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ABSTRACT11

Critical infrastructure systems are interdependent to ensure normal operations for supporting12

a national economy and social well-being. In the wake of a disaster, such interdependencies13

may introduce additional vulnerability and cause cascading failures. Therefore, understanding14

interdependencies and assessing their impact are essential to mitigate such adverse consequences15

and to enhance disaster resilience in the long term. There have been various models developed to16

capture dependencies and interdependencies across infrastructure systems. However, problems of17

inconsistent usage and a lack of technical guidance hinder practical applications of interdependency18

models. Therefore, this study presents a new classification of interdependency models based on19

the implementation methods: dependency tables, interaction rules, and data-driven approaches.20

For every class of interdependency model, fundamental assumptions and detailed implementation21

methods are described, with discussion of appropriate application areas, advantages and limitations.22

This study also compares different types of models to facilitate analysts in choosing models based23
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on their needs. Due to the intrinsic complexity of dependencies and interdependencies, there are24

many challenging modeling issues; this study discusses future research directions to address such25

challenges.26

Keywords— Interdependencies; Dependencies; Interdependency models; Resilience; Disruption; In-27

frastructure systems28

INTRODUCTION29

Critical infrastructure, such as electric power, telecommunication, transportation, and healthcare, support30

the national economy and social welfare, with complex interdependencies embedded (Rinaldi et al. 2001).31

Under normal service conditions, these interdependencies can usually improve the reliability and efficacy32

of infrastructure services. In case of a major disruption, either a natural hazard, a man-made disaster33

or a pandemic, these interdependencies often cause cascading failures and restoration delays, introducing34

additional vulnerability of the combined infrastructure systems (Ouyang 2014; Sun et al. 2020b; Sun35

et al. 2020d). The need for reducing infrastructure vulnerability during disruptions calls for resilience36

enhancement efforts with consideration of complex interdependencies. The concept of resilience was37

proposed in ecology by Hollings (1973), and then gradually adopted in other fields (Bruneau et al. 2003;38

Bocchini et al. 2014). Resilience is the ability of an entity to prepare for and adapt to changing conditions39

and withstand and recover rapidly from disruptions (PPD 2013). When performing community resilience40

assessments, interdependencies among infrastructure systems are an important component to consider, and41

failure to do so may yield inaccurate results (Koliou et al. 2020; Sun et al. 2020d). To enhance infrastructure42

resilience of interdependent infrastructure systems, decision makers need to develop efficient mitigation43

strategies by eliminating the adverse impact of interdependencies in disruptions. Therefore, it is crucial to44

carefully understand complex interdependencies and evaluate their impact on the performance and resilience45

of critical infrastructure via rigorous models.46

Many models have been developed to address infrastructure interdependencies either descriptively or47

quantitatively. Requiring particular assumptions and certain data as input, these models can capture in-48

terdependencies from different aspects, which makes it challenging for analysts to choose an appropriate49

method for performing interdependency analyses of their own interest. In this respect, a comprehensive50

summary of available models can provide a general guide for analysts. There are multiple studies reviewing51
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computational models for capturing interdependencies. Ouyang (2014) classified interdependency models in52

a general sense according to the modeling approach and discussed challenging issues in this field. Hasan and53

Foliente (2015) discussed interdependency models for failure analyses in extreme event, mainly focusing on54

the socioeconomic impact. Tøndel et al. (2018) reviewed methods for capturing interdependencies between55

the power system and the communication system, based on the impact of interdependencies on reliability. Wei56

et al. (2019) summarized interdependency models for transportation and power distribution systems. While57

the aforementioned studies have reviewed interdependency modeling methods from different perspectives,58

there are still inconsistencies in the classifications of interdependency models for critical infrastructure, as59

they lack a holistic view. The inconsistent usage and the absence of guidance hinder the practical application60

of these models.61

For this reason, this study provides a new classification of interdependency models simply based on how62

dependencies and interdependencies are implemented, which represents preliminary findings of the effort for63

preparing a chapter in the upcoming ASCE “Objective Resilience: Manual of Practice” (Sun et al. 2021). In64

what follows, this study briefly describes popular classifications of interdependencies. Afterwards, it presents65

our new classification of interdependency models, by discussing fundamental assumptions, implementation66

methods, and application areas. It then compares different types of interdependency models, in terms67

of input data, advantages, limitations, computational complexity and development maturity, and identifies68

challenges in the field with future research recommendations. This new classification of interdependency69

models can facilitate researchers’ understanding of different ways of implementing interdependencies and70

identifying research gaps for future improvements. Analysis results from interdependencymodels can benefit71

practitioners to identify interdependencies with the most adverse impact and develop effective management72

plans for resilience enhancement.73

REVIEW OF PREVIOUS INTERDEPENDENCY CLASSIFICATIONS74

There have been various classifications of dependencies and interdependencies proposed. This section75

summarizes several popular ones, shown as Figure 1. Zimmerman (2001)’s classification considers two76

categories: functional and spatial. Functional dependencies refer to dependencies of one system on another77

in operations, such as mass rapid transit relying on electric power and telecommunication systems. Conse-78

quently, a functionality perturbation in one infrastructure may potentially affect the functionality of another79

infrastructure. Conversely, spatial interdependencies refer to the fact that the geospatial proximity of multiple80
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components tends to lead to simultaneous damage by the same disaster and impossibility of simultaneous81

repair activities, which is very common for urban utility pipelines.82

Rinaldi et al. (2001) proposed a different classification: physical, cyber, geographic, and logical depen-83

dencies. Physical dependencies and interdependencies refer to the fact that the functionality of a system84

depends on the material output(s) of another system via a physical linkage. For instance, a water distribution85

network and a nuclear power plant are physically interdependent, with water pumps using the electricity for86

lifting and the power plant using water for cooling. Cyber dependencies and interdependencies represent87

the fact that the functionality of a system depends on information flow from the communication system. For88

instance, subways manage the flow of trains via Supervisory Control and Data Acquisition (SCADA) systems89

and computerized systems for electric power and communication. Geographic interdependencies represent90

that two systems are interdependent on each other due to spatial proximity. Logical interdependencies cover91

all other types of interactions. Comparing this classification to Zimmerman (2001)’s classification, geospatial92

interdependencies have the samemeaning as spatial interdependencies; physical and cyber interdependencies93

fall into functionality dependencies.94

Dudenhoeffer et al. (2006b) classified dependencies into physical, informational, geospatial, and policy.95

