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IP Geolocation databases are widely used in online services to map end-user IP addresses to their geographical
location. However, they use proprietary geolocation methods and in some cases they have poor accuracy. We
propose a systematic approach to use reverse DNS hostnames for geolocating IP addresses, with a focus on
end-user IP addresses as opposed to router IPs. Our method is designed to be combined with other geolocation
data sources. We cast the task as a machine learning problem where, for a given hostname, we first generate a
list of potential location candidates, and then we classify each hostname and candidate pair using a binary
classifier to determine which location candidates are plausible. Finally, we rank the remaining candidates by
confidence (class probability) and break ties by population count. We evaluate our approach against three
state-of-the-art academic baselines and two state-of-the-art commercial IP geolocation databases. We show
that our work significantly outperforms the academic baselines, and is complementary and competitive with
commercial databases. To aid reproducibility, we open source our entire approach and make it available to the
academic community.
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1 INTRODUCTION
IP Geolocation databases map IP addresses to their corresponding geographical locations. They are
used to find the approximate location of an IP address at the city level. Records in these databases
typically contain IP ranges along with their physical location. These databases are vital to a variety
of online services when the exact location of a user is not available. Table 1 lists a few examples of
such records. For instance, the second example in the table maps a /24 subnet (256 IPs) to Hengyang,
a city in China. While some users opt-in to share their exact coordinates to online services through
mobile devices with global positioning sensors, others decline or use devices without such features.
IP geolocation is therefore a valuable source of information on user location.
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Table 1. Example of entries from an IP Geolocation database

StartIP EndIP Country Region City

1.0.16.0 1.0.16.255 JP Tokyo Tokyo
124.228.150.0 124.228.150.255 CN Hunan Hengyang
131.107.147.0 131.107.147.255 US Washington Redmond

A practical application of IP geolocation is personalized local search results in the context of
web search engines. When issuing queries such as weather and zoo near me, users are implicitly
requesting local results even if they do not specify a city in the query. Figure 1 demonstrates
the striking difference in results for the query "restaurants" when the user location is unknown,
compared to when it is known. The top image shows the case when an IP lookup in a geolocation
database fails to find a user’s location, while the bottom image shows the case when the location is
found and it is correct. The generic results lead to nationwide websites where the user has to requery
for more specific restaurants in their area, while the personalized results directly list restaurants
tailored to a specific location. Previous work has shown that personalizing results to a user’s
location leads to increased user satisfaction and conversely that missing location information leads
to user dissatisfaction [4, 14, 37]. IP geolocation databases are also used in many other applications,
including:
• Content Personalization: Personalize content based on the location of the user, for example for
displaying local weather information or local news, or displaying content in the native language
of the user [4, 29, 58].

• Content Delivery Networks: Direct users to the closest datacenter to decrease latency and
increase network throughput [16, 32].

• Credit card fraud protection: Use the location of users making online payment transactions
as one of the inputs in their credit card fraud detection algorithms [2, 5].

• Online advertising: Personalize ads based on users’ location such as showing local deals [38].
• Law enforcement: Fight botnets and cybercrime by tracking the location of IP addresses, and
aid in detecting unauthorized logins [7, 34, 40, 55].

• Geographic content licensing: Restrict audio or video content delivery to licensed geographic
regions [39, 61].

• E-commerce: Automatically determine taxes and shipping while displaying prices in online
stores [57].

Companies such as MaxMind, Neustar IP Intelligence, and IP2Location provide state-of-the-art
commercial IP geolocation databases. They combine multiple IP location sources, including WHOIS
lookups, network latency information, network topology information, reverse DNS, as well as direct
contracts with Internet Service Providers [43]. Related work has shown that while they have high
coverage, commercial databases are sometimes inaccurate or are missing location information for
some IP ranges [17, 26, 47, 54]. Our own past work has demonstrated that the city-level accuracy of
geolocation databases is less than 70% in ten major countries [14]. Furthermore, the methods they
use to derive their databases from these raw data sources are proprietary and therefore impossible
to properly reproduce and expand upon in an academic settings. In contrast, here we focus on
describing and evaluating a single IP geolocation approach in detail, while also making
the source code available to other researchers.
Our work focuses on extracting location information from reverse DNS hostnames assigned

to IP addresses. Extracting location information from hostnames has many potential advantages
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(a) User location is unknown

(b) User location is detected as New York City

Fig. 1. Effect of missing location information on search engine local search personalization. The top image
displays the results for the query "restaurants" when the location of the user is unknown, while the bottom
image displays the personalized experience for a user located in New York City.

including high coverage and accuracy, when compared to other approaches such as network delay
geolocation. Reverse DNS hostnames can be periodically collected in a short amount of time
by performing a reverse DNS lookup for every address in the IP space. Figure 2 exemplifies the
information that can be parsed from reverse DNS hostnames. In this case we can derive both the
location and connection characteristics from the hostname of an IP address. A person reading the
name of the hostname can reasonably expect that it references Wallingford, a town in Connecticut,
USA.
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adsl-42.wallingford.ct.bigisp.us

Exact City 
Name Match

State match 
(admin region)

USA Top-
level domain

Connection 
characteristics

Fig. 2. Example of information that can be extracted from reverse DNS hostnames.

Reverse DNS is the opposite of forward DNS. Figure 3 contains examples of both forward
and reverse DNS resolution. Forward DNS starts from a hostname such as www.bing.com and
resolves to zero, one, or more IP addresses [42]. Note that multiple hostnames can map to the
same IP. Conversely, reverse DNS lookups start from an IP address and typically returns zero or
one hostnames [19]. As in our example, the reverse DNS hostname does not need to be the same
as the forward DNS hostname. While forward DNS lookups are used by Internet users to get to
websites, reverse DNS hostnames are typically used to name and describe the underlying physical
infrastructure that makes up the Internet.

www.bing.com 
204.79.197.200www.msn.com 

www.msdn.com 

(a) Forward DNS example. Multiple hostnames can be mapped to the same IP address.

204.79.197.200 a-0001.a-msedge.net

(b) Reverse DNS example. An IP address typically has zero or one reverse DNS hostnames.

Fig. 3. Example of the difference between forward DNS and reverse DNS resolving. The former starts from a
hostname and maps to one or more IPs; the latter starts from an IP and maps to zero or one reverse DNS
hostnames.

We propose a systematic approach for using reverse DNS hostnames to geolocate IP addresses.
We focus on end-user IP addresses, which we show make up the vast majority of IP addresses,
and which are most useful in IP geolocation for online services. Our approach is designed to be
combined with other data sources when compiling an IP geolocation database. Given a reverse
DNS hostname, our task is to determine a list of geographic locations at the city level
that could reasonably match. This task poses multiple challenges. First, the naming schemes of
Internet Service Providers are often ad-hoc and do not always contain the full names or common
abbreviations of cities. For example, the drr01.cral.id.frontiernet.net hostname is located in
Coeur D’Alene, Idaho. Determining that the cral substring maps to this location is difficult even for
a human. Second, many cities around the world have ambiguous names. Take for instance Vancouver,
Canada and Vancouver, USA. A hostname which only contains the substring vancouver is not specific
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enough to determine a single location correctly. Even unambiguous city names can become ambigu-
ous when abbreviations are used instead of their full names. Does nwmd refer to New Richmond, WI
or to New Maryland, NB, or to neither of them? Third, sometimes hostnames contain conflicting
locations. For example, it is difficult to determine if sur01.tacoma.wa.seattle.comcast.net is
located in Seattle, WA, Tacoma,WA, or maybe even Sumner, WA. More specifically, our contributions
are:
(1)We study how reverse DNS hostnames evolve over the course of five years. Among other

findings, we determine the usage of reverse DNS hostnames is increasing in time, and that there
are 1.25 billion reverse hostnames across the entire IPv4 space, of which hundreds of millions
appear to contain location hints.

(2)We present a machine learning approach for extracting locations from hostnames. We
cast the task as a machine learning problem where for a given hostname, we split the hostname
into its constituent terms, we generate a list of location candidates, then we classify each
hostname and candidate pair using a binary classifier to determine which candidates are plausible.
Finally, we rank the remaining candidates by confidence, and we break the ties by population.

(3)We evaluate our approach against state-of-the-art baselines. Using a large ground truth
set, we evaluate our approach against three academic baselines and two commercial IP geolo-
cation databases. We show that our method significantly outperforms academic baselines. We
also show that the academic baselines contain incorrect rules which impact their performance.
Finally, we demonstrate that our approach is both competitive and complementary to commercial
geolocation baselines, which shows that our method can help improve their accuracy.

(4)We release our data and code as open source. To help the academic community reproduce
our results, we open source the components of our reverse DNS geolocation system, including
the hostname splitter, sampling strategy, features, and the classifier itself. The code is available
at github.com/microsoft/ReverseDNSGeolocation.

Before we delve into the related work in this area, we would like to make a note of how we use the
terms domain and subdomain in this paper. Figure 4 shows an example of how we name different
parts of the hostname router.nwestnet.net in our work. According to RFC 1034, a domain is
a subdomain of another domain if it is contained within that domain [42]. Therefore technically
[net], [nwestnet.net], and [router.nwestnet.net] are all subdomains of the root domain.
Furthermore, they can also each be domains. However, in this paper we use these terms in the more
colloquial sense where the domain is a name (for example comcast.net and bing.com) that can
be registered through a registrar, the subdomain fragment is the part of the hostname to the left of
the domain, and the subdomain is equivalent to the entire hostname. In Section 5.1 we will further
introduce the term logical domain for special cases where for reverse DNS geolocation purposes
we use a subdomain as the domain. Finally, top-level domains such as net, com, org, us are the
domains in the DNS tree that are immediately under the common root domain, which is the parent
of all domains in the DNS tree.

