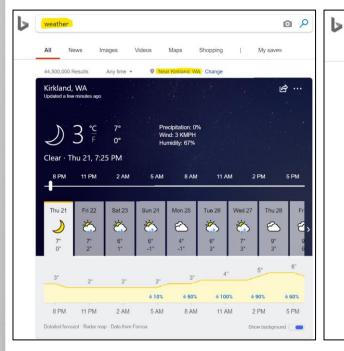
IP GEOLOCATION

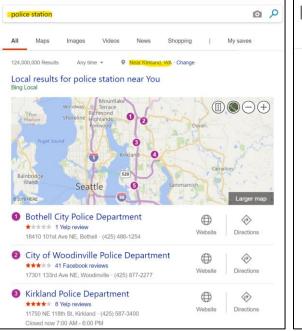
Using <u>Traceroute</u> Location Propagation and IP Range Location <u>Interpolation</u>

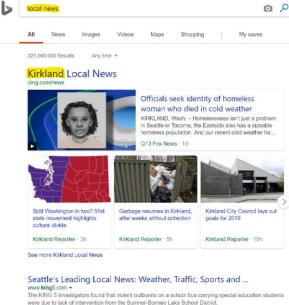
Ovidiu Dan, Vaibhav Parikh, Brian. D. Davison

Presentation Outline

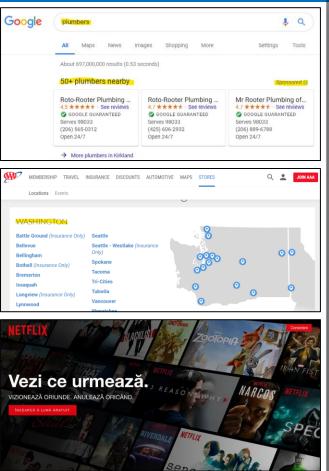
- » What is IP Geolocation
- » Commercial Geolocation Services
- » Motivation and Goal
- Privacy and Datasets
- » IP Colocation
- » IP Interpolation
- » Traceroute Location Propagation
- » Related Work (Appendix)




WHAT IS IP GEOLOCATION


Background, Motivation, Research Questions, Contributions

Weather · Seattle Local News · Sports · Traffic · About King 5 · Hourly & 10-Day



IP Geolocation Use Cases

- Search Engine Personalization
- Content Delivery Networks
- Credit card fraud protection
- Click fraud protection
- Advertising network targeting
- >> Cybercrime investigations
- Location based content licensing
- >>> E-commerce
- >> Organizations with regional offices
- » Automatic Language Selection
- Network Security
- Academic Research
 - Personalization
 - Cohort modeling

	r blocking payments atching this rule will be blocked unless they already matched an allow rule.
Block if	
Example rule	5
Block if	:charge_attempts_per_card_number_hourly: > 10 and
	scard_country: 1= 10
Block if	<pre>:card_funding: = 'prepaid' and :amount_in_usd: > 1000.00</pre>
Block if	<pre>:is_disposable_email: and :is_anonymous_ip:</pre>
Block if	:card_country: in @my_card_country_blocklist and
	in country: in @my_1p_country_blocklist
3	P 0 + New
Dashboard	Home Frontend Backend Pages Categories Tags Post types Search
Posts	iQ Block Country
]] Media	
Pages	Backend Options
Comments	Block visitors from visiting the backend (administrator) of your website:
Projects	
Appearance	Your IP address is Do NOT set the 'Bid
Plugins	You will NOT be abi
Users	Select the countries that should be blocked from visiting your backend:
- Tools	Use the x behind the country to remove a country from this blocklist.
Settings	
Ieneral	Inverse the selection above: If you select this option only the countries that are selected are allowed.
Vriting	Backend whitelist IPv4 and/or IPv6 addresses:
Vriting Reading Xiscussion	
Viting Reading Xiscussion Aedia	Backend whitelist IPv4 and/or IPv6 addresses:
Vitting Reading Xiscussion Aedia Permalinka	Backend whitelist IPv4 and/or IPv6 addresses:
Vetting Reading Xiscussion Aedia Permalinka Warmat Q Block Country	Backend whitelist IPv4 and/or IPv6 addresses:


COMMERCIAL GEOLOCATION

Current commercial location services and their accuracy

Commercial Geolocation Services

- » Akamai EdgeScape (since 2000)
- » Neustar IP Intelligence (since 2000)
- » IP2Location (since 2001)
- » IPligence (since 2006)
- » MaxMind (since 2002)
- » Digital Element's NetAcuity (since 1999)