Comparing this classification to Rinaldi et al. (2001)’s, it can be found that physical and geospatial interde-96

pendencies have the same meanings in both classifications, informational dependencies correspond to cyber97

dependencies; policy dependencies represent interactions between infrastructure components due to policies98

or high-level decisions, falling into Rinaldi et al. (2001)’s logical dependencies.99

Heavily emphasizing economic interactions, Zhang and Peeta (2011)’s classification is physical, func-100

tional, budgetary, market, and economic. Compared to Rinaldi et al. (2001)’s classification, Zhang and Peeta101

(2011)’s physical dependencies only consider coupling interactions due to physical attributes. Functional102

interdependencies represent two aspects: (i) the need of external functionality inputs, which is similar to103

Rinaldi et al. (2001)’s physical dependencies, and (ii) the possibility of being functionally substitutable104

to some extent, which no other classifications have considered. Budgetary interdependencies represent105

shared budgets for resource allocations due to financial constraints. Market and economic interdependencies106

represent an integration of infrastructure sectors due to shared market and shared customers.107

Based onwhichmanagement phase interdependencies are affecting, Sharkey et al. (2016) presented a dif-108

ferent classification: operational interdependencies, infrastructure failure interdependencies, and restoration109
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interdependencies. Operational interdependencies represent the fact that a component in an infrastructure110

system requires services provided by other infrastructure system(s) to be functional. Infrastructure failure111

interdependencies are failures in interdependent systems triggered by the initial failure of one of them due112

to an extreme event (Chang et al. 2005; McDaniels et al. 2007). Sharkey et al. (2016)’s restoration interde-113

pendencies represent the fact that a restoration activity or process in an infrastructure system is impacted by114

a restoration activity or process in another infrastructure system.115

Focusing on the role of dependepencies and interdependencies in the various phases of resilience analysis,116

Sun et al. (2020c) proposed a new classification: hazard-related, damage-related, restoration related, and117

functionality-related. Hazard-related interdependencies represent the fact that there are correlations in the118

intensity measure at multiple locations and correlations between multiple intensity measures for describing119

the same event. Damage-related interdependencies represent correlated damage and failures within a system120

and across systems during an event. Restoration-related dependencies and interdependencies are similar to121

Sharkey et al. (2016)’s restoration interdependencies. Functionality-related dependencies represent the fact122

that a component/system requires functionality support from other component(s)/system(s) to be properly123

functional.124

While some previous studies often use the terms “dependency” and “interdependency” interchangeably,125

this paper differentiates them using the following definitions. Dependencies represent unidirectional rela-126

tions, describing the casewhen a first component influences the functionality or recovery of a second, whereas127

this second component does not necessarily influence the first in the same way. For example, a telecommu-128

nication tower uses the electricity from a nearby electric substation, indicating functionality dependency of129

the telecommunication tower on the substation. Conversely, interdependencies represent bidirectional rela-130

tionships between two interconnected components/systems, whose functionality or restoration impact each131

other. Interdependencies often result from a long chain of dependencies among intermediate components.132

For instance, the local failure of a leg member in a telecommunication tower may lead to misalignment133

of microwave devices on top, causing communication service disruptions; such service disruptions hinder134

restoration coordination for fixing damaged distribution lines, which may in turn cause longer power outage135

for the telecommunication system.136

Based on how interactions are acting within or across systems, dependencies and interdependencies137

can be classified into two categories: intra-system and inter-system (Sun et al. 2020c). Dependencies and138
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interdependencies between components within the same system are considered as intra-system dependencies139

and intra-system interdependencies, respectively. For instance, in case of power outages, resource-sharing140

interdependencymay represent the sharing of a limited number of linemen for repairing damaged power lines141

at multiple damage sites; within a transportation network, compositional functionality dependency represents142

the fact that the network functionality is related to the functionality of individual road segments. Conversely,143

inter-system dependencies and interdependencies refer to interactions between components from different144

systems. Examples include inter-system functionality dependency of a water pump on a nearby substation145

for using the electricity and inter-system precedence dependency of rebuilding a damaged bridge prior to146

replacing cracked utility pipes underneath it.147

PROPOSED CLASSIFICATION OF INTERDEPENDENCY MODELS148

Based on how they capture dependencies and interdependencies, this study classifies interdependency149

models into three major categories: dependency-table-based models, interaction-rule-based models, and150

data-driven approaches, as shown in Figure 2. While the previous classifications presented in Figure 1 have151

strong similarities and partially overlap, because they are all connected to what causes the interdependencies152

or how they manifest themselves. In contrast, it is easy to notice how distinct the new three categories153

proposed in Figure 2 are, this is because they are based on a completely different classification criterion: how154

dependencies and interdependencies can be modeled by engineers and other practitioners. The following155

content describes our classification of interdependency models, by discussing implementation mechanisms156

and application areas. While this classification may not be exhaustive, potentially with other techniques157

falling outside of these classes, it incorporates major trends of interdependency modeling in the research158

community at the time of writing.159

Dependency Tables160

Qualitative tables161

Qualitative tables use descriptive terms to summarize the existence and the coupling strength of interde-162

pendent relations between two infrastructure systems. Such tables are usually derived from expert judgements163

that are collected from tabletop exercises, surveys, and interviews (Bigger et al. 2009; Tang et al. 2004),164

or derived from published reports and newspapers (Ouyang 2014). Descriptive terms in such tables can165

also represent the infrastructure dependencies and interdependencies in the normal service phase (Pederson166
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et al. 2006), damage phase (McDaniels et al. 2007; Rong et al. 2010) and restoration phase (The Lifeline167