2 RELATEDWORK
We divide IP geolocation research in two broad categories, based on the methods they use: network
delay and topology approaches use ping, traceroute, and BGP network structure information;
Internet data mining approaches use diverse information mined from the Internet, including
web page content, WHOIS databases, reverse DNS, and social graphs.

The majority of IP geolocation research relies on active network delay measurements
to locate addresses. Early work on IP geolocation by Padmanabhan and Subramanian discusses
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router.nwestnet.net

Top-level domain (TLD)

Domain

Hostname

Subdomain fragment

Subdomain

Fig. 4. Example of naming different parts of a hostname in this paper. See text for details.

GeoPing [46], which sends ICMP packets from geographically distributed landmark servers to the
target IP. It then assign the target IP the location of the closest landmark server in terms of latency.
CBG [27] goes further by creating circles on the surface of the earth around each landmark server,
where they calculate the radius of each circle based on their measured network delay. It then uses
multilateration to infer the location of the target IP at the intersection of these circles. GeoCluster,
also proposed by Padmanabhan and Subramanian [46], combines BGP routing information with
sparse IPs of known locations to assign geographical locations to whole address prefixes. TBG
[35] uses traceroute from landmark servers to the IP target and perform global optimization to
find the location of both landmarks and targets. Youn et al. [67] develop a statistical method for IP
geolocation based on applying kernel density estimation to delay measurements. More recently,
Ciavarrini et al. [12] presented a framework to understand how the position of landmarks and their
distribution affect localization performance. Multiple systems such as Octant [66], Alidade [11], or
HLOC [53] combine delay measurement methods with other data sources such as reverse DNS and
WHOIS information.

Network delay and topologymethods have significant limitations. First, all such methods
require access to nodes spread throughout the globe to perform measurements. Second, geolocating
a large number of IP addresses using network measurements can run into scalability issues, as
each target IP address or range requires separate measurements. The ZMap project from the
University of Michigan can scan the entire IPv4 address space using a gigabit connection [18].
However, performing useful network delay measurements would require a significant number of
such machines distributed around the world, and attempting to perform traceroutes would require
running this probe step once for every hop distance. Third, not all networks allow ICMP pings
or fully disclose their network topology. Fourth, routes on the Internet do not necessarily map to
geographic distances. Fifth, the ground truth data for work in this area is usually limited to a few
tens of IP addresses, typically located in the United States. For example, GeoPing and GeoCluster
are evaluated on only 256 target IP addresses, all located at universities in the United States, CBG is
evaluated on only 95 IP addresses in the U.S. and 42 addresses in Western Europe, TBG only targets
IP addresses located at U.S. universities, etc. Sixth, previously reported mean and median errors of
tens to hundreds of kilometers show that these methods cannot be used for practical applications at
the city granularity. For instance, GeoPing has an error distance of error distance of 150 kilometers
at the 25th percentile, and CBG has median error of 100 kilometers for some datasets. Seventh,
previous work has shown that the accuracy of these approaches depends on both the proximity of
the landmarks to the target address and on the density of landmarks [12].

Our work addresses several of these limitations. First, using reverse DNS hostnames for
geolocation does not require any network delay measurements. Reverse DNS hostnames can be
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obtained much faster than performing active delay measurements, by querying DNS servers. Second,
our ground truth dataset is several orders of magnitude larger than the ones used in previous work
and it spans the entire planet. Third, our approach can be performed offline and is scalable. Fourth,
our results have much better median error distance than most previous research.

Internet data mining approaches use diverse information mined from Internet, such
as web page content, IP whois information, reverse DNS hostnames, social networks, etc.
Guo et al. [28] extract locations mentioned in web pages and assign the locations to the IPs which
host the content. Using an IP geolocation database as ground truth they report an agreement on the
city level for 87% of the IPs. This work has two obvious problems: first, an IP geolocation database
with unknown accuracy is used as ground truth; and second, the method focuses on geolocating
IP addresses of servers, not of end users. Endo and Sadok [20] propose using whois information.
Unfortunately, the evaluation section lacks a comparison against ground truth. Wang et al. [63]
combine the CBG approach with extracting the location of web servers from the web pages that
they host. Using the web servers as landmarks they are able to achieve good results, with a median
error of 0.69 kilometers for the best data set, which contains only 88 IP addresses. The approach
partially suffers from the same scalability limitations as network delay based methods, as it requires
access to extensive worldwide Internet architecture to run. The results also depend on the density
of servers in a geographical area that can be used as landmarks. In recent years the migration of
local web servers to cloud services has accelerated, which makes it more and more difficult to find
local landmarks [63].
Backstrom et al. [3] propose an interesting approach which relies on a user’s social graph to

determine their location. They derive the location of target users based on the locations of friends.
Using self-reported location as ground truth they show an improvement over an unnamed IP
geolocation database. For an error distance of less than 25 km, the amount of correctly classified
IPs increases from 57.2% for the baseline to 67.5% for the proposed method. The authors state that
this method works so long as an individual has a sufficient number of friends whose location is
known, preferably more than 16. This approach yields a median error distance of 590 km on a test
dataset of 2,830 IPs.

In this work we propose extracting IP locations from their reverse DNS hostnames,
which we also classify as an Internet data mining approach. GeoTrack [46], proposed by Padman-
abhan and Subramanian, is one of the earliest reverse DNS geolocation approaches. They create
manual rules to determine locations of hostnames in the United States using city names, airport
codes, and country codes. They then combine this approach with traceroutes to estimate the
location of a target IP. In contrast, our machine learning approach does not require manual rules
and it achieves a median error of only 17.5 km on a test set of 1.6 million worldwide IPs.

Undns is the most well-known and widely used reverse DNS geolocation approach [56]. Similarly
to GeoTrack, it consists of manual rules. The rules are expressed as regular expressions at the
domain level. The extracted slots in the rules are then matched to manually generated lists of
locations. For the rule ([A-Z]{3,4})[0-9]?.verizon-gni.net undns matches the hostname
PHIL.verizon-gni.net. The rule looks for subdomain fragments with 3 or 4 uppercase letters,
followed by an optional numeric digit. A domain specific location dictionary is then used to match
the extracted slot PHIL to Philadelphia, PA. The obvious disadvantage of this approach is that
each domain requires manually generated and thus potentially error prone rules. undns does not
extract any location, if there are no rules for a domain, or the rules are incomplete. The hostname
PHLAPA-LCR-08.verizon-gni.net does not match any rule, although it is likely also located in
Philadephia, PA. This is an example where undns would fail. Also, its accuracy is unknown because
the paper does not present a specific IP geolocation evaluation. In comparison, our approach
is much more scalable, since it does not require human generated rules. It also handles unique
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situations better, since it considers the terms of each hostname individually, without requiring
domain specific training. Our system is also easier to keep up to date by just running the automated
retraining process. In Section 6.3 we show that our approach significantly outperforms
undns. Several geolocation and network topology papers use undns as-is to draw conclusions or
perform experiments [24, 44, 47, 64]. However, we demonstrate that undns results suffer significantly
due to catch-all rules.

DRoP, another state-of-the-art reverse DNS based approach, aims to geolocate hostnames using
automatically generated rules generated by finding patterns across all the hostname terms of a
domain [33]. For example, it may find that for the domain cogentco.com, the second term from the
right often contains airport codes. These rules are then validated using network delay information.
DRoP places 99% of IPs in 6 test domains within 10 kilometers of their actual location. However, it
uses network delay measurements which would require significant worldwide computing resources
and run time to scale to the entire IP space. In contrast, our proposal does not require delay
measurements as it only parses hostnames. Also, DRoP is designed for and evaluated against router
hostnames, when most geolocation applications need to geolocate end user residential IP addresses.
Our proposal works on hostnames of both end user and router IP addresses. Furthermore, DRoP
uses a method of splitting hostnames that is rudimentary compared to ours and can miss some
location hints. Our approach generates multiple interpretations of how a hostname can be split into
parts. For example, our approach can split on the transition between letters and numbers, not only
on the dotted parts. Finally, DRoP was only tested on a handful of ISP domains that were known
beforehand to have consistent reverse DNS naming rules with location hints. In comparison, our
approach can work on any unseen ISP hostnames even without a consistent naming scheme. We
show here that our system significantly outperforms DRoP in error distance.
DDec [21] combines undns and DRoP rules by giving precedence to undns and using DRoP

as fallback. Unfortunately, we demonstrate in Section 6.3 that DDec and its constituent parts
perform poorly on worldwide ISP domains due to incorrect and catch-all rules. To perform a fair
comparison, we compare our approach against DDec (undns + DRoP) on domains that
the baselines specifically support, although our approach can scale to unseen domains
and to hostnames with ad-hoc naming that do not follow a consistent naming scheme.
HLOC, which is more recent work by Scheitle et al. [53], is similar to DRoP in that it extracts

location hints from reverse DNS hostnames, and it validates them using network delay measure-
ments. However, it uses the location hints directly to construct a candidate location list to be
verified, whereas DRoP also aims to output specific hostname parsing rules. This work has several
problems. First, Scheitle et al. do not properly evaluate HLOC against a ground truth set. Instead,
they determine agreement with commercial databases and with DRoP. These results in themselves
do not tell us the accuracy of HLOC. Second, they consider any location hint on a radius of 100
kilometers around city centers to be located in that city, which is not necessarily true in high density
regions with many cities and towns close to each other. Third, as with DRoP, they specifically
target only router IPs and filter out any residential addresses. Fourth, they ignore any location
hints for places that have less than 100,000 inhabitants. In the United States, only ≈300 cities have a
population greater than 100,000, out of more than 35,000 cities and towns in the country. Fifth, due
to several filtering steps, this approach could only extract locations for 4.7% of IPs in their router
dataset.
We previously published a preliminary version of this work that focused on the engineering