Data Sources

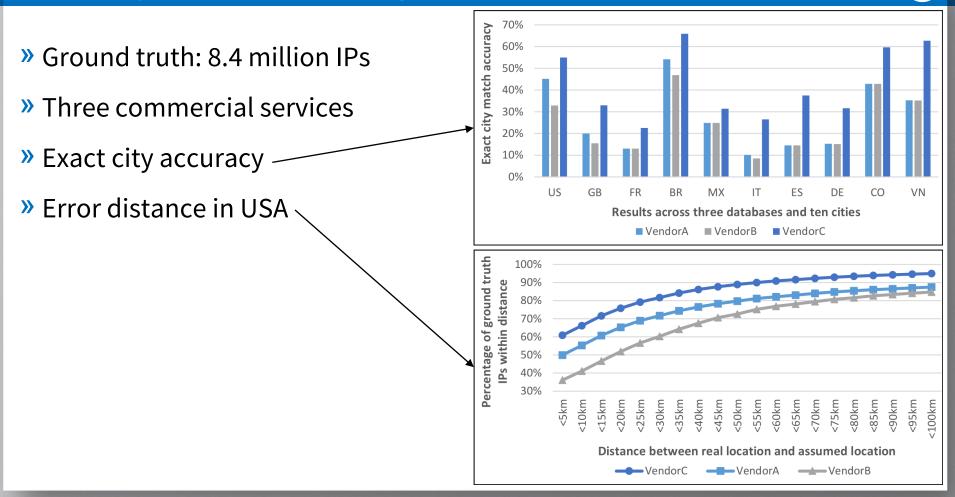
» Data and techniques are proprietary

- » Direct partnerships with ISPs
- » Mobile phone traffic
- » Data from weather, news apps
- » Crowdsourcing
- » Network delay (ping)
- » Network topology (traceroute)
- » WHOIS databases
- » Reverse DNS hostnames

- » MaxMind and IP2Location reveal city-level accuracy
- » Numbers self-reported, not audited

- » Mean unweighted accuracy for 100 countries is 76.5% at 50 km
- » USA: accuracy of 86% at 50 km

» IP2Location


- » Mean unweighted accuracy 77% for error smaller than 50 kilometers
- » USA: accuracy of 99.52% at 50 km

IP2LOCATION

Accuracy of commercial geolocation services

3.

MOTIVATION

Impact of inaccurate IP geolocation in the context of search engines

User Location: Unknown

resta	restaurants												
All	Images	Videos	Maps	News	Shop	I	My saves						

41,700,000 Results Any time 🔻

me 🝷 💦 🔍 Near your location · Change

Local results for restaurants Bing Local

Restaurant.com - Official Site

https://www.restaurant.com -

Read verified diner reviews, get deals and browse menus for thousands of local **restaurants** at Restaurant.com.

Sign In

No matter what business you are in, ... Gift Cards · Find a Restaurant

Find Restaurants

Find Restaurants. Choose from more than 20,000 restaurants nationwide Present the ...

Specials

New deals available every day nationwide or ... Dining

How It Works

Dining Deals. Restaurant.com offers the best deal, every meal. Our Gift Certificates are ...

User Location: New York City

6	restaurants	م	Q					
	All Images Videos	Maps News Shop	My saves					
	Near New York, NY · Change							
	Local results for resta	aurants Larger map Sor	t by relevance - Cuisine -	Rating - Price - Oper				
	100							
	Charles .			- Alton				
	- Carely			AN A LE				
	Ollie's	Chez Josephine	Chirping Chicken	Bea				
	**** Yelp (414)	★★★★★ Yelp (379)	★★★★★ Yelp (177)	★★★★★ Yelp (1787)				
	Szechuan · \$\$\$\$	French · \$\$\$\$ · Midtown West,	Fast Food · \$\$\$\$	American · \$\$\$\$				
	11:30 AM - 10:30 PM	12:00 - 3:00 PM, 4:00 - 11:00	11:00 AM - 12:00 AM	11:00 - 2:00 PM, 5:00 - 2:00 A				

Motivation

- » IP Geolocation is not a solved problem
- » Commercial geolocation services are proprietary black boxes
- » Previous research lacks accuracy and scale

Getting wrong GEO Location - How can I fix it?

The real location should be Kansas City, MO. USA My server's ip is 199.168.103.234 or play.fluixstudios.com

We are renting the server from www.wholesaleinternet.net

Is it possible to correct my GeoIP location

Why does my IP location put me in the wrong major city.

