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ABSTRACT
Unbiased Learning to Rank (ULTR), i.e., learning to rank documents

with biased user feedback data, is a well-known challenge in infor-

mation retrieval. Existing methods in unbiased learning to rank typ-

ically rely on click modeling or inverse propensity weighting (IPW).

Unfortunately, search engines face the issue of a severe long-tail

query distribution, which neither click modeling nor IPW handles

well. Clickmodeling usually requires that the same query-document

pair appears multiple times for reliable inference, which makes it

fall short for tail queries; IPW suffers from high variance since it

is highly sensitive to small propensity score values. Therefore, a

general debiasing framework that works well under tail queries is

sorely needed. To address this problem, we propose a model-based

unbiased learning-to-rank framework. Specifically, we develop a

general context-aware user simulator to generate pseudo clicks for

unobserved ranked lists to train rankers, which addresses the data

sparsity problem. In addition, considering the discrepancy between

pseudo clicks and actual clicks, we take the observation of a ranked

list as the treatment variable and further incorporate inverse propen-

sity weighting with pseudo labels in a doubly robust way. The de-

rived bias and variance indicate that the proposed model-based

method is more robust than existing methods. Extensive experi-

ments on benchmark datasets, including simulated datasets and real

click logs, demonstrate that the proposed model-based method con-

sistently outperforms state-of-the-art methods in various scenarios.

The code is available at https://github.com/rowedenny/MULTR.
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1 INTRODUCTION
Search engines serve as one of the most important tools for ac-

cessing information online. In modern search engines, learning to

rank (LTR) algorithms play a critical role by creating models to accu-

rately order a list of candidate documents based on their relevance

to the query. As deep supervised models have been widely applied

and been state-of-the-art inmany ranking tasks [8, 13, 48, 51, 56, 58],

obtaining large-scale and high-quality training data has become

a bottleneck for the development of large scale learning-to-rank

systems [5, 57]. In practice, implicit feedback that reflects users’

information needs [37] provides natural, abundant sustainable train-

ing data for ranking optimization without costly time consumption

and human annotation. Therefore, LTR with implicit feedback such

as clicks has received considerable attention in the IR community.

However, click data is biased since relevance is not the only

factor influencing users’ clicks. For example, position bias occurs
because users are more likely to examine documents at higher

ranks [11, 24]. Consequently, the highly ranked document may

receive more clicks, and the relevant document may be perceived as

a negative sample simply by not being examined by users. Further-

more, ranking positions [23], display differences [38, 50], users’ first

impression [32], etc., also influence the implicit feedback. These

biases make the data deviate from reflecting true relevance, and

jeopardize the learned ranking model’s performance.

To be unaffected by biases [25], there are two groups of methods:

(1) Click modeling methods explicitly introduce an additional

factor as bias, make hypotheses about users’ browsing behaviors,

and estimate true relevance by optimizing the likelihood of ob-

served user clicks [7, 11, 15, 45]. Click models are straightforward

yet effective, and they have made promising progress for various

applications, such as CTR prediction in live recommendation [16]

and grid view web applications [54]. However, search engines are

faced with severe long-tail query distribution, where click models

can fall short since multiple observations for the same query may

not be available [2]. (2) Propensity-based methods treat the click
bias as the counterfactual factor [34], and re-weight the click data

for a relevance-equivalent training loss through inverse propensity
1
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Figure 1: The framework of model-based unbiased learning
to rank.

weighting (IPW) [25, 46]. To this end, many approaches [2, 20, 44]

are proposed to jointly learn user bias models (i.e., propensity mod-

els) with unbiased rankers. However, propensity-based methods

generally suffer from high variance [35], which can lead to subop-

timal estimation [41]. Therefore, a general debiasing framework

with low variance is needed.

To address these challenges, we propose a novel model-based un-

biased learning to rank (MULTR) framework, as shown in Figure 1.

MULTR consists of a context-aware user simulator for addressing

the data sparsity problem and a doubly-robust learning algorithm

for reducing the variance and achieving unbiased estimation. Specif-

ically, we first develop a user simulator that directly learns from

click data, which generates pseudo clicks for unobserved ranked

lists as data imputation and alleviates the sparse training data prob-

lem. Remarkably, the user simulator is unbiased since the factor,

i.e., the position, influencing the click is being considered as its

input, which ensures the consistency between the training of user

simulator and data augmentation. However, as the user simulator

cannot be as accurate as real users, the discrepancy between pseudo

and actual clicks may mislead the ranking models, and unbiased-

ness cannot be guaranteed. To reduce the variance and ensure the

unbiasedness, we resort to doubly robust approaches. In particular,

we propose to take the observation of ranked lists as the treatment,

generate pseudo-click data via offline result randomization, and
incorporate the inverse propensity weighting with pseudo-click

labels in a doubly robust way, where the user simulator essentially

functions as the imputation model. The derived bias and variance

indicate that the proposed model-based method has low bias and

low variance. Thus, it is more robust than existing methods. To

demonstrate the effectiveness of the proposed method, we con-

duct extensive experiments on simulated and real datasets, and

demonstrate that the proposed model-based method consistently

outperforms state-of-the-art methods.