side of developing a distributed version of our approach [15]. This paper greatly expands on our
previous work. First, this work focuses on describing the features used for reverse DNS geolocation
in detail, whereas our previous work primarily describes the engineering challenges in adapting
our work to be distributed. In our previous work we performed experiments on a cluster of 2,000
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machines and demonstrated that our distributed implementation is more than 150 times faster than
a single-machine version. In Section 5 of this work we focus on describing the features and reverse
DNS geolocation classifier. Second, here we present a detailed motivation for our work, as well as
a greatly expanded discussion on background information and related work, in Sections 1 and 2.
Third, Section 4 of this paper contains an an analysis of the Rapid7 Reverse DNS dataset across
multiple years. Fourth, in the same section we also determine the percentage of infrastructure IP
addresses (routers as opposed to end-user IPs) by intersecting the Rapid7 dataset with the CAIDA
Macroscopic Internet Topology Data Kit (ITDK) dataset [8]. Fifth, in Section 5.3 we present an
improved classifier which outperforms our previous work. Sixth, we compute and discuss more
evaluation metrics, such as RMSE. We also compare our approach against commercial geolocation
services across more hostname domains, in Section 6.4. Seventh, in Section 6.3 we expound on
examples where the academic baselines we compare against fail to parse hostnames. Eighth, in
Section 7 we discuss the privacy implications of our work. Finally, along with this paper we make
our work available as open source to allow other researchers to reproduce our results, as described
in Section 8.

3 DATASETS
This section contains descriptions of the datasets we use throughout this article for experiments,
training and testing:
• Ground truth: We train and evaluate our approach using a ground truth set of 67 million
IP addresses with known world-wide location. To the best of our knowledge, this dataset
is the largest and most diverse ever used in IP geolocation literature. We compiled the
ground truth set in March 2018 by randomly sampling search impressions from Bing query logs.
We describe the characteristics of this dataset in detail in Section 6.1, and we discuss privacy
considerations in Section 7.

• GeoNames is a free database with geographical information about the entire world at different
levels of granularity, such as streets, neighborhoods, cities, countries, and continents. This
continuously updated database can be accessed either through a Web API or by downloading data
dumps [65]. The March 2018 snapshot we used contains information on 11.5 million geographic
features from all countries in the world. We specifically used the following subsets available
separately for download:
• Cities 1000 consists of information on all cities in the world with a population of at least
1,000, including original names, ASCII names, alternate names, coordinates, and the codes of
administrative divisions at several levels of granularity. For example it states that Paris has 2.1
million inhabitants, it is part of the administrative region with code 11, and it is the capital
of France. It also provides latitude and longitude for the city center, as well as 105 alternate
names in multiple languages.

• Alternate Names contains more alternate names for some cities such as abbreviations, collo-
quial names, and historic names. More importantly, it also contains airport codes issued by
IATA, ICAO, and FAAC, which are travel organizations. For Paris this dataset lists the closest
IATA airport code to be PAR, which is the common code for all airports in the Paris region.

• Admin 1 Codes is comprised of the codes and names of first-level administrative regions.
Continuing with the Paris example, we find that code 11 refers to Île-de-France, which is one
of 18 regions in France and it contains the Paris metro area.

• Country Info contains general information about countries, including the population, currency,
postal code format, languages, and the Internet top-level domain (TLD). For Paris, France the
TLD for websites is .fr.
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• CLLI is an abbreviation for Common Language Location Identifier. These codes are used by the
North American telecommunications industry to designate names of locations and functions of
telecommunications equipment. While historically only used by the Bell Telephone companies,
they were more recently adopted by other companies as well. Multiple codes can map to the same
location. For example, all the following codes map to Chicago, Illinois: chcgil, chchil, chciil,
chcjil, and chclil. Note that the codes cannot necessarily be derived from the name of the
city. This database is available from multiple sources. We acquired a May 2017 snapshot from
TelcoData [60] for a token amount.

• UN/LOCODE, which stands for United Nations Code for Trade and Transport Locations, is a
worldwide geographic coding scheme developed and maintained by the UN. It assigns codes
to locations used in trade and transport, such as rail yards, sea ports, and airports. The code
assigned to Paris, France is FRPAR and the functions listed for this location are: port, rail, road,
and postal. The codes are obtained by concatenating two-letter ISO 3166-1 alpha-2 country
codes with three characters that more specifically describe the location of physical infrastructure
used in trading. This dataset is updated twice a year and it is available for free on the United
Nations Economic Commission for Europe website [22]. We used the December 2017 release,
which was the latest available dataset when we performed our evaluation.

• Public Suffix List, which is maintained by the Mozilla Foundation, is a list of domain suffixes un-
der which Internet users can directly register names [23]. Some examples include cloudapp.net,
gov.uk, and konsulat.gov.pl. The list can be used to extract the subdomain fragment from a
hostname. This dataset is updated daily and it is free. Please see Section 5.1 for more details.

• Rapid7 Reverse DNS consists of reverse DNS hostnames of the entire IPv4 address space.
The dataset is provided for free to researchers by Rapid7 Labs and it is updated weekly. The
archive contains snapshots going back to 2013 [50]. We discuss the dataset in detail in the next
section.

4 REVERSE DNS
Performing forward DNS lookups converts valid hostnames such as www.bing.com into IP addresses,
while performing reverse DNS lookups works in the other direction. Since the forward and reverse
DNS lookups are defined by different DNS records, they do not need to have the same hostname.
Reverse hostnames are more likely used to name the underlying networking infrastructure, as
opposed to forward hostnames that are used to name websites or other online services. Both
forward and reverse DNS are described in RFC1034 [42], an Internet standard published by the
Internet Engineering Task Force.
Reverse DNS lookups are achieved by querying PTR and CNAME records. To perform a re-

verse lookup of the IPv4 address 204.79.197.200 we query the PTR record for the hostname
200.197.79.204.in-addr.arpa. We obtain this hostname by reversing the four octets of the IP
address, such that 204.79.197.200 becomes 200.197.79.204, then we append the in-addr.arpa
domain. The DNS tree is walked backwards, so first the nameserver for in-addr.arpa is resolved,
then the one for 204.in-addr.arpa, etc. This structure assumes that IP addresses are allocated by
Internet registries to ISPs in blocks of 256 IP addresses or more, since the lookup eventually reaches
197.79.204.in-addr.arpa. While this was historically true, with the introduction of classless
inter-domain routing addresses started being allocated in smaller blocks. To address the problem
of reverse DNS hostnames for smaller blocks, RFC2317 [19] proposed using CNAME records to
further divide each block if needed.

IPv6 addresses also have reverse DNS hostnames. The only difference is that the records are under
the ip6.arpa domain. While we evaluate our approach on IPv4, all methods described in
this article can be equally applied to IPv6 addresses as well.
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To determine the viability of using reverse DNS hostnames for geolocation, we began our
investigation by studying a dataset provided by Rapid7 Labs [50]. This dataset, which is updated
once a week, is available for free and it consists of reverse DNS hostnames of the entire IPv4 address
space. Rapid7 obtains the records by performing IPv4 PTR lookups over the entire address space as
described above, except for ranges that are blacklisted or private. The archive contains snapshots
going back to 2013 [49]. The preliminary investigation in this section is based on a snapshot taken
in January 2018, while in the rest of the article we use a more recent dataset from March 2018.

We first discuss the coverage of reverse DNS hostnames in the IPv4 address space, which consists
of all 32-bit numbers. This limits the possible address space to 232 (4.3 billion) addresses. The number
of usable IP addresses is actually only 3.7 billion, since the Internet Engineering Task force and
the Internet Assigned Numbers Authority designated some IP ranges as special-use or private [1].
Since not all IP addresses have a reverse DNS hostname, we parsed the Rapid7 dataset to find the
actual reverse DNS coverage. We found that 1.25 billion addresses have a reverse DNS hostname.
This finding shows that while they have massive coverage, reverse DNS hostnames cannot be used
alone in determining location information for the entire IP space. This partial data source must
therefore be combined with other data to obtain a complete geolocation database.
We then quantified how many of the hostnames are valid, as the DNS records are unrestricted

strings. We parsed each hostname and rejected the ones that did not respect Internet host naming
rules [6, 30]. For example, we ignored hostnames which contain spaces. We also rejected hostnames
that did not have a valid suffix as defined by the Public Suffix List, which is a list of valid domain
suffixes previously described in Section 3. This left us with 1.24 billion hostnames, of which 1.15
billion were distinct. Our findings are summarized in Table 2, which shows that 33.4% of usable IP
addresses have a valid reverse DNS hostname, and 31.1% are distinct. Considering that not all IPv4
addresses are yet allocated, the actual percentage is likely higher.
This work focuses on geolocating end-user IP addresses, therefore it is useful to know what

percentage of IPs with a valid reverse DNS hostname are instead used by Internet infrastructure
such as backbone routers. To make this determination we intersected the Rapid7 Reverse DNS
dataset with the router dataset from CAIDA’s Macroscopic Internet Topology Data Kit (ITDK)
project [8], from the same time frame. ITDK contains data about connectivity and routing gathered
from a large cross-section of the global Internet. One of the files in the dataset contains a list of all
the routers detected on the Internet, along with the IP addresses of their ports. These two datasets
have 35.6 million IP addresses in common. This corresponds to about 1% of usable IP addresses and
3.1% of distinct reverse DNS hostnames. The result shows that, as expected, the vast majority of
addresses are used by end-users.
Next, we set out to determine if reverse DNS hostnames are a valuable source of geolocation