What Is My IP? » Questions » Why does my IP location put me in the wrong major city.

Daniel Barch asked 2 years ago

Netflix thinks I'm in a different country

f TV shows and movies are not available in your language, or if you are missing content that your local riends see, Netflix may think you are in a different country than where you are currently located.

If you signed up for Netflix in a European Union member country but are currently watching Netflix in a different European Union member country, please see Traveling or Relocating with Netflix for more

When Google Gets Your Location Wrong!

uren

Views: 18537

Recently, Google's desktop news began showing me the weather and

I switched my location but YouTube is still limited due to geo-restrictions. What can I do?

Melissa

1

Geo-restricted sites can use various data to recognize your real location such as IP tracking and if you've visited the site before, using cookies on your device. ZenMate allows you to bypass some of these methods by providing a different IP address in the corresponding country.

15 衑

» Correct location vs incorrect location

- » Mined 7 days of search engine logs in US market from Oct 2014
- » Intersect with separate unused ground truth
- » Compare ground truth location with Bing IP geolocation
 - » Impressions with error > 15km vs error \leq 15km

Metrics	Local Intent
Overall Click-Through rate (any link)	-4.3%
Algorithmic Click-Through rate (on search results)	-1.1%
Algorithmic Click Success	-6.1%
Ads Click-Through Rate	-17.9%
Ads Click Success	-15.2%
Ad Revenue	-40.3%

» **Overall goal**: Create an IP geolocation database from scratch

- » Part of a larger research project
- » Approaches
 - » Reverse DNS
 - » Geographic Clicks
 - » GPS
 - » Web Index
 - » Query Logs
 - »Interpolation
 - » Traceroutes
 - » WHOIS
- » Some approaches used in production today in Bing

PRIVACY AND DATASETS

Privacy-Conscious IP Geolocation

Privacy

Your Apps Know Where You Were Last Night, and They're Not Keeping It Secret

Dozens of companies use smartphone locations to help advertisers and even hedge funds. They say it's anonymous, but the data shows how personal it is.

Apps sending location, secretly.

Posted by Joel Reardon on May 14, 2018

» Protecting User Privacy

- » Ground Truth Sets
- » Training data

Privacy (continued)

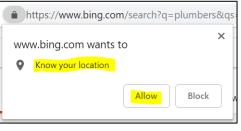
19 资

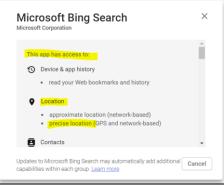
» IP Geolocation

- » Does not track individual's user location
- » Uses IP addresses and not accounts
- » Is coarse, it maps IP ranges to cities
- » Arguably, more privacy conscious than user-level GPS tracking

» 9 billion traceroutes

- » Collected between January and November 2017
- » From Archipelago (Ark) Measurement Infrastructure of CAIDA
- » 208 servers located in 63 countries
- » Every 48 hours a random IP address is chosen
- in each /24 prefix, then the chosen IP addresses
- are individually probed by random Ark servers.

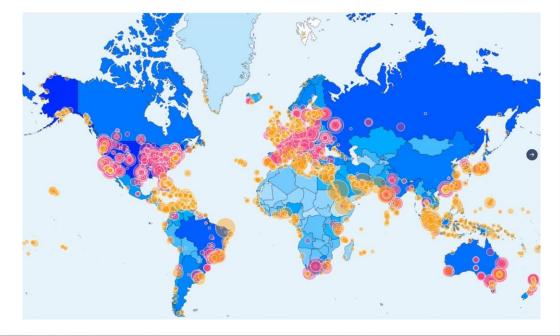



21 🌍

» 8.9 million IP addresses with known location

- » From Bing query logs: 28-day period ending on December 1st, 2017
- » Opt-in and anonymized data from browsers and apps
- » IPs from wired, wireless, and cell networks
- » From all countries in the world

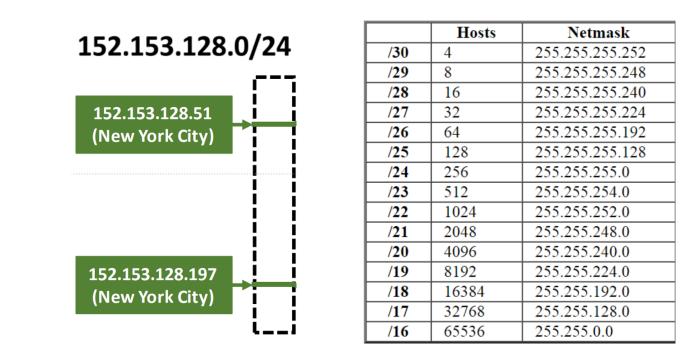
» Only used in training and testing, individual data points are not part of the final geolocation database



