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ABSTRACT
Many online services, including search engines, content delivery
networks, ad networks, and fraud detection utilize IP geolocation
databases to map IP addresses to their physical locations. However,
IP geolocation databases are often inaccurate. We present a novel IP
geolocation technique based on combining propagating IP location
information through traceroutes with IP interpolation. Using a large
ground truth set, we show that physical locations of IP addresses
can be propagated along traceroute paths. We also experiment with
and expand upon the concept of IP range location interpolation,
where we use the location of individual addresses in an IP range
to assign a location to the entire range. The results show that our
approach significantly outperforms commercial geolocation by up
to 31 percentage points. We open source several components to aid
in reproducing our results.
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• Information systems→Location based services; •Networks
→ Location based services; • Social and professional topics
→ Geographic characteristics.
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1 INTRODUCTION
Online services such as search engines determine the location of
users at city-level granularity by consulting IP geolocation databases,
which map IP ranges to physical locations. This location informa-
tion is then used for geographic personalization. For example,
the generic query weather does not contain an explicit location.
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In order to serve an answer with the local forecast, the search en-
gine needs to determine the implicit location of the user. Global
positioning sensors can provide the precise location of the users, if
they have opted-in to location sharing and if their devices contain
the necessary hardware. However, in the vast majority of cases,
the exact location is not available if users are using a PC without
GPS hardware, or if they opt-out of location sharing. In this case,
the search engine falls back to using the IP address of the device
to determine a coarse location using a commercial IP geolocation
database.

Commercial geolocation services such as MaxMind [27], Neustar
IP Intelligence [29], and IP2Location [14] are considered state of
the art, although the exact methods they use are proprietary. Re-
cent work has questioned their accuracy [8, 32, 35]. Despite their
shortcomings, IP geolocation databases are used in many other
applications, including content personalization and online adver-
tising to serve local content [11, 18], content delivery networks
to direct users to the closest datacenter [12], law enforcement to
fight cybercrime [36], geographic content licensing to restrict con-
tent streaming by region [25], and e-commerce to display variable
pricing based on local taxes and shipping [37].

Our work focuses on using latency differences along the
traceroute path, combinedwith interpolation at the IP range
level, to improve IP geolocation. We base our approach on two
assumptions. Our first assumption is that nodes which are close to-
gether in terms of latency on a traceroute path are also near in terms
of geographic distance. Our second assumption is that addresses
in a consecutive IP range are often located in the same geographic
region. We evaluate to what degree these two assumptions are true
using a large ground truth set of 8.9 million IP addresses, one of
the largest ever reported in literature. We then combine and ex-
pand upon these two hypotheses to improve IP geolocation. More
specifically, our contributions are:
(1)In our preliminary investigation we define the concept of latency

neighbors. We show that there is a direct relationship between la-
tency differences along the traceroute path and physical distance
in kilometers. We propose to exploit this property to improve
IP geolocation. We also investigate geographic colocation of IP
range addresses. We demonstrate that when two IPs are in the
same range, they are also very often located in the same geo-
graphic region. Based on this finding, we propose the concept of
IP range interpolation. We find that if two or more IPs in an IP
range are in the same location, then it is likely that all IPs in the
range are also in that location.

(2)We propose combining the concepts of traceroute latency neigh-
bors and IP range interpolation to improve IP geolocation. We
interpolate locations from the training set to increase its coverage.
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Then, we use latency neighbors to further propagate locations
from IP ranges with known locations to IP ranges with unknown
locations, using traceroute latency neighbors in aggregate. We
evaluate our approach against two state of the art commercial
IP geolocation databases, using a large traceroute dataset and a
large ground truth set. We show that our approach significantly
outperforms two commercial geolocation databases.

Although traceroutes, IP colocation, and IP interpolationhave
been studied before, to our knowledge this is the first time
that they have been combined together using this precise
approach. We discuss the differences to past work in more de-
tail below. It’s also important to understand that this proposal is
part of a larger IP geolocation project where we combine multiple
approaches [3–5]. The work presented here is only one of these
proposals, and it itself is not sufficient to entirely solve the problem
of creating a new IP geolocation database. However, our proposal
can be used to augment and improve existing databases.