information. We searched for exact city names and airport codes in the hostnames, using the Cities
1000 and the Alternate Names dataset, respectively. We found that 163.7 million hostnames could
contain exact city names, and 272.9 million hostnames could contain airport codes. This approach
represents an upper-bound of the number of hostnames that could contain exact city names or air-
port codes. The results contain true positives such as sur01.seattle.wa.seattle.comcast.net
in Seattle, Washington and inovea5.gs.par.ivision.fr in Paris, France. However, this naive
approach also matches false negatives such as node-j.pool-1-0.dynamic.totbb.net which is
not in Pool, UK and mobile.bigredgroup.net.au which is not in Mobile, Alabama. Nevertheless,
the results summarized in Table 2 show that there are potentially hundreds of millions of hostnames
that could contain geographic information, using just these two features alone. We conclude that
while the results are promising, a more sophisticated approach could achieve higher coverage and
accuracy.
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To further familiarize ourselves with hostname naming conventions, we extracted the top
subdomain fragment components of the largest 10 domains in the Rapid7 dataset. To obtain
the components we split each subdomain fragment on the dotted components, and then we
further split the components on dashes and on the transitions between numbers and letters.
For example, hostname soc-l.wht2.ocn.ne.jp has a subdomain fragment soc-l.wht2 and a
domain ocn.ne.jp. We split the subdomain fragment into soc, l, wht. We then manually labeled
the components that we found to reasonably correspond to geographic locations. We also cross-
checked our findings with commercial databases.

Table 3 shows the results. We observe that only 4 out of the top 10 domains contain indicators of
geographic location. However, those that use geographic encodings do so extensively. We find that
service providers use various naming conventions across different networks and within a single
network. For instance, the hostnames under the sbcglobal.net domain owned by AT&T make use
of abbreviations such as pltn to refer to Pleasanton, CA. But they also use combinations of city
abbreviations with State names such as chcgil to refer to Chicago, Illinois. Our findings are in line
with work by Chabarek and Barford [10], who found that all eight of the providers they studied
used multiple naming schemes.
We also studied the distribution of top level domains such as .com and .fr in the Rapid7

dataset to determine if country-specific domains can be used as location hints. We observed that
most hostnames contain a .net domain at 33.2%, followed by .com with only 17.2%. This is the
opposite of forward DNS, where .com is more popular. The difference is due to Internet Service
Providers preferring to use .net TLD domains for hostnames that describe the underlying physical
architecture of their network. After removing the .com, .net, .edu, and .mil domains which
together make up 51.6% of valid hostnames, we are left with approximately 600 million hostnames,
the vast majority of which are country-specific. We found very few novelty TLDs used in reverse
DNS hostnames. We conclude that the corresponding country of a reverse DNS domain could be a
useful hint in geolocation.
Finally, we compared snapshots of the dataset, each collected in the month of January of years

2014 to 2018, inclusive. Our goal was to determine how the characteristics of the hostnames change
in time. For each IP in the snapshot we compared the hostname values in consecutive years. Table
4 shows a summary of the results. We found that a maximum of 14.3% of hostnames changed
year over year. This number includes the cases where one side of the comparison contained a
hostname but the other side was empty due to the DNS query returning an empty hostname, or

Table 2. Usage of reverse DNS hostnames across the entire IPv4 space. More than 1.24 billion IPv4 addresses
contain valid reverse DNS hostnames.

Set name Size % of usable % of distinct

Total IPv4 space 4.3 B
Reserved IP addresses 0.6 B
Usable IP addresses 3.7 B

IPs with reverse DNS hostnames 1.25 B 33.7%
Valid reverse DNS hostnames 1.24 B 33.4%

Distinct DNS hostnames 1.15 B 31.1%
Exact city match (naïve) 0.16 B 4.4% 14.1%
Airport code match (naïve) 0.27 B 7.4% 23.5%

Internet Infrastructure IPs 0.04 B 1.0% 3.1%
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Table 3. Top hostname components of the largest 10 domains that have reverse DNS hostnames. We manually
highlighted locations with underlined blue. The percentages in the valid and usable columns are computed
based on rows 3 and 5 of Table 2.

Domain Count % of valid Top hostname components sorted in descending
order by how often they appear in all hostnames
of this domain

comcast.net 50.0M 4.0% c, hsd, hsd1, m, ca, pa, fl, il,ma, ga, a, co,mi, d, f, wa,
b, e, va, nj, or, md, tx, chlm, chic, phil, tn, in, npls,
dd, atlt, sjos, denv

bbtec.net 37.2M 3.0% softbank, biz
rr.com 31.1M 2.5% res, cpe, mta, socal, biz, rrcs, nyc, neo, nc, wi, kya,

columbus, cinci, carolina, tx, central, twcny, nycap,
west, sw, rochester

myvzw.com 29.6M 2.4% sub, qarestr
sbcglobal.net 28.4M 2.3% lightspeed, adsl, dsl, irvnca, hstntx, rcsntx, cicril,

sntcca, tukrga,miamfl,pltn,pltn13, stlsmo, livnmi,
bcvloh, frokca, chcgil

t-ipconnect.de 24.5M 2.0% dip, dip0, p, b, e, a, f, d, c, pd, fc, fd, fe, ff, de, dd, dc, df,
ee, bb, bd, bc, ae, ac, aa, ab, af, ad, ba, bf, ea, eb, be, ec, fa,
ed, fb, ef, db, da, ca, cf

telecomitalia.it 19.4M 1.6% host, static, business, b, r, retail, dynamic, host156,
host15, host94, host61, host127, host232, host112, host95,
host72, host107, host220

ge.com 16.7M 1.4% static, n, n003, n003-000-000-000, n129, n144, n144-220-
000-000, n129-201-000-000, n129-202-000-000, n165-156-
000-000m n165, n192

ocn.ne.jp 16.2M 1.3% p, ipngn, tokyo, osaka, ipbf,marunouchi, ipbfp, omed,
omed01, kanagawa, hodogaya, aichi, osakachuo,
saitama, hokkaido

spcsdns.net 16.0M 1.3% pools, static

due to the request failing because of network failures during data collection. We then performed a
similar comparison, this time counting only the cases where both sides of the comparison contained
non-empty hostnames. Here we found that a maximum of 2.2% hostnames change over the years,
if both of the values are present. To understand why there is such a large discrepancy between
these two findings we also determined the number of hosts that were gained or lost between the
years. By hostnames gained we mean that in the older year a hostname was missing, while in the
subsequent year it was present, and by hostnames lost we mean the opposite. The results show that
yearly more hostnames are gained than lost. However, the number of hostnames gained every year
has steadily declined from 108.5 million in the first pair, to 79.6 million in the last pair. Conversely,
the number of hostnames lost has increased from 44 million to 78.4 million, respectively. Although
there are still more hostnames gained than lost yearly, this gap is narrowing. We also found that
64.8% of them remained the same and were non-empty across all five years. This shows that a large
fraction of hostnames don’t change year-over-year.
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Table 4. Reverse DNS hostname changes across 5 years

Change / Year Pair 2014→2015 2015→2016 2016→2017 2017→2018

Hostnames changed - one hostname in the pair can be empty 174.0M (14.3%) 154.3M (12.3%) 157.5M (12.3%) 166.6M (12.9%)
Hostnames changed - both hostnames in the pair are non-empty 26.4M (2.2%) 20.7M (1.6%) 14.2M (1.1%) 16.7M (1.3%)
Hostnames gained in the second year of the pair 108.5M (9.7%) 89.3M (7.6%) 81.0M (6.7%) 79.6M (6.5%)
Hostnames lost in the second year of the pair 44.0M (3.9%) 49.4M (4.2%) 69.6M (5.7%) 78.4M (6.5%)

In summary, we determined that 1.15 billion IP addresses have reverse DNS hostnames, many of
which contain exact city or airport code matches. We also determined that reverse DNS hostnames
are becoming more prevalent year over year.

5 APPROACH
We cast the problem of extracting locations from reverse DNS hostnames as a machine learning
problem. Given a hostname, our proposed approach splits the hostname into components, finds a
preliminary list of location candidates, generates primary and secondary features for each candidate,
then classifies each potential location using a binary classifier into two classes - likely or unlikely,
also giving each candidate a confidence score.

For instance, for the hostname ce-salmor0w03w.cpe.or.portland.bigisp.net, our technique
first splits the hostname into substrings such as ce, salmor, w, cpe, or, etc. It then finds a list of
potential location candidates whose names match each of these substrings, then unions them into a
final candidate list for the entire hostname. In this example, our approach considers tens of potential
location candidates, including Portland, UK and Salmoral, Spain. It then runs a binary classifier on
each of these location candidates. The inputs to the classifier are the original hostname and one of
the location candidates. The outputs are a binary label which signifies if the location candidate is
plausible, and a confidence value. We discard the candidates where the output label is false, then we
sort the remaining candidates by confidence, breaking ties using city population. For our example,
it ranks Salem, Oregon and Portland, Oregon as the most likely candidates. Since our approach can
output multiple plausible location candidates, it can optionally be further combined with other
data sources to further rank the candidate list.

5.1 Splitting hostnames
Drawing from our experience of manually labeling hostnames with likely locations in Section 4,
we implemented multiple heuristics for splitting hostnames into their constituent components.

First, we apply the ToUnicode algorithm described in RFC 3490 [45] to convert International
Domain Names (IDN) to Unicode. For example, the hostname xn--0rsod70av79j.xn--j6w193g
gets converted to夏威夷舞.香港. The reason we perform this translation is that international
hostnames are stored as ASCII strings using Punycode transcription. This allows us to perform
location lookups in the hostname using foreign languages.