PeeringDB

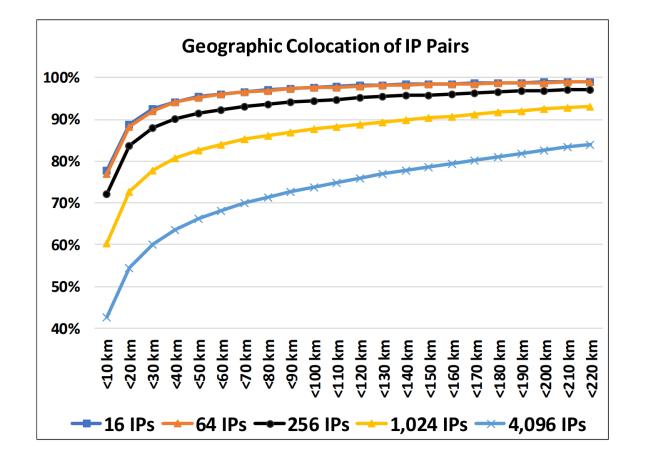
- » Smaller alternative to our proprietary ground truth set
- » 400 IP ranges spanning 128,000 IP addresses, along with geographic coordinates
- » Disadvantage: heavily infrastructure focused vs end users

5.

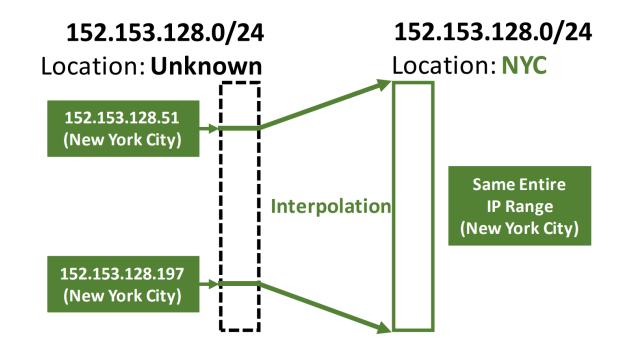

IP LOCATION INTERPOLATION

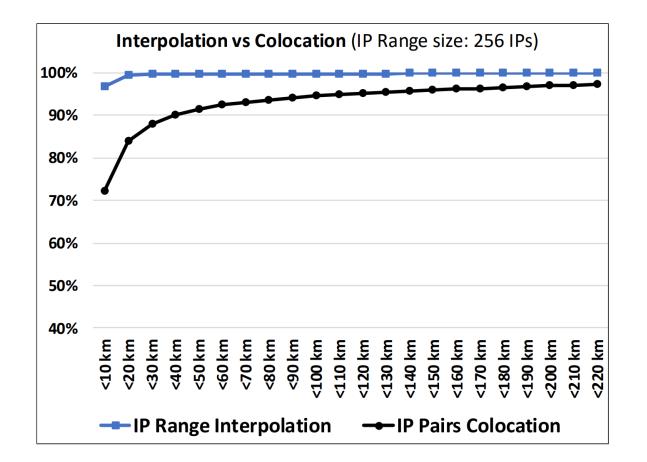
Extrapolating location of entire IP range from a few individual IPs

IP Colocation



>Two IP addresses are collocated if they are in the same IP range.
>IP ranges can have different sizes
>In example above the 2 IPs are also geographically colocated


Colocation of IP Range Addresses


Location Interpolation

Example of IP range interpolation. Since IP range 152.153.128.0/24 contains two IP addresses with the same known location (coordinates in New York City), we propagate that location to the entire IP range.

6.