The contributions of the proposed model-based unbiased learn-

ing to rank framework can be summarized as follows:

• We propose model-based unbiased learning to rank (MULTR) –

a general debiasing framework with low variance.

• We devise a user simulator, which addresses data sparsity by

generating pseudo-click labels for unobserved ranked lists.

• We propose the observation of rank lists as treatment, which

addresses the treatment unobservability in unbiased learning to

rank, and incorporate inverse propensity weighting with pseudo

labels in a doubly robust way.

• We conduct extensive experiments on simulated datasets and

real user click logs to demonstrate the superiority of MULTR.

2 RELATEDWORK
Unbiased Learning to Rank. To extract unbiased and reliable rel-

evance signals from biased click signals, there are two streams of

unbiased learning to rank methodologies. One school depends on

click modeling, which makes assumptions about user browsing

behaviors. Such methods maximize the likelihood of the observed

data, model the examination probability and infer accurate rele-

vance feedback from user clicks [6, 9, 11, 30]. For example, Guo

et al. [16] propose a position-bias aware learning framework for

CTR prediction that models position-bias in offline training and

conducts online inference without biased information. Wang et al.

[47] unify the training of the ranker model and the estimation of

examination propensity with a graphical model and an EM algo-

rithm. Despite their success, one major drawback of click models is

that they usually require that the same query-document pair ap-

pears multiple times for reliable inference [29]; thus they may fall

short for tail queries. The other school derives from counterfactual

learning, which treats bias as a counterfactual factor and debiases

user clicks via inverse propensity weighting [25, 46]. Recent efforts

jointly model the propensity estimation and unbiased learning to

rank. For instance, Ai et al. [2] and Hu et al. [20] present dual learn-

ing frameworks for estimating bias and training a ranking model.

Vardasbi et al. [43] propose cascade model-based inverse propensity

scoring for propensity estimation in the cascade scenario. However,

these methods ignore the severe high variance problem in IPW-

based methods, particularly for long-tail data. Our paper falls in

the same propensity-based framework; however, we address the

high variance problem by optimizing the ranking model in a doubly

robust way, which has low bias and low variance.

Model-based Methods. Model-based methods aim to construct

a predictive user model and ask the question of the counterfac-

tual form “what will the user click if the search result page is

presented differently?”, which naturally fits debiasing. Recent work

has proposed some methods that improve ranking performance

based on user simulators. For example, Dai et al. [12] propose a util-

ity estimator to generate counterfactual data to train the ranking

model. Zhang et al. [53] develop a reinforcement learning algo-

rithm to learn ranking policies in the simulation environments.

While both methods show promising improvements, the theoreti-

cal guarantees with respect to unbiasedness are unclear. Different

from such work, we leverage the user simulator as the imputation

model in a doubly-robust way, which addresses the high bias issue

caused by the discrepancy between user simulator and real clicks.

More importantly, our derivation demonstrates the unbiasedness

of the proposal. Our ablation study verifies that the doubly robust

approach can effectively leverage both real and pseudo clicks, and

improve the ranking performance.
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Doubly-Robust Methods. Doubly-Robust (DR) methods have been

widely applied to position-biased clicks. Saito [36] proposes a DR

method for post-click conversions. Guo et al. [17] further develop

a more doubly robust estimator to reduce the variance. Kiyohara

et al. [26] develop a cascade doubly robust estimator for off-policy

evaluation, Yuan et al. [49] introduce a DR estimator for click-

through-rate prediction. Zou et al. [55] propose a doubly robust

estimator for relevance estimation. A significant difference between

current DR estimators and those in ULTR is that existing solutions

use corrections based on action propensities, which is similar to

generic counterfactual estimation; while ULTR needs examination

propensities [31], which unfortunately is unobservable in click logs.

In this paper, we address this challenge by taking the observation

of rank lists as treatment, and incorporate the inverse propensity

weighting with pseudo-click labels in a doubly-robust way.

3 PRELIMINARIES
This section presents the task of unbiased learning to rank and

reviews the preliminary methods of click modeling and propensity-

based methods with their strengths and weaknesses.

3.1 Task Formulation
Let D be the universal set of documents, and Q be the universal

set of queries. For a user-issued query 𝑞 ∈ Q, we use 𝑟𝑑 to denote

the relevance annotation over the query 𝑞 and document 𝑑 ∈ D.