Second, we separate the logical subdomain fragment from the logical domain and the public suffix,
using the list provided by the Mozilla Foundation previously described in Section 3. These public
suffixes are a superset of normal TLDs because they also contain entire domains under which users
can create subdomains. For example, the list contains the pseudo-TLD azurewebsites.net since
users of Azure cloud services can register their own subdomains under this name.

With the aid of Figure 4 we previously explained the naming we use in this paper for the terms
domain, subdomain, subdomain fragment. Here we expand upon that naming by introducing the
terms logical domain and logical subdomain fragment. When a public suffix is the same as a TLD,
then the extracted logical domain is the same as the colloquial definition of domain. So for instance
for hostname router.nwestnet.net both the TLD and the publix suffix are the same (net), so
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both the domain and logical domain are the same. However, that is not always the case. Take for
instance the example in Figure 5. Here the TLD is not the same as the public suffix. The domain is
ne.jp, but since this is also a public suffix ne.jp, we extract a logical domain of nttpc.ne.jp.

pl2313.nas81o-1.p-aichi.nttpc.ne.jp

Top-level domain (TLD)

Logical domain
used for geolocation

(includes first dotted element 
to the left of the public suffix, 

and the public suffix itself)

Hostname

Public Suffix

Logical subdomain 
fragment used for 

geolocation
(all elements to the left of 

the logical domain)

Domain

Fig. 5. Example of hostname where the domain is not the same as the logical domain we use for geolocation,
because the TLD is not the same as the public suffix. Please see text for details.

In this second step we also extract the TLD. For pl2313.nas81o-1.p-aichi.nttpc.ne.jp
we extract nttpc.ne.jp as the logical domain because ne.jp is a public suffix, we extract as the
logical subdomain fragment pl2313.nas81o-1.p-aichi, and finally we extract .jp as the TLD.We
perform this step of separating the subdomain fragment from the logical domain and of extracting
the TLD from the hostname in order to focus our parsing efforts on the subdomain fragment and
on the TLD. The rest of the public suffix rarely contains location hints.
Third, we split the extracted subdomain fragment at three levels of aggregation: on the dotted

elements, on hyphens within the dotted elements, and on the transitions between letters and
numbers within the hyphenated elements, saving the results at each level. Figure 6 contains a
specific example represented intuitively as a tree structure. The bottom three levels of the tree
correspond to the three levels of aggregation. As a last step, we trim the leaf nodes. We remove
any leaf node consisting solely of numbers. We also remove common terms related to network
connection characteristics, such as static, dsl, fiber, and nas. We obtained them by counting
the top extracted leaf nodes in the training set and manually selecting the ones which are unrelated
to geolocation but clearly related to the underlying network infrastructure. The list is available in
the source code we are publishing along with this article.

5.2 Features
Starting from the results of the hostname splitter, we find potential location candidates and compute
primary and secondary features for each candidate. Figure 7 shows a concrete example. Primary
features can be derived directly from a hostname. These features are matched using a single
contiguous string which indicates a location at city-level granularity. Primary feature generation
and candidate selection happen at the same time. Secondary features are generated in the context
of a specific location candidate. These features require the context of a primary candidate to match.
In our example two location candidates and their primary features are first selected based on the
term roch in the hostname. Then we compute secondary features separately for each candidate.
In the context of Rochester, Minnesota, we match the mn term as a secondary feature that captures
administrative regions for this candidate.
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pl2313.nas81o-1.p-aichi.nttpc.ne.jp

pl2313 nas81o-1 p-aichi

pl nas81o p aichi

jp

o

2313 1

nas 81

pl2313.nas81o-1.p-aichi.nttpc.ne.jp

Fig. 6. Hostname Splitter example. The leaf nodes marked with X were removed by the pruning process. The
remaining leaf nodes are the output of the splitter.

97-88-57-240.dhcp.roch.mn.charter.com

F1 F2 … Fn Fn+1 Fn+2 … Fn+m

F1 F2 … Fn

Primary hostname
features

Secondary hostname
+ candidate features

["97-88-57-240", "dhcp", "roch", "mn"]

Hostname Splitter

Location candidates feature generation

Fn+1 Fn+2 … Fn+m

Location
Candidates

Candidate 2: Rocha, Uruguay

Candidate 1: Rochester, MN, US

Fig. 7. Feature Matching and Generation. We precomputed a mapping from terms such as roch to a list of
candidates and their primary features

Primary features are based on the GeoNames, UN/LOCODE, and CLLI datasets described in
Section 3. From GeoNames we use the Cities 1000, Alternate Names, and Admin 1 Codes subsets.
Each of the features derived from these datasets consist are mappings of strings to locations. For
example, the case insensitive string of each CLLI code maps to a single location. Another example
is city names, which in case of ambiguity can match to multiple locations. Table 5 lists an example
for each feature category. We describe these feature categories in more detail later in this section.
Each of the categories in the table actually maps to three specific features: IsMatch, Population, and
MatchedLettersCount. The IsMatch feature is a boolean which indicates if the feature matched the
current hostname and current location candidate. The Population feature contains the population
of the current location, if IsMatch is true. We use population as a proxy for the importance of a
city candidate. Finally, MatchedLettersCount contains the number of characters which matched.
As the number of characters in common between a hostname and a location increases, it could
mean a higher confidence match. For instance, if the hostname contains the letters seattle and the
current location candidate is Seattle, Washington, then the CityName-MatchedLettersCount Feature
would have a value of seven.

While most feature categories in Table 5 are self-explanatory, we describe them here briefly.
The City Name category matches entire names of cities. Alternate names matches translations and
colloquial names of locations. Abbreviations are based on the first letters of cities with longer names,
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Table 5. Primary Feature Categories

Category Example Location

City Name p907072-li-mobac01.osaka.ocn.ne.jp Osaka, Japan
Alternate names 178235248188.warszawa.vectranet.pl Warsaw, Poland
Abbreviations cpe-68-173-83-248.nyc.res.rr.com New York City, NY, USA
City + Admin1 torontoon-rta-1.inhouse.compuserve.com Toronto, ON, Canada
City + Country er1-ge-7-1.londonuk5.savvis.net London, United Kingdom
No Vowels Name static-50-47-60-130.sttl.wa.frontiernet.net Seattle, WA, USA
First Letters 97-90-205-107.dhcp.losa.ca.charter.com Los Angeles, CA, USA
Airport Code 62.80.122.50.fra.de.eunx.net Frankfurt, Germany
CLLI Code 99-166-111-251.tukrga.sbcglobal.net Tucker, GA, USA
UN/LOCODE 16.151.88.129.krsel19d.kor.hp.com Korea, Seoul
Host Patterns atoulon-651-1-29-109.abo.wanadoo.fr Toulon, France

such as sf for San Francisco. The City + Admin1 category consists of concatenations of city and
administrative regions, such as seattlewa. Similarly, City + Country matches combinations of city
and country names.

The intent of the No Vowel Name feature is to match city names without vowels. It allows partial
matches using the first 3 or more letters of the names. For example, this allows matching gnvl
to Greenville, SC and rvsd to Riverside, CA. Furthermore, based on our observations we further
extended this feature with more complex variations. We select the first and last letters of each word
in the name, even if the letters are vowels. We then generate combinations of letters from this
list, in order. Examples matched by this variation include oxfr for Oxford, MA, and ftmy for Fort
Meyers, FL.

The First Letters features use the first consecutive letters of locations. The Airport Code category
spans airport codes from travel organizations. CLLI and UN/LOCODE codes match telecommunica-
tions and transportation codes of locations.
Finally, Host Patterns attempts to capture rules not encompassed by the other features. For

example, wanadoo.fr often prepends a to location names, as in aputeaux instead of puteaux for
Puteaux, France. However, our hostname splitter does not split terms on consecutive alphabet letters,
so it will extract the term as aputeaux, which will not match any location. Using the training data
we aim to find patterns in the terms of hostnames, separately for each ISP logical domain. First,
we group the data per domain. Then we perform pattern mining inside the hostnames of each
domain. For a given domain, we intersect all known reverse DNS hostnames in that domain with
the data we use for training. This yields a subset of training hostnames in that domain for which
we know the correct ground truth location. For each hostname in this subset we then split the
subdomain part into its components as previously described in Section 5.1. Suppose for example
that we know training hostname static-32-213-114-101.wlfr.ct.frontiernet.net is located
in Wallingford, Connecticut. We extract subdomain components wlfr and ct, while ignoring the
numbers and the term static, which was removed by the pruning process discussed in Section
5.1. Component wlfr is in position 1 if we read the remaining components from left-to-right
(ltr) and position 2 if we read the components from right-to-left (rtl). Conversely, component
ct is in position 1 if we read the subdomain fragments from right-to-left and in position 2 from
left-to-right. For the domain frontiernet.net we can then extract patterns such as (wlfr|ltr-1),
(wlfr|rtl-2), (ct|rtl-1), (ct|ltr-2), (wlfr|ltr-1,ct|rtl-1), (wlfr|ltr-1, ct|ltr-2), etc., all mapping to the city
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Table 6. Secondary Features Categories

Category Candidate Match Example

Admin1 Johnstown, PA, USA 246-119.jst.pa.atlanticbb.net
First Letters Admin 1 Fort Huachuca, AZ, USA frth-bw-noc.ariz.army.mil
Country Paris, France ci77.paris12eme.fr.psi.net
Country TLD Barcelona, Spain barcelona.fib.upc.es

Wallingford, Connecticut. By aggregating these rules across all the ground truth training examples
in the frontiernet.net domain and by using association rule mining [31], we can determine
which combinations of patterns have enough support to be mapped to specific locations. In our
example, for the domain frontiernet.net we can then determine that rule (wlfr|ltr-1, ct|ltr-2) has
enough support to be mapped to Wallingford, but rule (ct|ltr-2) is too generic and does not.
To optimize run-time complexity we propose precomputing primary features and location

candidates. We start from all known geographic locations and go backwards to generate all possible
hostname terms that could match these locations. For example, the CLLI dataset contains seven
codes for New York, including nyccny and nycpny. We know that the CLLI feature can only match
New York if one of these strings is present as a term in the hostname. Therefore, we can pre-populate
a map where the keys are these codes, and the values are the corresponding location (New York),
along with precomputed features such as how many letters would match. As we precompute more
types of features, we merge them into the same existing map. Given any hostname term, this map
will in the end contain all possible locations that match that term, along with all the features from
all the categories that match.
For the CLLI feature category example, we iterate over each location and generate the sub-

strings that could match based on the corresponding CLLI codes. For each location and substring
combination we then generate and store the features for this feature category. Finally, we merge
the candidate into Features, which is a multi-dimensional map where the first level contains all
the substrings that could match any candidate feature, the second level contains all the location
candidates that could match this substring, and the third level is the precomputed features for this
particular substring and location candidate combination. This implementation allows for fast O(1)
lookups at run-time, at the expense of higher memory usage.