TRACEROUTE LOCATION PROPAGATION

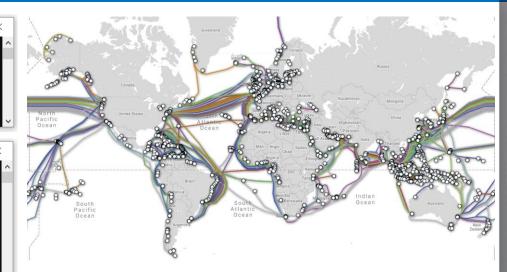
Background, Motivation, Research Questions, Contributions

Ping and Traceroute

Command Prompt

C:\Users\zmart>ping www.lehigh.edu

Pinging www.lehigh.edu [128.180.1.16] with 32 bytes of data: Reply from 128.180.1.16: bytes=32 time=79ms TTL=50 Reply from 128.180.1.16: bytes=32 time=79ms TTL=50 Reply from 128.180.1.16: bytes=32 time=79ms TTL=50 Reply from 128.180.1.16: bytes=32 time=79ms TTL=50

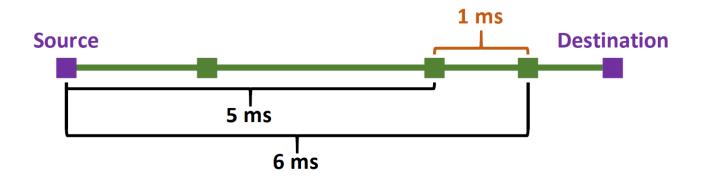

Command Prompt

- 🗆

C:\Users\zmart>tracert www.lehigh.edu

Tracing route to www.lehigh.edu [128.180.1.16] over a maximum of 30 hops:

1	1 ms	1 ms	1 ms	Soul.ziggystardust.selfhost.corp.microsoft.com [10.0.10.							
2	<1 ms	<1 ms	<1 ms	10.0.10.1							
3	2 ms	1 ms	1 ms	0-46-216-1.evrt.wa.frontiernet.net [50.46.216.1]							
4	2 ms	2 ms	2 ms	172.76.21.177							
5	3 ms	3 ms	3 ms	ae30.cor02.sttl.wa.frontiernet.net [74.40.1.101]							
6	3 ms	3 ms	3 ms	ae10.cbr01.sttl.wa.frontiernet.net [74.40.5.126]							
7	3 ms	3 ms	3 ms	74.43.94.7							
8	77 ms	77 ms	78 ms	216.156.16.80.ptr.us.xo.net [216.156.16.80]							
9	75 ms	76 ms	82 ms	207.88.12.228.ptr.us.xo.net [207.88.12.228]							
10	76 ms	76 ms	75 ms	207.88.12.144.ptr.us.xo.net [207.88.12.144]							
11	78 ms	76 ms	77 ms	207.88.12.190.ptr.us.xo.net [207.88.12.190]							
12	77 ms	77 ms	78 ms	207.88.12.189.ptr.us.xo.net [207.88.12.189]							
13	78 ms	78 ms	77 ms	207.88.12.164.ptr.us.xo.net [207.88.12.164]							
14	77 ms	76 ms	76 ms	207.88.12.213.ptr.us.xo.net [207.88.12.213]							
15	80 ms	78 ms	78 ms	207.88.12.214.ptr.us.xo.net [207.88.12.214]							
16	78 ms	78 ms	77 ms	207.88.12.207.ptr.us.xo.net [207.88.12.207]							
17	79 ms	77 ms	78 ms	216.156.16.45.ptr.us.xo.net [216.156.16.45]							
18	79 ms	79 ms	79 ms	mail.tfains.net [209.118.23.114]							
19	80 ms	80 ms	79 ms	128.180.18.202							
20	79 ms	79 ms	79 ms	ws1iv.cc.lehigh.edu [128.180.1.16]							

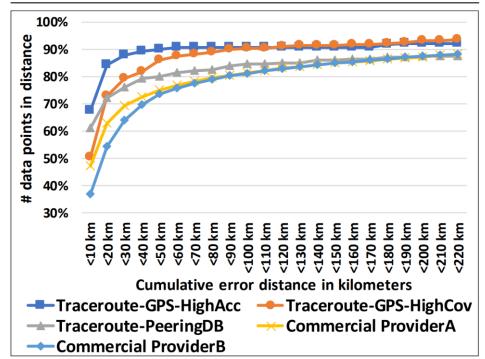


Speed of light in fiber

» 2/3 speed of light: 199 km/ms (124 miles/ms)

3 4/9 speed of light: 133 km/ms (83 miles/ms)

Approach

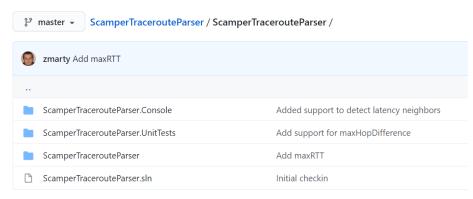


Combine traceroute with IP interpolation

- » Extract latency neighbors
- » Propagate locations through neighbors
- » Apply interpolation to increase coverage
- » Evaluate against ground truth