2 RELATEDWORK
We divide relevant IP geolocation research in three broad categories,
depending on the methods they use: network delay approaches use
ping, network topology approaches further utilize traceroute and
BGP network structure information, and IP interpolation approaches
try to estimate the location of addresses by using information from
numerically nearby IPs. Finally, we also briefly mention other ge-
olocation approaches that use Internet data mining.

2.1 Network Delay
Most IP geolocation research relies on active network delay mea-
surements (ping) to locate addresses. Early work on IP geoloca-
tion by Padmanabhan and Subramanian discusses GeoPing [30],
which sends ICMP packets from geographically distributed land-
mark servers to the target IP. It then assigns the target IP the
location of the closest landmark server in terms of latency.

CBG [9] goes further by drawing circles on the surface of the
Earth around each landmark server, where the radius of each cir-
cle is given by the network delay. It then picks the center of the
intersection of these circles as the likely location of the target IP.
This technique is called multilateration. To estimate the conversion
between network delay and physical distance, CBG builds a sim-
ple model for each probe server by measuring the delay to all the
other servers. Since the locations of all probe servers is known, a
bestline that fits below all measurements can then be determined.
Later work based on CBG focuses on ways to better determine the
bestline. Youn et al. [39] propose a statistical method called Statisti-
cal Geolocation, or SG for short, to better estimate the bestline by
applying kernel density estimation to delay measurements. Spotter
[20], a technique proposed by Laki et al., further refines the task
of fitting a baseline. Instead of generating a separate bestline for
each server, Spotter derives a single bestline for all of them, by
combining readings from all active probes together into a common
delay-distance model. Dong et al. propose SDP, which clusters the
readings on the delay-to-distance graph by using k-means cluster-
ing. For a given target IP, it first picks the closest cluster and then it
performs more extensive probes from the subset of probing nodes
local to that cluster [6].

Although incremental, more recent work by by Khan et al. ex-
tends CBG by introducing a similar two-step process. In the first
step they identify a coarse region using worldwide probe servers,
and then in the second step they further refine the location us-
ing regional servers. Jiang et al. also propose a very similar two
tiered approach that employs a radial basis function (RBF) neural
network [16].

Ciavarrini et al. have recently demonstrated that network de-
lay approaches have a best-case error of 20 kilometers and that
obtaining an error below this threshold requires a number of active
measurement servers so large as to be unpractical [2].

Our approach significantly differs from traditional delay
measurement geolocation approaches that use landmark-based
multilateration [2, 7, 9, 15, 17, 19, 22, 30, 39]. Our proposal is more
scalable than past research which requires issuing multiple probes
from landmark servers distributed around the world, to each indi-
vidual target IP. We do not require multiple measurements targeted
at each address from multiple vantage points. Whereas previous
work often focuses on locating a handful of IP addresses in a few
US universities [9, 17, 30, 39], our technique allows us to locate
millions of addresses. Another advantage is that our results have
high accuracy with median error down to 4.3 kilometers, while
previous results showed error distance sometimes in the order of
hundreds of kilometers [9, 30]. Note that, as described in Section
3, each data point in our ground truth set is shifted by 0.5 km in
random direction to preserve privacy. Furthermore, since we do
not need to perform complex multilateration, our computational
requirements are more modest [9].

2.2 Network Topology
Network Topology geolocation methods combine network delay
with information on network structure to achieve increased accu-
racy. GeoCluster, also proposed by Padmanabhan and Subramanian,
combines BGP routing information with sparse IPs of known loca-
tions to assign geographic locations to whole address prefixes [30].
Jayant and Katz-Bassett extend CBG’s ping-based approach by
adding information from traceroutes [15]. They hypothesize that
targets that follow similar traceroute paths also have similar delay-
to-distance conversion characteristics and propose two approaches,
Path-Based Estimation (PBE) and Router-Based Estimation (RBE).
Katz-Bassett et al. later also propose TBG, which uses traceroute
from landmark servers to the IP target and perform global optimiza-
tion to find the location of both landmarks and targets [17]. More
recently, Ciavarrini et al. presented a framework to understand how
the position of landmarks and their distribution affect localization
performance [2]. Multiple systems such as Octant [38], Alidade [1],
or HLOC [34] combine delay measurement methods with other
data sources such as reverse DNS and WHOIS information.