Council 2014). Descriptive dependency tables can assist decision-makers in gaining a general assessment168

of dependencies for preliminary planning. The interpretation of these tables is intuitive and they are easy169

to use, requiring no computation at all, with many successful applications for assessing system-level inter-170

actions. However, descriptive terms can not quantify infrastructure interactions. Additionally, describing171

component-level interactions with descriptive terms would be cumbersome. To address these limitations,172

quantitative dependency tables can be used, as described below.173

Quantitative tables174

Numerical coefficients in a quantitative table can represent the existence, the strength, and the impact level175

of an interaction between two components/systems under a hazard scenario. Based on how the coefficients176

are determined in interdependency models, quantitative dependency tables can be further classified into177

survey-based tables, correlation-based tables, graph-theory-based adjacency matrices and weight tables,178

conditional-probability-based tables, as well as economic-theory-based tables.179

Using surveys to collect experts’ judgments about dependencies and interdependencies is a popular180

method in practice. Coefficients are calculated from statistics of the survey data, in the form of the total count181

and consequences of cascading failures, as well as the number of restoration tasks in every infrastructure182

system (Kelly 2015; Luiĳf et al. 2008; Chang et al. 2014; Singh et al. 2014; Mitsova et al. 2020). The183

most critical interdependent relation is expected to correspond to either the greatest (positive or negative)184

coefficient. Oftentimes, a survey collects expert judgments under a specific event of a certain type at a certain185

intensity level for a community with specific infrastructure, socioeconomic, and environmental features. As186

a result, quantitative dependency tables determined from a survey may not be applicable to interdependencies187

for another community, or the same community under another type of hazard at a different intensity level.188

Moreover, dependencies and interdependencies may change over time and space, due to varying environment189

and deterioration. Some studies have tried to address these issues by using dependency tables that are related190

to event, time, and space (Franchina et al. 2011; Laugé et al. 2015).191

Correlation-based tables represent dependencies and interdependencies by using coefficients from corre-192

lation analyses. At the current stage, correlation-based tables typically represent system-level dependencies193

and interdependencies. Popular correlation coefficients include Pearson correlation coefficient and cross-194

correlation coefficient. For example, Pearson correlation coefficients are used to indicate the degree of195
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interdependency based on the number of failure incidents in every infrastructure system over a certain time196

period (Mendonça and Wallace 2006; Wallace et al. 2003). Some other studies derive dependency metrics197

based on the cross-correlation analysis of historical recovery data, indicating the coupling strength of de-198

pendencies in the recovery process (Cimellaro et al. 2014; Dueñas-Osorio and Kwasinski 2012; Gonzalez199

et al. 2016). Correlation-based tables have three limitations. First, being derived from failure incidents or200

recovery data, correlation coefficients can infer dependencies and interdependencies in the damage phase or201

the restoration phase for a community suffering from a certain event, which may not be applicable to the same202

community in normal service conditions, or another community subjected to a different event. Second, the203

type of interdependency (such as operational and logistical) is interpreted by experienced analysts, and this204

is very difficult to validate and calibrate. Third, dependencies imply a relation of causality, which is different205

from poor correlation, potentially leading to the common “post hoc ergo propter hoc” fallacy. Despite these206

shortcomings, dependency tables are used by modelers in several ways. For instance, when simulating ran-207

dom functionality recovery curves, the degree of correlation can be used in the random sampling algorithm,208

to ensure that the recovery curves capture the trends observed in reality.209

Many infrastructure systems are physically interconnected with network features. For studying networks210

of nodes (also called vertices) connected by lines (also called edges), graph theoretical models are a popular211

and effective choice. The most basic model uses binary coefficients in the adjacency matrix to represent212

the presence or absence of a pairwise connection among two nodes in a network. To represent link213

characteristics, specific coefficients are collected in a weight matrix, such as the link length or the flow214

capacity. For this reason, graph theory can be used to represent network topological connectivity for215

interdependency modeling of infrastructure systems, with nodes representing critical components and links216

representing physical connections. Under a hazard scenario, both nodes and links are subject to failure,217

with binary functionality (ATC 1985; Guidotti et al. 2017; Sun et al. 2020b), continuous functionality218

(Karamlou and Bocchini 2017b; Thurner et al. 2018), or discrete functionality (Shinozuka et al. 2003;219

Bocchini and Frangopol 2011a; Karamlou and Bocchini 2017a). The system functionality is usually defined220

based on the network topology or network flow, such as connectivity (Dueñas-Osorio and Vemuru 2009;221

Bocchini and Frangopol 2011b), number of functional/failed/repaired components (Johansson and Hassel222

2010; Karamlou and Bocchini 2016), flow capacity (Bocchini and Frangopol 2011b; Bocchini and Frangopol223

2012a; Bocchini and Frangopol 2012b), number of customers with service (Mitsova et al. 2018; Sun et al.224
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2020b; Sun et al. 2020c), and network flow (Lee II et al. 2007; Ma et al. 2019). In addition to physical225

dependencies, the link concept can be generalized to describe other types of dependencies across systems,226

and a joint adjacency matrix can be used to describe both physical connectivity and other dependencies.227

When modeling cascading failures with uncertainty, the uncertain dependency relation can be described by228

a probability, such as the failure probability of a component from interdependent fragility analyses (Dueñas-229