Secondary features are determined in the context of a hostname and location candidate pair. As
shown in Figure 7, we first determine all candidates before we can compute the secondary features.
An example of secondary features for the Rochester, MN candidate is Admin1 Match, which is true
only if the administrative region of the candidate location can be found in a different term of the
hostname. Since the hostname contains the term mn, which is an abbreviation of Minnesota, then
this secondary feature is true for the first candidate. However, it is false for the second candidate,
because Rocha is in an administrative region also called Rocha, and it cannot be found in the
hostname. First Letters Admin 1 is similar, but it matches at least 3 first consecutive letters of
administrative names. Country and Country TLD both try to match the country of the current
candidate by searching for a country code in the hostname terms or in the TLD, respectively.

5.3 Classifier
For a given hostname, our reverse DNS geolocation can extract and evaluate tens of potential
location candidates. For example, if one of the terms of the hostname is york, the initial list of
candidates will contain all locations named York in the world. We run a binary classifier on each
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of the initial candidates. The classifier uses the primary and secondary features to evaluate if it
is plausible for the hostname to be located in a candidate location. All the candidates where the
classifier returns false are discarded. The remaining plausible candidates are sorted by confidence
and returned in a list.

Although exhaustively determining the optimal type of binary classifier is outside of the scope
of this work, we tested four variations of the classifier: logistic regression, C4.5 decision trees,
random forest, and SVM. Logistic regression had the best performance on a small validation set.
Consequently, we performed all experiments in Section 6 using this classifier.

During training the classifier learns to determine if any given hostname and candidate location
pair is plausible. Since we are using a binary classifier and decision trees, the learned rules would
look like: "if a part of the hostname matches the given candidate city, and there is another part
of the hostname which also matches the administrative region where the city is located, then it
is plausible that the hostname is located in the given candidate city (output is true)". Note that
the classifier rules themselves do not contain locations. Another example rule is: "if the hostname
contains a CLLI code that matches the candidate city, and if the hostname TLD matches the country
of the city, then it is plausible that the hostname is located in the given city (output is true)". If for
a given hostname we have two location candidates, for example if one that matches the first rule
and one that matches the second, we choose the candidate where the rule has higher confidence.
Each rule is given a confidence during training.

5.4 Sampling Strategy
We propose sampling the training set to account for data bias, to improve generalization, and to
reduce the amount of required training data. First, the entire set of reverse DNS hostnames is
naturally skewed towards the largest Internet Service Providers, which own the most addresses.
Second, some feature categories such as City Name occur much more often than others such
as Abbreviations. This can lead the classifier to ignore less frequent features categories. Third,
during training multiple location candidates can be generated for each hostname, out of which at
most one can be correct. Since the classifier is trained on hostname and candidate pairs, this also
introduces another type of bias where the number of negative samples significantly outweighs the
number of positive ones. Therefore, we sample data to account for some of this bias and to improve
generalization through increased training data diversity.
We perform stratified sampling on the logical domains of the hostnames, keeping at most X

samples per logical domain. This approach ensures that naming schemes of large organizations do
not significantly skew the training data. We further increase feature diversity by keeping a ratio
of Y : 1 between the number of samples that contain the most commonly occurring feature and
the ones that contain the least occurring feature. Finally, we also enforce a ratio ofZ : 1 between
the number of negative and positive examples. We evaluate our data sampling strategy and its
parameters in Section 6.2.

5.5 Feature Importance
The coefficients of the logistic regression model can be used as a rough estimate of feature impor-
tance. These values that the most important primary features are host pattern, CLLI code match,
No Vowels Name, and Airport Code. The most important secondary features are Country TLD
match and Admin 1 (administrative region) letters match. This analysis reveals a couple of insights
into the model. First, both primary and secondary features are useful for classification. Second,
ISPs often use names that are derived from but do not exactly match the original city names.

We also separately investigated the importance of converting International Domain Names (IDN)
to Unicode, as we previously described in Section 5.1. We found that, at least for our task and
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dataset, disabling IDN translation does not make much of a difference (less than 1% difference in all
dimensions). It may be because not many IDN domains are used to name reverse DNS hostnames,
as opposed to forward DNS (website domains).

6 EVALUATION
We evaluate our approach against three state-of-the-art academic baselines that also use hostname
location hints, and two commercial geolocation databases which combine multiple geolocation
approaches. We show that our method significantly outperforms academic baselines and is comple-
mentary and competitive to commercial databases.

6.1 Ground Truth
Our ground truth dataset contains 67 million randomly sorted IP addresses with known IP location,
of which we used 40 million for training and 27 million for testing. We compiled the dataset in
March 2018 from Bing query logs. It was derived from devices with global positioning sensors,
where users opted-in to provide location information. These users agreed to share their location
automatically at query time in order to receive personalized local results. The dataset contains both
mobile and fixed broadband IP addresses, since users often connect their mobile devices to their
homeWi-Fi. The location distribution of these addresses roughly follows that of worldwide Internet
penetration. We determined the location of each IP address in the dataset using an automated
pipeline which aggregated all locations reported for an individual IP address. IP addresses with a
large variance in reported locations were removed as outliers. That is, we discarded any IP address
that was present in multiple cities over the course of a month. This filtering step ensures we retain
only mobile IP addresses that are contained within a single city, as well as fixed (Wi-Fi) IP addresses.
At no point did we have direct access to the raw locations of individual users.

Since we sampled these IP addresses randomly from Bing search logs, not all of these IPs have
reverse DNS hostnames, and not all the hostnames contain location hints. We have shown in Table
2 that only 33.4% of IPv4 addresses (1.24 billion) have a valid reverse DNS hostname, and only a
further fraction contain hints. However, note that to build our classifier we also need examples of
hostnames without location hints.

6.2 Preliminary Evaluation
We conducted two experiments to evaluate the binary classifier in isolation. In the first experiment,
we randomly selected 100,000 IP addresses from the training set and performed ten-fold cross
validation. We did not further sample the data in any other way. For each hostname, we extracted
location candidates, then ran the binary classifier on all the pairs between the target hostname
and each of its candidates. Since our approach can return multiple plausible locations for a
given hostname, we choose the candidate with the highest classifier confidence. We break ties
by selecting the location with the highest population, as a proxy of popularity. Table 7 contains
definitions of the terms we use for evaluation in this section.
We obtained an accuracy of 99% for the binary classes, mostly because the vast majority of

results were true negatives. We define accuracy as the total number of correct predictions divided
by the total number of predictions made for a dataset. However, the true positive rate was only
67.6%, precision was 80.9%, and recall was 67.6%.

In the second experiment we introduced training data sampling as described in Section 5.4. We
set the X, Y, and Z parameters to 200, 10, and 3, respectively. We again performed ten-fold cross
validation. Although accuracy decreased to 92.9%, we obtained better results for true positive rate,
precision, and recall, at 78.8%, 88.5%, and 78.8%, respectively. We varied the values of the X, Y, and
Z parameters using brute-force search but this did not alter the results significantly. The simple
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Table 7. Acronyms and definitions used for the evaluation results of the binary classifier

Name Description

TP True Positive - Given a hostname and a candidate city, the binary classifier returned
true and correctly determined that the hostname is in that city.

FP False Positive - Given a hostname and a candidate city, the binary classifier re-
turned true and incorrectly determined that the hostname is in that city.

FN False negative - Given a hostname and a candidate city, the binary classifier
returned false but the hostname was actually located in that city.

TN True negative - Given a hostname and a candidate city, the binary classifier re-
turned false and correctly determined that the hostname is NOT in that city.

Precision TP / (TP + FP) - The number of positive class predictions that actually belong to
the positive class.

Recall TP / (TP + FN) - The number of positive class predictions made out of all positive
examples in the dataset

Accuracy (TP + TN) / (TP + FP + FN + TN) - The total number of correct predictions divided
by the total number of predictions made for a dataset.

fact of introducing a stratified sampling strategy is what made the results improve, not necessarily
how we varied its parameters. In conclusion, our sampling strategy helps the classifier generalize
and it significantly improves results.