As with network delay approaches, typical network topology
methods also suffer from low coverage and/or low accuracy. For in-
stance, on a set of 265 target IPs located at universities in the United
States, GeoCluster achieves a median error of 28 kilometers. This
approach performs well with hosts located on university campuses,
but it performs much worse on a larger and more realistic dataset
of 181,246 IPs, with median error degrading to 685 kilometers [30].
The PBE and RBE approaches proposed by Jayant and Katz-Bassett
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achieve a median error of 376 kilometers and 346 kilometers, re-
spectively [15]. The best variant of TBG, which also uses reverse
DNS location hints based on the hostname of IP addresses, achieves
a median error of 67 kilometers [17].

In addition to beingmore accurate than previous network
topology geolocation research, our method has other advan-
tages as we aim to extract all useful geolocation information em-
bedded in traceroutes. First, in contrast to previous research, we
do not specifically require the traceroutes to be directed to any
particular targets. Instead, our approach can make use of datasets
with sufficiently many random traceroutes. Second, we do not re-
quire traceroutes to the same IP address from multiple vantage
points on the Internet. Instead it is enough to see the same pairs
of IP addresses in the segments of multiple traceroutes, even if the
source and target of the traceroutes are different. Third, from each
traceroute instance we can extract information about multiple pairs
along the path, not only between source and destination.

Themain disadvantage of our approach is that it requires
a larger ground truth seed list of IPs with known location.
Traditional latency based approaches only require that the location
of the landmarks be known. Our method needs a larger set of IPs
with known location, on the order of millions of IPs. We use this
seed list for location propagation.

2.3 IP Interpolation
Although it is used to augment other geolocation techniques and
it is never used on its own, IP Interpolation is widely used in ge-
olocation research to fill in the gaps of addresses with unknown
location in IP ranges. Previously mentioned research projects Geo-
Cluster [30, 31] and Alidade [1] use interpolation to increase cover-
age. Structon [10] is an approach proposed by Guo et al. that mines
the contents of Chinese websites for mentions of locations, using
regular expressions. The authors assign these locations to the IP
addresses of the web servers hosting this content. They then use
IP location interpolation to increase both accuracy and coverage
by estimating the location of entire IP ranges from the location
of few individual constituent IP addresses. In Checkin-Geo, Liu et
al. use checkins logged by a location sharing social network for
IP geolocation [23]. They also apply IP location interpolation to
expand IP coverage. Lee et al. combine self-reported location data
from a Korean crowd-sourced broadband speed test with IP location
interpolation to assemble a detailed geolocation database [21]. To
increase IP coverage, they perform interpolation using a majority
rule vote with a threshold of 80% to assign individual IP address
locations to entire IP ranges.

There are two aspects which are novel in our usage of IP inter-
polation. First, to our knowledge we use the largest ground truth
dataset used to confirm the accuracy of IP interpolation. Second, we
combine IP interpolation with traceroutes to propagate locations.

3 DATASETS AND PRIVACY
Online privacy is becoming increasingly important. Pew Research
has found in 2016 that while many Americans are willing to share
personal information in exchange for accessing online services,
they are often cautious about disclosing their information and
are frequently unhappy about what happens to that information

once companies have collected it [33]. We have designed both our
approach and our evaluation with this sensitive subject in mind.

We carried out our experiments on data from late 2017, since
it was the time frame for which we could source all data sets at
roughly the same time.