Osorio et al. 2007), and the conditional failure probability of a component given the failure of another230

component from a different system (Guidotti et al. 2016). Following the format of a joint adjacency matrix,231

a joint probability matrix of the same size can be constructed, with every coefficient as the cascading failure232

probability of a component due to the failure of another component, given an event intensity, or given233

the failure of the second component. Finally, a dependency matrix of the same size can be computed by234

multiplying coefficients in the joint adjacencymatrix by coefficients in the joint probability matrix in the same235

positions. With graph-theory-based matrices, network models can rigorously capture interdependencies and236

simulate both cascading failures and interdependent system recovery. Major limitations of network models237

include requiring the compete knowledge of the network topology and the characteristics of its nodes and238

links. Moreover, network analyses are usually associated with large computational costs for networks of239

realistic size.240

In fact, critical infrastructures are interconnected in economics, in terms of inter-sector transactions.241

Economic-theory-based tables can be used to capture dependency and interdependency relations from242

the economic perspective. Economic-theory-based tables have been used in input-output (I-O) models,243

inoperability input-output models (IIM), dynamic inoperability input-output models (DIIM), and computable244

general equilibrium (CEG) analyses. The I-O model was initially proposed to quantify the interactive nature245

of production and consumption processes among infrastructure sectors (Leontief 1951). With input-output246

tables describing monetary flows across sectors within a chosen time period, economic interdependencies247

are represented by inter-sector transactions with a set of linear equations (Leontief 1951). Basic input-output248

models have been successfully applied to develop economic policies (Beaumont 1990). The IIM has been249

developed to capture the disrupted infrastructure service as a result of a disruption in demand and supply250

(Haimes and Jiang 2001; Haimes et al. 2005a; Haimes et al. 2005b; Santos and Haimes 2004). In addition251

to using the same principles as those in the basic I-O model, the IIM uses a perturbation vector to capture252

the inoperability of a disrupted system due to cascading effects. IIMs can investigate cascading failures253
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(Santos et al. 2008; Kelly 2015) and system inoperability (Crowther and Haimes 2005; Liu and Xu 2013),254

to support decision making in disaster planning by allocating limited resources to sectors and interactions255

with the most financial impact (Anderson et al. 2007). One step further, to consider the economic impact256

throughout the recovery process, the DIIM is developed to capture the temporal evolution of the economic257

impact from interdependencies (Lian and Haimes 2006; Orsi and Santos 2010). These three I-O based258

models are computationally efficient because of their linear mathematical nature. However, they have four259

major limitations. First, data collection and preprocessing become cumbersome for a large number of sectors.260

Second, these models only capture economic impacts due to interdependencies at the system-level rather261

than at the component-level. Third, these models cannot capture influencing factors, such as market trends262

and human-related factors, which often lead to significant variations in economy. Fourth, these models263

may fail in capturing either system redundancies and contingency plans or dynamic economic interactions264

for interdependency modeling under extreme events (Santos 2005). Conversely, CGE analyses can capture265

nonlinear inter-sector relations by building upon I-O models along with two additional assumptions of266

equilibrated economy and optimal behaviors (Rose 1995). While I-O models assume infinite resources267

available, CGE models consider maximal profits under constrained resources in decision-making. CGE268

analyses have successful applications to economic resilience assessment (Rose and Liao 2005; Rose et al.269

2007). However, CGE analyses strongly depend on production functions and utility functions and may270

suffer the drawback of misleading interpretations of economic interdependencies when only limited data are271

available (Ouyang 2014).272

Interaction Rules273

Discrete event simulation274

Discrete event simulations use models to represent complex dependencies as an ordered sequence of275

defined events through sequential and conditional logic as well as causal relations, and to evaluate the276

probability of failure under a specific condition. Typical discrete event simulation models include fault tree277

analysis (FTA), event tree analysis (ETA), and Petri net analysis. Both FTA and ETA can visualize a chain278

of events, including dependency relations. Developed by H. Watson (Watson 1961; Lee et al. 1985), FTA279

is a top-down deductive analysis method to explore causes of system-level failures. A fault tree consists280

of events, gates, and transfer symbols for visualizing deductive logical relations between a system failure281
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and all contributing causes, with Boolean logic. The events are associated with statistical probabilities,282

and gates represent logical interactions of the sequences of component failures. FTA can resolve primary283

causes of an undesired event, with successful applications to the analyses of progressive failure, reliability284

and risk in the engineering field. Conversely, ETA is a logic modeling method for both success and failure285

responses under an initial event scenario. An event tree uses logical induction and forward chaining to286

move the specific case to a general case, presenting clear visualization of event agents (Nivolianitou et al.287

2004). ETA has been widely used for system risk analyses (Chou and Tseng 2010). FTA and ETA are288

often coupled together to assess infrastructure dependencies under damage scenarios (Teodorescu 2015). To289

consider temporal variations of complex interdependencies due to dynamic evolution of the disaster event290

and infrastructure system in disaster management, dynamic fault tree and dynamic event tree have been291

developed by integrating Markov models and dynamic programming (Rao et al. 2009; Wheeler et al. 2017).292

Alternatively, Petri nets can also visualize causal relations and temporal sequences, as an event evolves. Petri293

nets graphically visualize stepwise processes, with nodes representing transitions and places, and arrows294

describing pre-conditions and post-conditions. Petri nets have been applied to risk analyses of deterministic295

events and stochastic events, and even human actions in the accident model can be integrated to predict the296

corresponding consequences (Nivolianitou et al. 2004), and they can be integrated with fault trees and event297

trees (Wu et al. 2010; Nývlt and Rausand 2012). Dynamic Petri nets have also been developed, which can298

replace fault trees, event trees, and Markov chains in the risk and safety analyses (Codetta-Raiteri 2005).299

Agent-based models300

Agent-based models were initially developed at Sandia National Laboratories in the 1990s to simulate301

individual decision-makers for investigating the economy in the United States (Barton et al. 2000; Basu et al.302

1998). As a bottom-up approach, agent-based models assume that complex interdependencies originate303

from individual agents and agent interactions. Agents represent human operators and major infrastructure304

components, and agent interactions are simulated based on a set of prescribed rules (Farmer and Foley 2009).305