	Median error	$\% \ {\rm Err} < 10 {\rm km}$	RMSE in km
Traceroute-GPS-HighAcc	<u>4.3 km</u>	$\underline{67.7\%}$	<u>329.3</u>
Traceroute-GPS-HighCov	$10.1 \mathrm{km}$	50.5%	423.6
Traceroute-PeeringDB	8.4 km	61.1%	2124.9
Commercial Provider A	11.1 km	47.2%	545.9
Commercial Provider B	$16.7 \mathrm{km}$	36.7%	545.3

Reproducing Results: Open Source Components



» Traceroute Dataset Parsing Library

»<u>https://github.com/zmarty/ScamperTracerouteParser</u>

» C# library that can parse the text traceroute dumps extracted from binary warts files using sc_analysis_dump (part of the CAIDA Scamper project).

- » PeeringDB parsing and generation library
 - »<u>https://github.com/zmarty/PeeringDBToTSV</u>
 - » Tiny C# library which reads the PeeringDB SQLite databases and can output the data in TSV format more suitable for IP geolocation research

THANK YOU

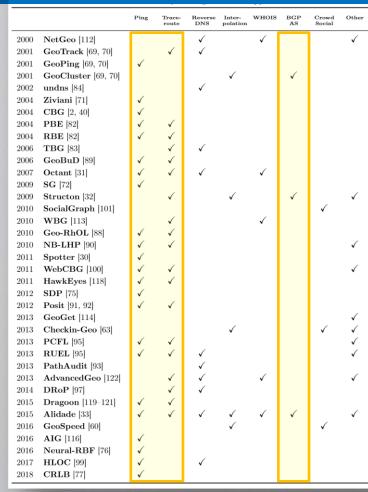
Ovidiu Dan, Vaibhav Parikh, Brian. D. Davison

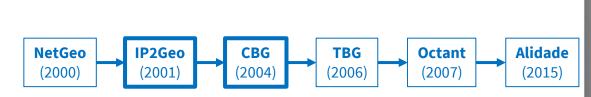
7.

RELATED WORK

Brief summary of two decades of related work in IP geolocation

Approaches in Related Work




» Network delay

- » Network Topology
 - » Traceroute
 - » BGP / ASN
- » Reverse DNS
- » IP Interpolation
- » WHOIS databases
- » Social networks
- » Web Mining
- » Crowdsourcing

		Ping	Trace- route	Reverse DNS	Inter- polation	WHOIS	BGP AS	Crowd Social	Other
2000	NetGeo [112]			\checkmark		\checkmark			\checkmark
2001	GeoTrack [69, 70]		\checkmark	\checkmark					
2001	GeoPing [69, 70]	\checkmark							
2001	GeoCluster [69, 70]				\checkmark		\checkmark		
2002	undns [84]			\checkmark					
2004	Ziviani [71]	\checkmark							
2004	CBG [2, 40]	\checkmark							
2004	PBE [82]	\checkmark	\checkmark						
2004	RBE [82]	\checkmark	\checkmark						
2006	TBG [83]		\checkmark	\checkmark					
2006	GeoBuD [89]	\checkmark	\checkmark						
2007	Octant [31]	\checkmark	\checkmark	\checkmark		\checkmark			
2009	SG [72]	\checkmark							
2009	Structon [32]		\checkmark		\checkmark		\checkmark		\checkmark
2010	SocialGraph [101]							\checkmark	
2010	WBG [113]		\checkmark			\checkmark			
2010	Geo-RhOL [88]	\checkmark	\checkmark						
2010	NB-LHP [90]	\checkmark	\checkmark						\checkmark
2011	Spotter [30]	\checkmark							
2011	WebCBG [100]	\checkmark	\checkmark						\checkmark
2011	HawkEyes [118]	\checkmark	\checkmark						
2012	SDP [75]	\checkmark							
2012	Posit [91, 92]	\checkmark	\checkmark						
2013	GeoGet [114]								\checkmark
2013	Checkin-Geo [63]				\checkmark			\checkmark	\checkmark
2013	PCFL [95]	\checkmark	\checkmark						\checkmark
2013	RUEL [95]	\checkmark	\checkmark	\checkmark					\checkmark
2013	PathAudit [93]			\checkmark					
2013	AdvancedGeo [122]		\checkmark	\checkmark		\checkmark			\checkmark
2014	DRoP [97]		\checkmark	\checkmark					
2015	Dragoon [119–121]	\checkmark	\checkmark						
2015	Alidade [33]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
2016	GeoSpeed [60]				\checkmark			\checkmark	
2016	AIG [116]	\checkmark							
2016	Neural-RBF [76]	\checkmark							
2017	HLOC [99]	\checkmark		\checkmark					
2018	CRLB [77]	\checkmark							