6.3 Academic baselines
We next perform an evaluation against three state-of-the-art academic baselines. Similarly to
our approach, they receive a hostname as input and attempt to extract its location. The undns
baseline from University of Washington consists of manually generated rules that map hostname
patterns to locations [56]. The DRoP baseline from CAIDA at University of California relies on
automatically generated rules derived from hostname patterns and validated by active measurement
data (traceroutes) [33]. Finally, the DDec baseline also from CAIDA combines the results from undns
and DRoP [21].

Although the baselines are offered as HTTP APIs, it is unclear if their underlying rules are kept
up to date. This may impact the results in our comparison. We further discuss this potential issue
in Section 9. In contrast, since our approach is completely automated it can be refreshed without
manual intervention. Furthermore, we have shown at the bottom of Table 2 that only 1% of IPs
with reverse DNS hostname are Internet infrastructure (router) IPs. Therefore, the vast majority of
addresses are end-user IPs. The DRoP component of DDec was trained and evaluated specifically
on router hostnames, therefore it is expected that its coverage for end-user IPs is poor.
Since all three baselines are available from a public web endpoint [21], we had to restrict the

number of requests we made to a manageable size, out of politeness. For testing we initially selected
multiple service providers of different sizes, spanning various countries around the world. However,
the baselines were missing any rules for several of these providers, including airtelbroadband.in
from India, bigpond.net.au from Australia, and megared.net.mx in Mexico. Although the baselines
have good rule coverage in North America, they are at least partially lacking in international
coverage. In the interest of fairness, we ended up with a list of eight providers, each of which are
covered by at least two of the baselines.
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To train the classifier, our sampling strategy only considered approximately 60,000 data points
out of the 40 million hostnames in our training set. From our test set of 27 million IP addresses,
we selected all of the ground truth data points which intersected the eight target providers, which
yielded a testing subset of 1.6 million hostnames. We issued these requests to the CAIDA web
endpoint and parsed the responses from each of the baselines.

Table 8 lists the results for all eight domains, as well as the overall results across the entire testing
subset. Our approach is labeled RDNS in the table. We define the error distance in kilometers to
be the distance between where a model places the location of a hostname, and the actual location
of the IP address behind that hostname. Since both our approach and the baseline have city-level
granularity, we use the locations of city centers. The first block of results shows median error
distance in kilometers. We observed that our model significantly outperforms the baselines
and its results are generally more stable across all domains. We also observed that the median
error distance for several domains is abnormally high for the DRoP baseline, and sometimes for the
other baselines as well. To further investigate this surprising finding we manually verified a small
sample of results. Table 9 lists examples of locations extracted incorrectly by the DRoP baseline.
In the last column of the table we list the rule that caused the incorrect extraction. For example,
DRoP incorrectly determines that the hostname d49-194-53-51.meb1.vic.optusnet.com.au is
in Vicenza, IT, using the rule %<<iata>>.optusnet.com.au. Although the IATA airport code vic
is indeed located in Vicenza, the correct location is Melbourne, Victoria. We could not find any
optusnet.com.au hostname where the rule was correct. In conclusion, the DRoP baseline contains
incorrect rules for many domains. The results for the undns baseline also indicate high error distance
for multiple test domains. After investigating the results, we found that undns sometimes maps
entire TLDs to a single city. For example, the locations for all 163.data.com.cn hostnames are
extracted as Beijing, CN. Lastly, since DDec is a combination of undns and DRoP, it is also affected
by incorrect rules.
We manually investigated cases where our approach yielded incorrect locations and we found

three main reasons that lead to failures. First, when matching location hints are short, for example
nwmd, it is difficult even for a human to determine the correct location. Second, sometimes the
hostnames contain a city name that is ambiguous, for example portland, and does not contain any
other supporting evidence. Since there are several cities called Portland, our approach picks the
one with the highest population, which may not be correct. Third, we did find a few isolated cases
where an ISP reallocated an IP address to a different city but did not update the hostname to contain
the new city name.
The advantage of using median as a metric is that it is impervious to outliers, which can favor

our model that can place false positives very far from the actual location, generating more outliers.
To fairly characterize the results, we also computed RMSE, a metric at the other extreme of the
spectrum. RMSE, which stands for root mean square error, easily gets swayed by large outliers.
This poses a disadvantage for our model. We compute it using the error distance in kilometers for
each hostname. The RMSE results in Table 8 show that generally our approach still outperforms
the baselines in 6 out of 8 domains. In the two cases where our model has higher RMSE than the
models, the coverage of our model is higher.

In 3 out of 8 cases the undns baseline has 100% coverage. We define coverage as the total number
of hostnames where a model made a decision, over the total number of hostnames in the test set.
undns having high coverage is a side effect of it using catch-all rules that map entire TLDs to a
single city. In all three cases this leads to poor results for both median error and RMSE.

We define the combined score as the inverse of RMSE multiplied by coverage. As error distance
improves (gets smaller), the combined score increases, and vice versa. Similarly, higher coverage
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Fig. 8. Academic evaluation comparing our approach RDNS against three state-of-the-art academic baselines.
Since the results for the undns and DDec baselines are similar, their curves are overlayed.

also improves the combined score, and vice versa. Our approach significantly outperforms all
academic baselines when considering the combination of error distance and coverage.

Finally, Figure 8 displays the cumulative error distance in kilometers. The X axis represents the
maximum distance between the real location and the predicted location. The Y axis shows how
many hostnames and their IP addresses fall within the error distance. For instance, the <20 km
column shows that our method labeled RDNS places approximately 54% of hostnames in the ground
truth set within 20 kilometers of their actual location. Our method outperforms the baselines by a
large margin. The DRoP baseline yields the worst results, underperforming the other methods.

6.4 Commercial baselines
In this work we focus on improving reverse DNS geolocation, which is only one source of geoloca-
tion information. Table 2 reveals that about a third of IP addresses have reverse DNS hostnames.
A further subset of these hostnames contain location hints. While this can result in hundreds of
millions of hostnames with location information, this is insufficient to cover the IPv4 space.
Commercial geolocation databases combine and conflate multiple geolocation data sources.

Information from reverse DNS hostnames is helpful but not sufficient to compile a full geolocation
database. Our approach, which can output multiple location candidates for a given hostname, lends
itself to being combined with other data sources to form a more complete database.

Although reverse DNS geolocation on its own cannot match the coverage of commercial databases
which combine multiple techniques based on network delay, WHOIS database parsing, reverse
DNS parsing, and paid data contracts, we compared our single technique against two commercial
baselines (Provider A and Provider B) to show that it can complement and potentially improve
these commercial offerings. Provider A is MaxMind GeoLite2. Provider B is another leading
commercial geolocation service, but due to contractual obligations that disallow comparative
benchmarking we cannot disclose its name. Our approach is entitled RDNS in the graphs. The
first four graphs in Figure 9 show that for certain ISPs our approach outperforms, and thus is
complementary and can be used to improve, commercial databases. To obtain these results we
used the subset of the testing data which matches the domain of that particular ISP. For Bigpond,
OCN, Megared, and Qwest the subsets correspond to 69,993, 92,665, 94,972, and 398,194 testing IP
addresses, respectively.
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Table 8. Evaluation of our approach RDNS against three state-of-the-art academic baselines: undns, DRoP, and DDec.

Metric → Median Error in km (lower is better) RMSE based on km (lower is better) Coverage (higher is better) Combined score (higher is better)

Domain ↓ # undns DRoP DDec RDNS undns DRoP DDec RDNS undns DRoP DDec RDNS undns DRoP DDec RDNS
163data.com.cn 166K 1,517.5 N/A 1,517.5 10.6 1,495 N/A 1,495 404 100% N/A 100% 94.5% 0.67 N/A 0.67 2.34
bell.ca 200K N/A 5,875.2 5,875.2 6.0 N/A 5,807 5,807 1,262 N/A 2.3% 2.3% 95.7% N/A 0.00 0.00 0.76
brasiltelecom.net.br 32K 808.7 5,628.7 808.7 15.2 889 5,620 889 427 100% 69.7% 100% 73.9% 1.12 0.12 1.12 1.73
charter.com 580K 60.8 N/A 60.8 59.9 478 N/A 478 484 78.0% N/A 78.0% 89.0% 1.63 N/A 1.63 1.84
frontiernet.net 67K 36.5 6,247.6 36.5 16.7 785 6,101 785 689 3.6% 0.8% 3.6% 99.4% 0.05 0.00 0.05 1.44
nttpc.ne.jp 0.9K 9.5 9,259.9 16.2 9.1 2,081 9,161 4,976 3,694 12.0% 16.2% 16.2% 57.6% 0.06 0.02 0.03 0.16
optusnet.com.au 100K 704.4 16,134.6 704.4 12.7 1,175 16,374 1,175 583 100% 49.8% 100% 98.9% 0.85 0.03 0.85 1.70
qwest.net 408K 3,426.6 8,038.7 8,038.7 17.6 6,856 7,361 7,361 427 0.0% 4.1% 4.1% 94.0% 0.00 0.01 0.01 2.20

Overall 1.6M 163.9 13,974.2 177.9 17.5 924.0 12,640.4 1,497.5 677.8 48.3% 6.1% 49.7% 92.3% 0.52 0.00 0.33 1.36

Table 9. Examples of locations extracted incorrectly by the DRoP baseline, compared to the correct locations extracted by our approach

Hostname Incorrectly Extracted Location (baseline) Correct Location (our approach) Incorrect DRoP Baseline Rule

malton2259w-lp140-03-50-100-186-228.dsl.bell.ca malton→Malton, North Yorkshire, England malton, .ca→Malton, Canada %<<pop>>([^L]+L+D*){3}.bell.ca
200-96-182-198.cbace700.dsl.brasiltelecom.net.br dsl→ Daru, Sierra Leone cbace, .br→ Cuiabá, Brazil %<<iata>>.brasiltelecom.net.br
70-100-143-28.dsl2-pixley.roch.ny.frontiernet.net pixley→ Pixley, California, USA roch, ny→ Rochester, New York, USA %<<pop>>([^L]+L+D*){2}.frontiernet.net
st0120.nas931.m-hiroshima.nttpc.ne.jp nas→ Nassau, Bahamas hiroshima, .jp→ Hiroshima, Japan %<<iata>>([^L]+L+D*){2}.nttpc.ne.jp
d49-194-53-51.meb1.vic.optusnet.com.au vic→ Vicenza, Italy meb, vic, .au→Melbourne, Victoria %<<iata>>.optusnet.com.au
71-209-14-48.bois.qwest.net bois→ ’s-Hertogenbosch, The Netherlands bois→ Boise, Idaho, USA %<<pop>>.qwest.net
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Fig. 9. Commercial evaluation which compares our approach RDNS against two state-of-the-art commercial
IP geolocation providers. The first four graphs in the figure show results for specific domains, while the last
graph shows overall results.