The public traceroute dataset contains 9 billion traceroutes
collected between January and November 2017. We derived it from
the IPv4 Routed /24 Topology Dataset [13] provided by the Center
for Applied Internet Data Analysis (CAIDA). They collect this data
through the Archipelago (Ark) Measurement Infrastructure, which
spans approximately 208 servers located in 63 countries. Every 48
hours a random IP address is chosen in each /24 prefix, then the
chosen IP addresses are individually probed by random Ark servers.
Therefore, both the IP chosen per range and the Ark machine prob-
ing that IP change in time. While this allows for more data variety,
it also prevents using the dataset for typical latency multilateration
[9]. We further parse and apply post-processing on this dataset to
extract latency neighbors, as described in Section 4.1. Since tracer-
outes are public and can be obtained from any Internet connected
machine, this data has a low impact on user privacy.

Our proprietary ground truth set contains 8.9 million IP ad-
dresses with known location, compiled during the 28-day period
ending on December 1st, 2017 from Bing query logs. It is one of
the largest and most diverse ground truth sets used in geolocation
literature. The dataset is derived from devices with global position-
ing sensors, where users opted-in to provide location information.
It contains both mobile and fixed broadband IP addresses, since
users often connect their mobile phones to their home Wi-Fi. The
data covers the entire world. We described this type of proprietary
dataset in more detail in our previous geolocation research [3–
5]. Throughout this paper we used this ground truth set for both
training and testing by performing ten-fold cross validation, by
randomly splitting the data into ten folds and repeatedly using 9
folds for training and the last fold for testing. We report the results
as the average of all the runs.

We never had access to the raw location data. Instead, the dataset
was anonymized by an automated pipeline by aggregating all loca-
tions reported for an IP address, then adjusting the centroid of each
IP address by 584 meters in a random direction. IP addresses with
a large variance in reported locations were removed as outliers.
These anonymized coordinates cannot be used to pinpoint individ-
ual addresses, but can locate an IP at a neighborhood level. While
throughout this paper we refer to this location data as derived from
GPS for succinctness, the dataset actually covers all global position-
ing systems, including GPS, GLONASS, Galileo, etc. [28]. Although
we evaluate our approach on IPv4, methods described here can be
equally applied to IPv6 IPs.

To aid in reproducing our experiments, we also perform our
final evaluation with a second public training set extracted from
PeeringDB, which is a self-reported database of worldwide peer-
ing points [24]. The dataset contains approximately 400 IP ranges
spanning 128,000 IP addresses, along with geographic coordinates.
Whereas the first ground truth set is proprietary and it mainly con-
tains end user client IPs, this second dataset contains IP ranges that
are part of Internet peering infrastructure. To obtain it, we enumer-
ate the Internet Exchanges in the database, then for each exchange
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5 ms

6 ms

1 ms
Source Destination

Figure 1: Example of latency neighbors for X <= 1 ms. Since
the latency difference between nodes 4 and 5 on the tracer-
oute path is 1 milliseconds, we consider them latency neigh-
bors.

we enumerate the facilities. We retain only the facilities which con-
tain exact location coordinates. Since IP ranges are published at the
Internet Exchange level, we determine a location consensus among
the coordinates of all the facilities belonging to an exchange. If all
facilities are located in the same city, then we output the IP range
and the consensus coordinates. Since this database is public and
self-reported, the impact on user privacy is minimal. Along with
this paper we are making the traceroute dataset parsing library 1

and the PeeringDB parsing and generation library 2 available as
open source.

4 PRELIMINARY INVESTIGATION
We begin by testing our two assumptions. First, we define the con-
cept of latency neighbors and we show that there is a relationship
between neighbor latency and geographic distance. Second, we
study whether addresses that are in the same IP range are also
located in the same geographic region.

4.1 Latency neighbors
Traceroute tools reveal the path taken by packets that travel from
one Internet connected device to another. They also measure the
latency to each hop in the path [26]. The traceroute dataset we use
contains the round-trip times (RTT) between source IPs and each
reachable node on the path.

We define latency neighbors as pairs of nodes along a traceroute
path that are within X milliseconds from each other. We obtain
the latency difference by subtracting the round-trip times between
the source IP and the two neighbor candidates. Figure 1 shows an
example of two nodes along a traceroute path which are at 5 and 6
milliseconds distance respectively from the source IP, which results
in a latency difference of 1 millisecond. Since a pair can appear in
multiple traceroutes, we aggregate all such instances and make a
decision on the median round trip time. This aggregation has an
added benefit of removing outlier pairs where the latency across
multiple readings is too variable and the median becomes too high.
To be considered latency neighbors, the nodes do not have to be
located consecutively on the traceroute path, as long as they are
within X milliseconds of each other.