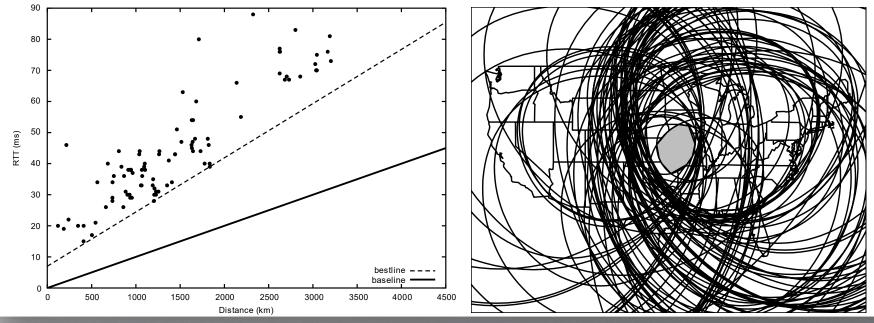
Network Delay and Network Topology

Network Delay and Network Topology

- » Ping, Traceroute, BGP, ASN
- » Active probes
- » Router table dumps
- » Most studied

GeoPing (2001)

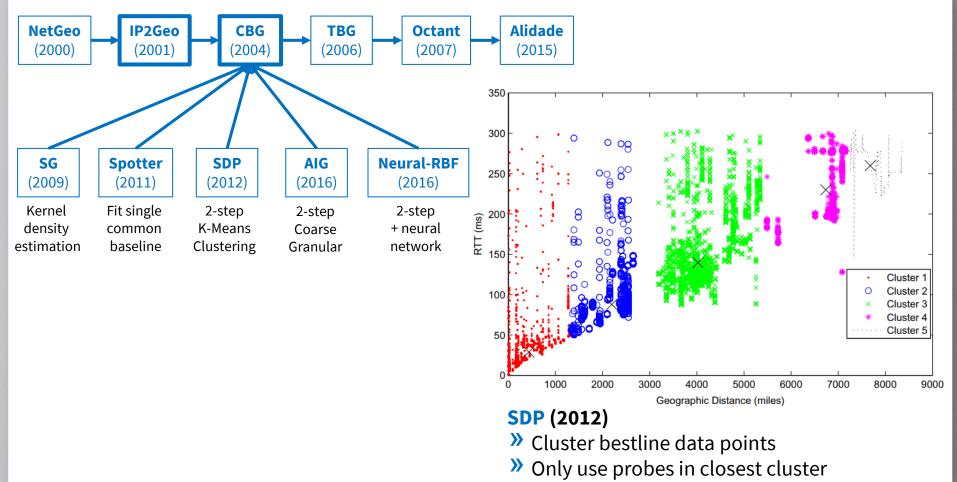
- » Measure ping from each probe servers to all the others
- » For a new target IP, measure ping from all servers to it
- » Pick probe server vector with smallest latency
- » Assign probe server location to target IP


Active Probe Servers Location: Known

	Known Location IP 1	Known Location IP 2	Known Location IP 3	Known Location IP N	Pick vector w/						
Known Location IP 1	0ms	13ms	43ms	12ms	smallest distance	New target IP					
Known Location IP 2	11ms	0ms	9ms	207ms		Location: Unknown					
Known Location IP 3	42ms	17ms	0ms	4ms		IP 1	IP 2	IP 3	IP N		
Known Location IP N	132ms	43ms	0.5ms	0ms	Unknown Location	10ms	0.1ms	9ms	204ms		

Network Delay

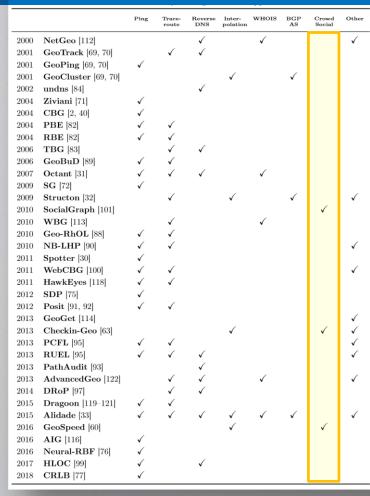
CBG (2004)