Under a given scenario, agents are assumed to be rational and act in their own interests, with predefined306

rules for performing learning, adaptive, and decision-making activities. In this way, agent-based models can307

simulate simultaneous operations and complex interactions of multiple agents obeying simple rules, aiming308

to explain the collective agent behaviors and the impact of individual agent behaviors on system performance.309

The first agent-based model was Aspen (Basu et al. 1996), and then a modified model named Aspen-EE was310
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developed for simulating interdependent effects of power outage and electricity price (Barton et al. 2000).311

Afterwards, further improvements have been continuously made to agent-based models, such as SMART312

II for modeling electric networks at the transmission-level (North 2001b; North 2001c), SMART II++ for313

simulating interactions of electric power and natural gas systems (North 2001a), CommAspen for simulating314

the interactions of the communication system with other systems (Barton et al. 2004), and CIMS (Critical315

Infrastructure Modeling Systems) for analyzing cascading failures and visualizing event damage effects316

(Dudenhoeffer et al. 2006a; Permann 2007). Agent-based models have been applied to various disciplines to317

explain social segregation, stock crash, supply chain optimization, traffic congestion, and so forth (Campbell318

and Cochrane 1999; Casalicchio et al. 2008; Crooks 2010; van Hillegersberg et al. 2004; Logi and Ritchie319

2002; Macal 2016). Sometimes, in interdependency modeling analyses, agent-based models are used along320

with other methods, such as reinforcement learning (Sun and Zhang 2020). Because of the simplification in321

representing a complicated system and the initial assumption of complex interaction behaviors, using agent-322

based models to achieve a good representative model of complicated interactions would be challenging for323

large complex systems (Fagiolo et al. 2007). In this case, it is common to build and validate agent-based324

models by expert judgments (Coates et al. 2019), or by comparing with results from other models, such as325

multi-agent system approaches (Makowsky 2006) and discrete event simulations (Fortino et al. 2005).326

System dynamics approach327

Proposed by Forrester (1958), system dynamics is a bottom-up approach for understanding the nonlinear328

behaviors of complex systems over time. For this reason, it has become a popular approach for capturing329

the dynamic and evolution of interdependencies. In system dynamics, dependency relations can be repre-330

sented by two types of diagrams: causal-loop diagrams representing cause-effect relations, and stock-flow331

diagrams representing the flow of information and commodities. While suitable to understand system in-332

teractions and behaviors, system dynamics usually does not capture component-level interdependencies.333

System dynamics approaches have been applied to simulating operation states, disruption consequences, and334

commodity consumption for interconnected infrastructures. For example, CIP/DSS (critical infrastructure335

protection/decision support system) is a decision support tool for understanding possible consequences under336

different disruption scenarios in infrastructure management (Bush et al. 2005; LeClaire and Hirsch 2009;337

Santella et al. 2009). Hwang et al. (2015) developed a system dynamics model to assess the effectiveness338

of government plans on post-disaster recovery efforts of the built environment. Links et al. (2018) applied339

12 Sun, et al.



system dynamics to predicting the community functionality evolution at the county-level in the United States.340

Minato and Morimoto (2017) used system dynamics to model interactions between airlines and airports.341

Sutley and Hamideh (2018) applied system dynamics to understand interdependencies in post-disaster house342

recovery. In addition, system dynamic approaches are often used along with other modeling methods, such343

as optimization (Min et al. 2007) and graph-theory-based matrices (LeClaire and O’Reilly 2005). However,344

system dynamics approaches have inherent limitations in uncertainty quantification; Bayesian networks can345

address this limitation very well, as described below.346

Bayesian-network-based approach347

Bayesian networks use Bayesian inference to model conditional dependencies in the form of directed348

probabilistic graphs. Therefore, Bayesian networks can assess causation, i.e., the consequences of different349

options under different uncertain drivers, suitable for interdependency modeling. Bayesian networks have350

advantage of being able to properly address uncertainties related to data, by providing a unified framework351

to allow the input of very different data (such as expert surveys, field measurements, and simulation data)352

and the update of data at different stages (Bromley et al. 2005; Johansen and Tien 2018). Applying353

Bayesian networks for interdependency modeling may face the following two limitations. First, a Bayesian354

network uses discretized variables rather than continuous variables, which may not be the case in practical355

applications (Kelly et al. 2013). To address this limitation, dynamic Bayesian networks have been proposed356

to consider both discrete and continuous variables, as well as time-based variables (Di Giorgio and Liberati357

2011). Second, the computational complexity of Bayesian networks grows sharply with the number of358

nodes, making their application to large and complex systems challenging. Developing efficient algorithms359

may alleviate this limitation (Tien and Der Kiureghian 2016; Applegate and Tien 2019). Despite these360

challenges, Bayesian networks have been successful in interdependency modeling applications (Haraguchi361

and Kim 2016; Johansen and Tien 2018), especially when used along with other models, such as economic-362

theory-based matrices (Aung and Watanabe 2009) and graph-theory-based matrices (Hossain et al. 2019;363

Dong et al. 2020).364

Optimization365

Optimization models are used to minimize or maximize certain objective(s) under a set of constraints.366

When applied to disaster management of interdependent systems, optimization models can simulate the367

13 Sun, et al.



optimal planning decision of retrofit and restoration. Moreover, different types of interdependencies related368

to the restoration process can be implemented in optimization models as (Sun et al. 2020b). Resource con-369

straints represent resource-sharing interdependencies, i.e., sharing a limited supply of available manpower,370

materials, and equipment when conducting specific restoration tasks. Construction precedence relations371

between restoration tasks can be enforced as precedence constraints in an optimal sequencing algorithm,372

representing precedence dependencies. Functionality dependencies, including both compositional function-373

ality dependencies and inter-system functionality dependencies, can be represented by rigorous restoration374

functions (Karamlou and Bocchini 2017a; Sun et al. 2019; Sun et al. 2020b; Liu et al. 2020). In applications375

of dependencies and interdependencies, optimization models are often integrated with other models, such as376

network models (Karamlou and Bocchini 2016; Ouyang 2017; Zlotnik et al. 2017; Almoghathawi et al. 2019;377