Our first assumption is that traceroute neighbors that are close
together in terms of latency are also close geographically. As a
preliminary test of this assumption, we extracted all latency neigh-
bors from the traceroute dataset that were at most 10 milliseconds
apart. Note all latencies are from round-trip measurements, so the

1https://github.com/zmarty/ScamperTracerouteParser
2https://github.com/zmarty/PeeringDBToTSV

actual latency between them was at most 5 milliseconds. Previous
research has found that packets travel in real networks at about
4/9 the speed of light, or about 133 kilometers per millisecond [17].
We then further filtered these neighbor pairs to retain only the
ones where both IPs were also present in our ground truth set with
known IP locations. Since we required both exact neighbor IPs to
be present in the ground truth set, this resulted in only 2,000 pairs,
which is an extremely small coverage that makes it difficult to draw
overall conclusions. The results show 65% of the neighbors are
within 10 kilometers of each other. Although the results are promis-
ing, there is still a need to explore ways to increase ground truth
coverage and to develop a systematic way to propagate locations
over traceroute paths.

4.2 Colocation of IP Range Addresses
Our second assumption is that IP addresses that are in the same con-
tiguous IP range are likely to also be located in the same geographic
area. Although prior research has touched upon this observation
[30], here we systematically test this hypothesis using our large
ground truth set.

We segmented the IPv4 address space into IP ranges of varying
lengths for netmasks between /28 (16 IPs) and /20 (4,096 IPs). We
then extracted all pairs of IP addresses which are part of the same
IP range, and are also in the ground truth set. So, for example,
IPs 50.121.73.3 and 50.121.73.47 would form a pair in IP ranges
with netmask /26 (64 IPs) to /20 (4,096 IPs) or larger, but not for IP
range 50.121.73.0/28 which is only 16 IPs in size. Since we know the
location of each IP in the ground truth set, we were then able to
compute the geographic distance between the IPs in each pair.

Figure 2 presents the results as cumulative distance curves. The
X axis represents the distance between pair items and the Y axis
shows how many pairs are within that distance. For instance, if we
look at the first column (<10 km) for the IP range size of 1,024 IPs,
we can observe that roughly 60% of pairs in this type of IP range are
within 10 kilometers of each other. We can draw two conclusions
from the graph. First, the size of the IP range is directly proportional
to pair distance. As the range size increases, the distance between
pairs in the range also increases. For ranges that are 256 IPs in
size, 88% of pairs are within 30 kilometers of each other, but that
percentage drops to 77.9% for IP ranges with 1,024 IPs. Second, even
if these preliminary results are promising, the graph shows that
there is room for improvement. We cannot assign the locations of
the pairs to the entire IP range, since in some cases the locations are
contradictory. We must therefore find a way to further filter these
IP ranges to retain the ones where the location signal is consistent.

5 IP RANGE INTERPOLATION
We apply our finding that addresses in the same IP range are often
colocated geographically to the problem of increasing ground truth
IP coverage. We propose performing IP range interpolation by find-
ing IP ranges where all ground truth IPs contained in that range
are in the same geographic region, and then assigning the center
of all IP coordinates to the entire range. Figure 3 shows an example
where an IP range contains two ground truth IPs, both located in
New York City. Since all the ground truth IPs contained in this IP

https://github.com/zmarty/ScamperTracerouteParser
https://github.com/zmarty/PeeringDBToTSV
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Geographic Colocation of IP Pairs

16 IPs 64 IPs 256 IPs 1,024 IPs 4,096 IPs

Figure 2: Cumulative distance between pairs of IPs in the
same range, for different range sizes. For example, in the <20
km column, the value of the distance for IP ranges of 256
IPs is 83.8%. This means that if we segment the IP space in
contiguous ranges of size 256, a pair of IP addresses from
the ground truth set that are in the same IP range are at a
distance smaller than 20kilometers fromeach other in 83.8%
of cases.