To generate the fifth graph in the figure we ran our system using a two-step approach. In the
first step we iterated over all hostnames and automatically determined the domains which often
contained location hints, by computing the distribution of features and picking the domains where
the majority of hostnames contained at least one primary feature. In the second step, we evaluated
our technique on those domains, keeping the same separation of training and testing data at
each domain level. This yielded a dataset of 1.9 million IP addresses. The results show that our
approach is competitive with commercial geolocation services, when the domains contain location
hints. Comparatively our approach yields good results even though we use a single IP geolocation
method while the baselines combine multiple techniques. The median error for our approach is 16.5
kilometers, while for the commercial providers A and B it is 11.1 and 16.7 kilometers, respectively.

To further demonstrate that our approach is complementary with commercial databases, in the
fifth graph of Figure 9 we also display results for a preliminary hybrid approach called Provider
A + RDNS. To compile this combined database we replaced the locations predicted by Provider A
with the locations determined using our method, whenever our classifier has a confidence above
85%. Results show that the hybrid approach outperforms both our original approach, and the two
commercial providers, with a median error of 10.3 kilometers.

7 PRIVACY
Online privacy is becoming increasingly important. In 2016, Pew Research found that while many
Americans are willing to share personal information to access online services, they are often
cautious about disclosing their information and are frequently unhappy about what happens to
that information once companies have collected it [48]. In a separate 2013 study, Pew Research
has also found that almost half of teen app users have turned off location tracking on their phone,
because they are worried about other people or companies being able to access that information
[9]. Over a third of adult smartphone users have done the same.

In 2018, aNew York Times exposé revealed the widespread industry practice of tracking the precise
location of people through smartphone apps [59, 62]. They reported that at least 75 companies
such as Reveal Mobile [41], SafeGraph [52], Kiip [36], and Fysical [25] collect location data through
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local news and weather forecast apps. More than 1,000 popular apps contain location-sharing code
from such companies. Several of these companies claim to track up to 200 million mobile devices
in the United States, which is half of all the phones used in 2017. While seemingly anonymous,
location information distributed by these companies is in fact hyper-local and extremely granular,
which allowed reporters to easily uncover the identities of multiple people based only on their
movements.

Security researchers at AppCensus have similarly found in 2018 close to 2,000 apps that send out
location data, or Wi-Fi router MAC addresses that can be converted into location data with the
help of other databases. More than 150 of these apps were targeted at children [51].

We have designed both our approach and our evaluation with this sensitive subject in
mind. Our proposed geolocation method relies on reverse DNS hostnames shared publicly by
Internet Service Providers. These hostnames provide only coarse city-level or region level location
information. Therefore our approach may be more privacy conscious than the widespread industry
practice of requesting exact GPS coordinates through mobile apps or the HTML5 Geolocation API.
Furthermore, we have anonymized our ground truth set by modifying raw locations in a random
direction by 584 meters, aggregating all locations reported for an IP address, and reducing location
accuracy to city-level. We did not have access to the raw locations of individual users at any point
in this automated process.

8 REPRODUCING RESULTS
To aid in reproducing and extending our results, we are making available the major components of
our approach:
• Hostname splitter: This module splits hostnames into their constituent parts. It also includes
the terms blacklist.

• Sampling strategy: This component performs stratified sampling during training.
• Features: We are also open sourcing the primary and secondary features generators. For feature
generation we have purposely used publicly available datasets as described in Section 3.

• Classifier: The actual classifier, including the training and testing pipeline. In addition to the
source code, we are also including a binary trained version of the classifier.

The code is available at github.com/microsoft/ReverseDNSGeolocation.

9 LIMITATIONS
Although our proposal is promising and could be an important part of an IP geolocation service, it
also has limitations:
• IP coverage: In Table 2 we have shown that only 33.4% of IPv4 addresses (1.24 billion) have a
valid reverse DNS hostname. This intrinsic limitation means that our approach alone cannot be
used to compile a full geolocation database. Instead, one would have to combine it with other
complementary data sources in order to match or surpass the coverage of commercial geolocation
databases, which use multiple techniques. Furthermore, even when an IP has a reverse DNS
hostname, it does not mean the hostname contains location hints, which is a further inherent
limitation. Using a preliminary naïve matching technique we have demonstrated that only 14.1%
of these hostnames could contain exact city matches, and only 23.5% of them could contain airport
code matches.

• Name ambiguity: Location names in hostnames are often shortened or abbreviated. Although
our approach does a reasonable job of matching vague name and disambiguating among multiple
potential location candidates, it still sometimes does not have enough supporting evidence to
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choose among multiple plausible location candidates. With this limitation in mind, we have de-
signed our approach to be combined with other data sources that would help further disambiguate
among the candidates.

• Incorrect hints: Even if we are able to extract a clear location from a hostname, it still does
not mean that the IP address is actually in that location. Reverse DNS hostname entries are
managed by the ISP themselves, or sometimes their clients, and can become outdated. Although
we were not able to find widespread problems with stale records across entire ISPs, we were able
to find individual hostnames where the ground truth location did not match the location in the
hostname.

• Focus on end-user IPs: As shown at the bottom of Table 2, our ground truth data covers mainly
end-user IP addresses, while one of the academic baselines (DRoP [33]) was originally only
evaluated on infrastructure IPs. However, typically ISPs use the same hostname naming scheme
for both router addresses and end-user addresses. Furthermore, our commercial baselines are
typically evaluated against end user-IP addresses. Last but not least, most commercial geolocation
databases are used in practice against end-user IP addresses, as described in Section 1.

• Academic baseline staleness: We use three academic baselines: undns [56], DRoP [33], and
DDec [21], with the latter being a combination of the first two. Work on undns was published in
2012, while a description of DRoP was published in 2014. Finally, the first paper we found which
describes DDec is from 2016 [13]. When interpreting the evaluation results please keep in mind
that our approach is fresher. It is possible the baselines would fare better against our proposal if
they would be more up to date.

10 CONCLUSIONS AND FUTUREWORK
We presented a machine learning approach to IP geolocation using reverse DNS hostnames. Our
method significantly outperforms several state-of-the-art academic baselines, with a median error
of only 17.5 kilometers for our approach when compared to 163.9, 13,974.2, and 177.9 kilometers
(lower is better) for the three baselines respectively, a RMSE of 677.8 for our technique compared
to 924.0, 12,640.4, and 1,497.5 (lower is better) for the three baselines respectively, and a coverage
of 92.3% when compared to 48.3%, 6.1%, and 49.7% (higher is better) for the baselines, respectively.

Our proposal successfully tackles the challenges described in Section 1 by introducing two levels
of features. Our primary features are designed to match acronyms, name variations, and different
industry codes for locations such as airports, CLLI, and UN/LOCODE. We also defined a novel
feature called host patterns which, given enough training data, captures the relationships of strings
to locations that were not covered by the other primary features. We use secondary features such
as country TLDs and administrative codes to buttress and further disambiguate between multiple
location candidates. If at the end there are multiple candidates with the same confidence, we pick
the one with highest population.

Compared to previous approaches such as GeoTrack [46] and Undns [56], our proposal does not
require any human annotation or intervention. This means that given enough training data, it can
automatically learn rules that were previously handcrafted by humans. Therefore, our approach
makes it easier to scale to worldwide ISPs. Furthermore, our approach can also evaluate hostnames
with domains that it has never seen before. Whereas Undns and GeoTrack had fixed rules per ISP
domain, most features in our classifier are not domain specific, and therefore the classifier is resilient
to variations of hostnames within the same domain and across domains. Other academic systems
such as DRoP [33] and DDec [21](which is derived from DRoP) do use rules learned automatically.
However, our evaluation has shown that the rules learned by DRoP are often not correct, as can be
seen in Table 9, which leads to poor results.
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Furthermore, our approach is complementary to and competitive with commercial baselines.
We showed that there are several domains where our approach outperforms two state-of-the-art
commercial databases, which demonstrates that our proposal is complementary and could be
combined with these commercial baselines to improve them. We also show that on domains that
contain location hints we are competitive with the commercial services, our approach having a
median error of 16.5 kilometers, when compared to 11.1 and 16.7 kilometers for the commercial
baselines, respectively. This is a promising result, when considering that here we focus on a single
type of IP geolocation technique, whereas commercial databases combine multiple approaches.
Finally, one advantage of our approach is that it can output multiple plausible locations for a

single hostname, in case of ambiguity. It thus lends itself to being combined with other data sources
to form a more complete geolocation database. Future work could focus on combining reverse
DNS hostname information with WHOIS databases and network delay to form a more complete
geolocation database that could be more competitive with commercial offerings.
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