Ma et al. 2019; Karakoc et al. 2019) and agent-based models (Permann 2007; Kizhakkedath et al. 2013).378

For instance, optimization models have been applied to identifying effective recovery decisions on network379

resilience enhancement (Vugrin et al. 2014; Ouyang and Wang 2015; Zhang et al. 2018; Sun et al. 2020b).380

To simulate decision-making of joint restoration planning and scheduling, the interdependent network design381

problem can be framed into an optimization model (Cavdaroglu et al. 2013; Sharkey et al. 2015; Gonzalez382

et al. 2016).383

Population mobility models384

To develop efficient disaster management plans, understanding the mobility patterns of population and385

commodities under different hazard scenarios is essential. Population mobility models can serve this purpose386

well by examining the movement of interdependent entities and generating and consuming commodities in387

the mobility process (Morrison 1972; Kang et al. 2015; Yan et al. 2017; Barbosa-Filho et al. 2018).388

Typically, population mobility models are built on survey data. These mobility models can provide insights389

on the spatial distribution of population and service demands (such as traffic, power, water, and natural390

gas), supporting decision-making in developing policies for traffic management and land use. They have391

successful applications to estimating the resident mobility and assessing the impact of interdependencies392

on urban multimodal transportation networks (Kim et al. 2009; Lee and Waddell 2010), electric power393

grids (Bayram et al. 2013), water systems (McPherson and Witkowski 2005), and epidemiology (Vazquez-394

Prokopec et al. 2013).395
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Aggregate supply and demand models396

Aggregate supply and demand models explain the relationship between price level and output through397

total supply and total demand from the economic perspective. The total demand is the total quantity of output398

that a nation or a company needs, and the total supply is the total quantity of output that a nation/company399

produces and sells at a price level (Greenlaw 2014). The equilibrium level is reached when the total supply400

matches the total demand. Aggregate supply and demand models can represent interdependencies through401

interactions between the demand for commodities and services from infrastructure systems and the capability402

to provide the commodities or services for infrastructure systems. For example, aggregate supply and demand403

models can capture how much additional infrastructure assets are required to recover the consequences and404

cascading effects due to an initial disruption (Rinaldi 2004). For instance, aggregate supply and demand405

models have been applied to investigating the interactions between economics and energy supply, oil industry,406

or agriculture under different scenarios (Chambers 1984; Elwood 2001; Messner and Schrattenholzer 2000).407

Data-driven Approaches408

Given the advancement of technology, huge amounts of data, such as news reports and social media409

data, are rapidly generated and easily accessible by the general public. The growing availability of big data410

provides opportunities for applying data-driven approaches to resilience analysis and disaster management411

(Barker et al. 2017; Kuang and Davison 2020; Sun et al. 2020a; Pilkington and Mahmoud 2020). Among412

them, a promising application is to identify infrastructure interdependencies and assess their impact on413

community resilience. For instance, Zhou et al. (2020) collected data from multiple newspapers and applied414

text mining to identify interdependent failures of infrastructure systems in terms of incidents of bursting415

water pipes in Hong Kong. Roy et al. (2020) analyzed social media data with supervised learning models to416

find the co-occurrence of multiple service disruptions and tried to infer interdependencies accordingly. In417

terms of input data, the aforementioned studies have successfully used online news and social media data to418

train models for interdependency analyses. We foresee that other types of real data, such as remote sensing419

data and mobile phone data, which have been widely used in disaster-related analyses, are likely to be used420

for inferring the existence of dependencies and interdependencies and determining their coupling strength421

in future studies. When real data are not available, simulation data may be used. For instance, Lopez422

et al. (2018) simulated the decision-making process in emergency responses for interdependent systems with423

the i2Sim simulator and then trained the agent model with simulation data with reinforcement leaning for424
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predicting emergency responses of interdependent systems. Ghaneshvar (2019) used optimization models of425

interdependent water, gas, and power systems under different attack scenarios to generate recovery simulation426

data and applied supervised learning models to predict recovery time. Data-driven approaches require large427

amounts of training data to establish useful models for diagnostics and predictions (Zaidi et al. 2018) and428

they provide no physical insights with potential biases in prediction results (Yang et al. 2019; Heglund et al.429

2020).430

DISCUSSION431

Comparison of Interdependency Models432

Table 1 compares the aforementioned models, in the aspects of input data, interdependeny represen-433

tation, advantages, disadvantages, computational complexity, and development maturity. Among them,434

computational complexity refers to the computational cost required when using a method for modeling435

interdependencies, not the difficulty level of implementing such models in computational algorithms. Devel-436

opment maturity describes the degree to which a method is ready for practical applications. These models437

can capture infrastructure interdependencies in various ways, supporting decision-makers in identifying438

vulnerable and sensitive interactions and developing management plans to mitigate dependencies and inter-439

dependencies with the most adverse impacts. Based on this comparison, analysts can choose one of these440

models or integrate multiple models together for interdependency modeling analyses based on their needs.441

Dependency tables can represent complex interdependencies at the component- and/or system-level in a442

qualitative or quantitative manner. With descriptive terms intuitively representing system-level interdepen-443

dencies according to expert judgment, descriptive dependency tables for qualitative assessment are popular444

among practitioners, such as city planners and emergencymanagers, because of ease of use, no computational445

cost, and high development maturity. In contrast, quantitative tables can capture and measure infrastructure446

interdependencies. For example, correlation analysis can quantify the coupling strength between infrastruc-447

tures at system-level, requiring low computational effort; network models can represent interdependencies448

at both component-level and system-level, requiring more sophisticated computations.449