152.153.128.51
(New York City)

152.153.128.0/24
Location: Unknown

152.153.128.0/24
Location: NYC

152.153.128.197
(New York City)

Same Entire 
IP Range

(New York City)
Interpolation

Figure 3: Example of IP range interpolation. Since IP range
152.153.128.0/24 contains two IP addresses with the same
known location (coordinates in New York City), we propa-
gate that location to the entire IP range.

range are located in the same region, we propose assigning the
location New York City to the entire IP range.

To perform interpolation, for a given IP range size we first
grouped all ground truth IPs by the given netmask. In each of
these contiguous IP ranges we computed the pairwise distance be-
tween the ground truth IPs. We retained the IP ranges that contain
at least n ground truth IPs in total, and all these IPs in the range
are within m kilometers of each other. We then assigned the center
of all these coordinates to be the location of the entire IP range.
We evaluated our proposal on multiple IP range sizes and multiple
values of n andm using local parameter search on our ground truth
set. We found that using a size of 256 IPs yields the best combina-
tion of accuracy and coverage. This IP range size is also typically
used by commercial IP geolocation databases. We obtained good
accuracy by setting the n parameter to 2. Setting it to 1 yields lower
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IP Range Interpolation IP Pairs Colocation

Figure 4: Comparison of IP range interpolation error dis-
tance to IP range colocation distance. Note that interpo-
lation error distance represents the distance between the
predicted location and the actual location as given by the
ground truth set, while the colocation distance represents
the pair-wise distance between IPs with known location.

accuracy by 0.6 percentage points and higher coverage by 0.8%,
while setting it to 3 yields higher accuracy by 0.2 percentage points
and a decrease in coverage by 0.8%. Finally, we set the m parameter
to 25 kilometers. Setting it to 20 kilometers yields a 1 percentage
point improvement in accuracy at 10 kilometers, at the cost of re-
duced coverage by 25%, while setting it at 30 kilometers results in
an accuracy decrease of 1.5 percentage points but with an increase
of 11% in coverage. Using these parameters (n=2, m=25), we filtered
the 3.5 million distinct IP ranges of size 256 in the ground truth set
down to 1.5 million ranges used for interpolation.

Figure 4 presents the evaluation result using ten-fold cross vali-
dation on the ground truth set. The interpolation curve shows the
error distance between where our interpolation places the IP, and
its actual location. Results show that 96.7% of IPs have a predicted
location that is within 10 kilometers of their actual location, and
99.4% of them are within 20 kilometers. For comparison, we have
also displayed the equivalent 256 IPs colocation curve from Figure
2, where IP range pairs were located within 10 kilometers for 72.3%
of data points, and 20 kilometers for 83.8% of data points. In conclu-
sion, if two or more IP addresses in the same IP range are located
in the same geographic area, it is very likely that the rest of the
IP range is also in the same area. Using IP range interpolation we
effectively increased our ground truth coverage from 8.9 million IP
addresses to 382 million IP addresses.

6 LOCATION PROPAGATION EVALUATION
We perform location propagation by combining the concepts of
latency neighbors and IP interpolation. First, we interpolate the
ground truth set to increase its coverage. Then, we propagate these
locations from IPs with known location to IPs with unknown lo-
cation, through latency neighbors. Figure 5 presents a simplified
example of how locations are propagated. We use the interpolated
ground truth set both for training and testing by using ten-fold
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152.153.128.0/24

…
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…

Traceroute
Latency

Neighbors
(0.5 ms)

Propagate
location

152.153.128.51
(New York City)

152.153.128.102
(New York City)
From IP Range 
interpolation

…

152.153.128.197
(New York City)

…

…

…

152.153.139.127
(?)

