, 2010. 1

[18] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Srid-
haran. On minimum discrepancy estimation for deep domain
adaptation. In Domain Adaptation for Visual Understanding,
pages 81–94. Springer, 2020. 6

[19] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual
category models to new domains. In Proceedings of the
European Conference on Computer Vision, pages 213–226.
Springer, 2010. 5

[20] K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-
training for unsupervised domain adaptation. arXiv preprint
arXiv:1702.08400, 2017. 2

[21] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4510–4520, 2018. 5

[22] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 5

[23] B. Sun and K. Saenko. Deep coral: Correlation alignment for
deep domain adaptation. In Proc. of European Conference on
Computer Vision, pages 443–450. Springer, 2016. 5, 6

[24] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence, 2017. 5

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1–9, 2015. 5

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2818–2826, 2016. 5

[27] M. Tan and Q. V. Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946, 2019. 3

[28] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell.
Deep domain confusion: Maximizing for domain invariance.
arXiv preprint arXiv:1412.3474, 2014. 6

[29] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Pan-
chanathan. Deep hashing network for unsupervised domain
adaptation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5018–5027, 2017.
5

[30] X. Wang, L. Li, W. Ye, M. Long, and J. Wang. Transferable
attention for domain adaptation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 5345–
5352, 2019. 2, 6

[31] S. Xie, Z. Zheng, L. Chen, and C. Chen. Learning semantic
representations for unsupervised domain adaptation. In Inter-
national Conference on Machine Learning, pages 5423–5432,
2018. 1, 2

[32] W. Zhang, W. Ouyang, W. Li, and D. Xu. Collaborative and
adversarial network for unsupervised domain adaptation. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3801–3809, 2018. 1, 2

[33] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An
extremely efficient convolutional neural network for mobile
devices. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6848–6856, 2018. 5

[34] Y. Zhang and B. D. Davison. Modified distribution alignment
for domain adaptation with pre-trained Inception ResNet.
arXiv preprint arXiv:1904.02322, 2019. 2

[35] Y. Zhang and B. D. Davison. Domain adaptation for object
recognition using subspace sampling demons. Multimedia
Tools and Applications, pages 1–20, 2020. 2

[36] Y. Zhang and B. D. Davison. Impact of ImageNet model selec-
tion on domain adaptation. In Proceedings of the IEEE Winter
Conference on Applications of Computer Vision Workshops,
pages 173–182, 2020. 2, 5, 6

[37] Y. Zhang and B. D. Davison. Adversarial continuous learning
in unsupervised domain adaptation. In Pattern Recognition.
ICPR International Workshops and Challenges: Virtual Event,
January 10–15, 2021, Proceedings, Part II, pages 672–687.
Springer International Publishing, 2021. 2

[38] Y. Zhang, H. Tang, K. Jia, and M. Tan. Domain-symmetric
networks for adversarial domain adaptation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5031–5040, 2019. 6, 7

[39] Y. Zhang, S. Xie, and B. D. Davison. Transductive learning
via improved geodesic sampling. In Proceedings of the 30th
British Machine Vision Conference, 2019. 2

[40] Y. Zhang, H. Ye, and B. D. Davison. Adversarial reinforce-
ment learning for unsupervised domain adaptation. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 635–644, 2021. 2

[41] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning
transferable architectures for scalable image recognition. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8697–8710, 2018. 5