Interaction rules can capture complex infrastructure interdependencies as well. For instance, discrete450

event simulations and system dynamics simulations can assess causal relations to identify interactions and451

components with the strongest impact, requiring medium to high computational cost. Being able to capture452
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interdependencies at both component- and system-levels, optimization models can evaluate the impact of453

mitigation and restoration decisions on system resilience, with the drawback of expensive computational454

cost for large problems (Sun et al. 2020b). Bayesian networks can quantify large uncertainties to assess455

the system resilience in a probabilistic manner. Population mobility models help us understand dynamic456

processes associated with human displacement, useful for urban planning and disaster response.457

So far, there are only a small number of studies applying data-driven approaches to interdependency458

analyses. This indicates that this category of interdependency modeling method is still in its infancy, with459

low development maturity. Depending on the method adopted, data-driven approaches can range from460

computationally cheap to computationally expensive. Despite the limitations of no physical insights and461

potentially biased results, the availability of big data provides promising opportunities for using data-driven462

approaches to understand dependencies and interdependencies among infrastructure systems from different463

perspectives and ultimately support decision-making in disaster management in the coming decades.464

Challenges and Recommendations465

This study presents a new classification of interdependency models, simply based on how complex466

infrastructure interactions are implemented, in the hope of promoting research in this area. While interde-467

pendency modeling has raised research attention, there are some challenging issues remaining, which may468

hinder practical applications. This study focuses on four challenges described below.469

The first challenge is the difficulty of collecting data. To begin with, many of these models require470

large amount of input data, which may not be always available. Data are generally scarce in this field471

due to various reasons, such as national security, commercial competitiveness, legal ramifications, privacy472

and ethical issues. In practice, such data may come from expert surveys, field measurements, remote473

sensing, social media, longitudinal studies, and high-fidelity simulation models, to name a few. Even if474

required input data are available, there are often issues related to data incompleteness and data ownership.475

To address this challenge, regulations and standards need to be established for appropriate data collection,476

cleaning, protection, and management. Many efforts have been made in this direction. For instance,477

various open databases have been established to collect and share data in a standardized form, such as Open478

Government (Open Government 2018), Homeland Infrastructure Foundation-Level Data (HIFLD 2018),479

Open Infrastructure Map (OpenStreet 2020), DesignSafe (Rathje et al. 2017), and Bureau of Economic480

Analysis data (BEA 2020). With an increasing amount of data available, interdependency models are481
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expected to be calibrated and validated better, supporting more accurate resilience assessment and informed482

decision-making.483

The second challenge is the difficulty of developing accurate and comprehensive interdependencymodels.484

That is mainly because dependencies and interdependencies are often conditional on the hazard type and the485

infrastructure characteristic, related to the socioeconomic background and evolving over time and space (Sun486

et al. 2019; Sun et al. 2020b). At the current stage, many interdependency models cannot fully capture such487

influencing factors. By developing and implementing disaster management plans with the consideration of488

the aforementioned features, more efficacious decisions are expected to be made for different communities,489

with fewer conflicts between current and future needs. Therefore, future research efforts should develop490

more realistic and comprehensive interdependency models to consider these features, such as implementing491

dependency relations that are functions of time and space, as well as other influencing factors.492

The third challenge is the difficulty of directly applying interdependency modeling conclusions to493

practical decision-making. Previous evidence shows that the same type of dependency and interdependency494

may yield very different impact on system performance and resilience for a different system or community,495

subjected to a different type of hazard, within a different management time horizon (Sun et al. 2020b;496

Sun et al. 2020c). For this reason, the findings about the impact of interdependencies on resilience drawn497

for a specific community under a specific disaster scenario often cannot be directly applied to a different498

community/disaster. This means that the impact of dependencies and interdependencies should be assessed499

case by case, using appropriate interdependency models. Additionally, the current models for prediction of500

recovery and quantification of resilience may not be accurate and robust enough to have high confidence501

in the exact value of their numerical results, but they can be proficiently used in a comparative way to502

assist decision making, for instance to identify the components of a system that are most likely to hinder503

recovery, to prioritize preventive disaster mitigation actions, or to allocate budget among multiple vulnerable504

communities.505

The fourth challenge is the difficulty of calibration and validation. Available interdependency models506

are often build on very different computational theories and input data, applicable to different scenarios, and507

generating results using differentmetrics. These factorsmake analysis results using different interdependency508

models incomparable, leading to challenges in further calibration and validation of these interdependency509

models. In current research and practice, calibration and validation are usually made by comparing to510
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historical data and expert judgment (Ouyang 2014). Since historical data and expert judgment are typically511

limited to certain communities and infrastructure systems, or certain types of hazards within a limited time512

frame, theymay be inapplicable to cases when dependencies and interdependencies are involved in conditions513

falling out of the range. Therefore, guidelines and representative testbeds should be established to facilitate514

calibration, validation, and practical applications of interdependency models.515

CONCLUDING REMARKS516

Focusing on their implementation method, this study presents a new classification of interdependency517

models: dependency tables, interaction rules, and data-driven approaches. For every class of interdependency518

model, it describes the implementation method with a short discussion of application examples. Based on519

expert surveys, descriptive dependency tables are suitable for the preliminary interdependency assessment520

because of intuitive and straightforward representations and ease of use, with no computational cost and a521

moderate data collection effort. For quantitative assessments, quantitative dependency tables and interaction522

rules are recommended. For example, correlation analyses can infer the coupling strength in the post-523

disaster recovery process at the system-level based on correlation analyses of historical data. Economic524

theory-based models can evaluate economic relations between sectors within a certain time period at the525

national-scale. Discrete event simulations can model individual components and interconnected systems and526

address uncertainties, suitable for assessing potential damages at different confidence levels and comparing527

optional retrofit and restoration plans. Network models implement graph-theory-based matrices to represent528

dependencies from the bottom up, particularly suitable for assessing network vulnerability. Agent-based529

models can consider human behaviors and their interactions with critical components by following predefined530

rules. Population mobility models can help urban planners understand population displacements across531

regions and nations. With an increasing amount of data generated daily, data-driven approaches are expected532

to become more popular in applications of interdependency modeling.533

This study also compares the advantages and limitations, computational cost, and development maturity534

between different types of interdependency model. Because of the complex nature of dependencies and inter-535

dependencies, there are some challenges in interdependency modeling, related to data, model establishment,536

practical application, calibration and validation. This study discusses future research recommendations for537

addressing such challenges. Previous experience shows that interdependency models can help in assessing538

the impact of different interdependencies on community resilience, allowing decision-makers to develop539
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efficient disaster management plans and deploy effective disaster response operations with limited resources540

at hand by decoupling the interdependencies with the most adverse impact. With the increasing attention on541

this topic, the growing availability of data, and the rapid development of computational power, more advanced542

interdependency models are expected to be developed and applied to support informed decision-making for543

resilience management.544
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TABLE 1. Comparison of interdependency models