152.153.139.0/24

Figure 5: Example of location propagation along the tracer-
oute path. Since the two IPs are latency neighbors, we can
propagate the location of the IP on the left to the IP on the
right.

cross validation, where we propagate locations using 9 folds and
we test using the last one. We report the results as the average of
all the runs. The balance of accuracy and coverage of the model
can be adjusted by varying two parameters used in determining
latency neighbors: X, the maximum latency difference between two
nodes and Y, a new parameter which restricts the maximum RTT
between the source IP, and any of the two neighbors. In Figure 1
the maximum latency difference between the source IP and any of
the two candidate latency neighbors is 6 milliseconds. If we set Y to
be 6 or larger, then the two neighbors would be extracted as valid.

To find the optimal values we performed a local parameter search.
We found that as we increased the maximum latency difference
X from 1 to 4 the accuracy at <10 km decreased and the cover-
age increased. The same was true for varying the maximum RTT
parameter from 1 to 10. The curves Traceroute-GPS-HighAcc and
Traceroute-GPS-HighCov in Figure 6 present two instances of these
parameters that graphically demonstrate the effect on accuracy.
The former variation plots the results for parameters X=2, Y=2 and
the latter variation uses X=3, Y=9. The higher accuracy version
has a coverage of 1.4 million IP addresses across 7,400 IP ranges
with propagated location, while the higher coverage version has a
coverage of 15 million IPs across 83,000 IP ranges. These IPs had a
previously unknown location that we now determined using loca-
tion propagation. This evaluation uses the interpolated GPS-based
ground truth as both training and test set. We also ran the same
experiments on the non-interpolated ground truth set and obtained
very similar results, but at lower IP coverage. Figure 6 also shows
the results for a third variation of our approach that uses the Peer-
ingDB dataset with X=3, Y=9 for location propagation. Here the
overall results roughly fall between the first two instances.

We compare these three variations against two state of the art
commercial databases, one labeled ProviderA and the other labeled
ProviderB. We cannot reveal the names of the proprietary databases
since their terms of use forbid comparative benchmarking. The
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Figure 6: Cumulative error distance results that compare
three instances of our approach to two state-of-the-art com-
mercial IP geolocation baselines.

Table 1: Comparison between three instances of our two ap-
proaches and two state of the art commercial geolocation
databases, across several metrics. As described in Section 3,
each data point in our ground truth set is shifted by 0.5 km
in random direction to preserve privacy.

Median
error

% Err
<10km

RMSE in
km

Traceroute-GPS-HighAcc 4.3 km 67.7% 329.3
Traceroute-GPS-HighCov 10.1 km 50.5% 423.6
Traceroute-PeeringDB 8.4 km 61.1% 2124.9
Commercial Provider A 11.1 km 47.2% 545.9
Commercial Provider B 16.7 km 36.7% 545.3

results show that all three variants of our approach consistently
outperform the commercial databases in error distance. Table 1 also
compares our variants to these two baselines across multiple met-
rics. Our three instances outperform the commercial databases both
in terms of median error (lower is better) and percentage of data
points with error <10 km (higher is better). The last column of the
table displays root-mean-square error, which is a metric more heav-
ily influenced by outliers. It shows that the two instances trained
on the proprietary dataset have a better (lower) RMSE than the
commercial providers. However, it shows that the instance derived
from PeeringDB data contains some outliers with high error dis-
tance. One potential explanation for these outliers is that sometimes
PeeringDB IP ranges contain IPs that interconnect datacenters that
are far from each other, so errors caused by these IP ranges result
in large error distances.

7 CONCLUSIONS AND FUTUREWORK
We investigated and combined two IP geolocation approaches, one
based on IP range interpolation, and the other one based on location
propagation over traceroute paths. Our combined technique signif-
icantly outperforms state of the art commercial databases by up to
31 percentage points at error distance smaller than 10 kilometers.
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To aid in reproducing our results, we are making the traceroute
dataset parsing library, and the PeeringDB parsing and generation
library available as open source. One potential area for future work
would be to exploit more information available in traceroute paths.
In previous work we have shown that reverse DNS hostnames can
be a good source of geolocation information [4, 5]. In addition to
using locations from ground truth addresses, it should therefore
be possible to parse the reverse DNS hostnames of nodes along
traceroute paths to extract and propagate more location hints.
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