- » Determine *bestline* for each probe server → delay-to-distance graph
- » Draw circles around each active probe server
- » Intersect circles and find center of intersection → *multilateration*
- » Assign center location to target

Bestline Estimation Research

TBG (2006)

- » Use intermediate routers on the traceroute path to constrain distances from latency measurements
- » Treat geolocation as an optimization problem on a graph
 - » Vertices active probe servers and targets
 - » Edges traceroute paths with network delay


Reverse DNS

													-		
		Ping	Trace- route	Reverse DNS	Inter- polation	WHOIS	BGP AS	Crowd Social	Other	hostname	ccr21.	par01.	atlas.	cogentco.com	
2000	NetGeo [112]			\checkmark		\checkmark			\checkmark	position	2	1	0		
2001	GeoTrack [69, 70]		\checkmark	\checkmark						position	~	1	0		
2001	GeoPing [69, 70]	\checkmark								hint	ccr	par	atlas		
2001	GeoCluster [69, 70]				\checkmark		\checkmark					pur			
2002	undns [84]	,		~						location			Salas A	Atlas, ES	
2004	Ziviani [71]	~												,	
2004	CBG [2, 40]	~	/									Paris, F	K		
2004 2004	PBE [82] RBE [82]	~	•								Concore				
2004	TBG [83]	v	v	\checkmark								I, CA			
2000	GeoBuD [89]	\checkmark	• ✓	ř							10000				
2007	Octant [31]	√	√	\checkmark		\checkmark				» undns	(2002)				
2009	SG [72]	\checkmark									• •				
2009	Structon [32]		\checkmark		\checkmark		\checkmark		\checkmark	» Man	iual rule)C			
2010	SocialGraph [101]							\checkmark		- Man	luariare	.0			
2010	WBG [113]		\checkmark			\checkmark				» IIC «	centric				
2010	Geo-RhOL [88]	\checkmark	\checkmark							<i>"</i> 030	entric				
2010	NB-LHP [90]	\checkmark	~						\checkmark		2014)				
2011	Spotter [30]	√								» DRoP (2014)				
2011	WebCBG [100]	~	~						\checkmark	•	•				
2011	HawkEyes [118]	~	~							» Auto	omatic p	parsing	rules		
2012	SDP [75]	~										0			
2012 2013	Posit [91, 92] GeoGet [114]	v	~						.(» Rule	s valida	atod wit	h notu	vork delay	
2013	Checkin-Geo [63]				~			./	•	* Nut	.s valiac		.IT IICCV	VOIR actay	
2013	PCFL [95]	\checkmark	1		·			•	• ✓	» DDoc /)))1E)				
2013	RUEL [95]	~	~	\checkmark					√	🔹 » DDec (2	2012)				
2013	PathAudit [93]			\checkmark											
2013	AdvancedGeo [122]		\checkmark	\checkmark		\checkmark			\checkmark	// Con	nbines u	inans w	אט חזוי	OP	
2014	DRoP [97]		\checkmark	\checkmark											
2015	Dragoon [119–121]	\checkmark	\checkmark							» Gives precedence to undns					
2015	Alidade [33]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	0.00					
2016	GeoSpeed $[60]$				\checkmark			\checkmark							
2016	AIG [116]	√								» HLOC	(2017)				
2016	Neural-RBF [76]	~									• •				
2017	HLOC [99]	~		√						» cp	locatio	n hints i	directly	V	
2018	CRLB [77]	v								- 030	i cultur	1111113		У	

Crowdsourcing and Social Networks

» Mine websites

- >> Chinese websites Structon (2009)
- Yellow Pages + CBG WebCBG (2011)

» Mine social graphs

- » Extrapolate location from friends SocialGraph (2010)
- » Locations from social checkins Checkin-Geo (2014)

» WHOIS databases

>> Combine WHOIS with traceroutes - WBG (2010)

» HTTP Network Delay

>>> Use GET as "ping" for multilateration - GeoGet (2013)

» Crowdsourcing

» Crowdsourced Internet speed test - Speed (2016)

» General

- » Small ground truth set
- » Insufficient geographic diversity
- » Lack of networking environment diversity
- » Poor city accuracy
- » Non-existent or vague evaluation
- » Usage of commercial IP geolocation databases for training or testing

» Network Delay and Network Topology

- » Require access to geographically diverse infrastructure
- » Active probes, ICMP is often filtered out
- » Not scalable, as locating even a single IP takes a long time (billions of IPs)
- » Cramér–Rao lower bound theoretical limit best-case error of 20 kilometers