Category Model Input Interdependency
representation

Advantage Disadvantage Complexity Maturity

Dependency
tables

Descriptive
table

Expert judge-
ment

Descriptive terms;
system-level

• Intuitive representa-
tion

• Easy implementation

• Requiring sufficient ex-
perience

• Depending on the haz-
ard scenario

• Potentially biased

Very low High

Survey-based
matrix

Survey data Coefficients;
system-level

• Simple representa-
tion

• Requiring calibration
• Potentially biased

Low Medium
to high

Correlation
analysis

Historical data Pearson corre-
lations; cross
correlation coeffi-
cients; system-level

• Interpreting interde-
pendencies with cou-
pling strength and
time lag

• Requiring functional-
ity recovery data

• Assuming stationary in
time-series analyses

Low Low to
medium

Network
model

Topology; ca-
pacity; flow

Adjacency matrix;
weight matrix; etc.;
component-level
and system-level

• Intuitive representa-
tion

• Capturing inter-
dependencies at
component- and
system- levels

• Requiring the complete
knowledge of network
features

• Computationally
expensive for large
networks

Medium
to high

High

Input-output
model

Inter-sector
transaction
data

Interdependency
coefficient matrix;
system-level

• Evaluating economic
cascading impacts

• Simple linear model-
ing

• Only economic impact
• No representation of

redundancy
• Not applicable to fore-

casting

Medium Medium
to high

Computable
generalized
equilibrium

Inter-sector
transaction;
elasticity

Interdependent
coefficient matrix;
system-level

• Capturing statis and
dynamic nonlin-
ear socioeconomic
interdependencies

• Requiring a large
amount of data

• Limited to economic
impact only

High Medium
to high

Interaction
rules

Discrete
event simula-
tion

Expert judg-
ment; simula-
tion data

Possible scenarios
and associated
probabilities;
component-level
and system-level

• Explicit cause-
consequence analysis

• Requiring expert
knowledge and as-
sumptions for setting
up causal relations

High Medium
to high

Agent-based
model

Expert experi-
ence and judg-
ment

Predefined rules;
component-level

• Dynamic model
• Considering deci-

sions and conse-
quences

• Modeling reactions af-
ter a perturbation rather
than a whole picture

• Difficult to calibrate
agent behavior

Medium
to high

Medium

System
dynamics
simulation

Expert knowl-
edge

System dynam-
ics diagrams;
component-level

• Dynamically simu-
lating causes and ef-
fects in a evolving
process with feed-
back

• Requiring expert
knowledge and as-
sumptions to establish
relations and diagrams

Medium
to high

Medium

Bayesian net-
work

Simulation
data; field
measurements

Directed graphs;
component-level

• Generalized frame-
work for handling
data with large uncer-
tainties

• Requiring variable dis-
cretization

• Computationally
expensive for large
systems

Medium
to high

Medium

Optimization Mathematical
formulation
from opera-
tions research

Constraints of re-
source, precedence,
budget, and time,
etc.; component-
level and system-
level

• Generalized frame-
work for simulat-
ing mitigation and
restoration decisions

• Computationally
expensive for large
problems

High Medium
to high

Population
mobility
model

Empirical data;
simulation data

Logit model; grav-
ity model, ran-
dom walk algo-
rithm; system-level

• Capturing human
mobility and location
choices

• Assuming certain mo-
bility decisions

• Requiring a large
amount of travel data

Medium Medium

Aggregate
supply and
demand
model

Profit data;
spending data;
price

Multi-attribute util-
ity model; system-
level

• Comprehensive as-
sessment of com-
modity flow

• Limited to system-level
interdependencies only

Medium Medium

Data-driven
approaches

Social media
data; news;
simulation data

Artificial intelli-
gence; system-level

• Processing big data
effectively and effi-
ciently

• No physical insights
• Potentially biased

Low to
high

Low
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Zhang and Peeta’s
Classification

• Physical

• Functional

• Budgetary
• Market
• Economic

Dudenhoeffer et al.’s 
Classification

• Physical

• Informational
• Geospatial

• Policy

Rinaldi et al.’s 
Classification

• Physical

• Geospatial
• Cyber
• Logical

Sun et al.’s 
Classification

• Hazard-related

• Damage-related
• Restoration-related
• Functionality-related

Zimmerman’s 
Classification

• Functional

• Spatial

Sharkey et al.’s 
Classification

• Operational

• Infrastructure 
failure

• Restoration

Notation
Strong similarity
Weak similarity

Fig. 1. Popular classifications of interdependencies and their similarity.
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Interdependency Models

Dependency Tables Interaction Rules
• Discrete event simulation
• Agent-based model
• System dynamics approach
• Bayesian-network-based 

approach
• Optimization
• Population mobility model
• Aggregate supply and 

demand model
• etc. 

Qualitative Tables
• Descriptive dependency table

Quantitative Tables
• Survey-based quantitative table
• Correlation-based table
• Graph-theory-based matrix
• Economic-theory-based table
• etc.

Data-driven 
Approaches

• Supervised 
learning

• Deep learning
• Reinforcement 

learning
• Text mining
• etc.

Fig. 2. Classification of interdependency models based on the implementation method.
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