The goal of learning to rank is to find a mapping function from a

query document pair (𝑞, 𝑑) to its relevance 𝑟𝑑 as 𝑓 : Q ×D → R. A
corresponding local loss function is usually proposed to learn the

best 𝑓 , given its retrieved ranked list 𝜋𝑞 as,

ℓ𝑖𝑑𝑒𝑎𝑙 (𝑓 , 𝑞 |𝜋𝑞) =
∑︁
𝑑∈D

Δ(𝑓 (𝑞, 𝑑), 𝑟𝑑 |𝜋𝑞), (1)

where Δ is a function that computes the individual loss on each

document. ℓ𝑖𝑑𝑒𝑎𝑙 (𝑓 , 𝑞) is the ideal local ranking loss for optimizing

the ranking function 𝑓 with all the documents annotated. With-

out loss of generality, we simplify the individual loss function

Δ(𝑓 (𝑞, 𝑑), 𝑟𝑑 |𝜋𝑞) as Δ(𝑟𝑑 |𝜋𝑞).
Typically, the relevance annotation 𝑟𝑑 is elicited through expert

judgment; thus 𝑟𝑑 is considered to be unbiased, but expensive. An

alternative approach is to use click data as relevance feedback

from users. Suppose there is a click dataset in which the clicks on

documents with respect to queries by an initial ranking model are

logged. If we conduct learning to rank by replacing the relevance

label 𝑟𝑑 with click label 𝑐𝑑 in Equation 1, then the empirical local

ranking loss is derived as follows,

ℓ𝑛𝑎𝑖𝑣𝑒 (𝑓 , 𝑞 |𝜋𝑜 ) =
∑︁

𝑑∈𝜋𝑜 ,𝑐𝑑=1
Δ(𝑐𝑑 |𝜋𝑜 ), (2)

where 𝜋𝑜 is the observed ranked list, which is the ranked list pre-

sented to users, and 𝑐𝑑 is a binary variable indicating whether the

document 𝑑 in the ranked list 𝜋𝑜 is clicked. However, this naive loss

function is biased. For instance, position bias occurs because users

are more likely to examine the documents at higher ranks [25].

Consequently, highly ranked documents may receive more clicks,

and relevant (but unclicked) documents may be perceived as neg-

ative samples because they are unexamined by users. To address

this issue, unbiased learning-to-rank aims to eliminate bias in click

data and then train a ranking model with the resulting user clicks.

3.2 Click Modeling
To eliminate biases in click data, one intuitive method is to model

bias and relevance as independent factors, and represent the joint

effects of bias and relevance with bias-aware click modeling [16, 27].

Here we refer to the general approach as click modeling. Let b be

the bias features, and x𝑑 be the vector representation of document

𝑑 , then the bias-aware click predictor is modeled as follows:

𝑃 (𝑐𝑑 = 1, 𝑞) = ℎ(b;𝜙) ⊕ 𝑓 (x𝑑 ;\ ), (3)

where 𝑃 (𝑐𝑑 = 1, 𝑞) is the estimated click probability of document 𝑑

of query 𝑞. ℎ is the bias model parameterized by 𝜙 that generates

a score based on the inputs of bias features. 𝑓 is the relevance

prediction model parameterized by \ that generates a relevance

score based on the relevance representations. ⊕ is an operation that

combines the bias-based score and the relevance score, which could

be addition [54], multiplication [16], etc. The general local ranking
loss of a bias-aware click predictor is defined as:

ℓ𝐶𝐿𝐼𝐶𝐾 (𝑓 , ℎ, 𝑞 |𝜋𝑜 ) =
∑︁

𝑑∈𝜋𝑜 ,𝑐𝑑=1
CE(𝑃 (𝑐𝑑 = 1, 𝑞), 𝑐𝑑 )

=
∑︁

𝑑∈𝜋𝑜 ,𝑐𝑑=1
CE (ℎ(b;𝜙) ⊕ 𝑓 (x𝑑 ;\ ), 𝑐𝑑 ) ,

(4)

where 𝑐𝑑 is a binary variable indicating whether document 𝑑 is

clicked, and CE(·, ·) the cross-entropy function. When conducting

the relevance inference, one can easily eliminate the influence of

bias by dropping the scores from ℎ(b;𝜙), i.e., directly ranking with

𝑓 (x𝑑 , \ ). Though click models work well with head queries, they

could fall short when multiple observations of the same query may

not be available [2].

3.3 Propensity-based Methods
Inverse propensity weighting (IPW) is the first unbiased learning

to rank algorithm proposed under the propensity-based frame-

work [25, 46]. Let 𝑒𝑑 , 𝑐𝑑 be the binary variables that represent

whether document 𝑑 is examined and clicked by a user, based on

the Examination Hypothesis [33] that a user would only click a

document when it is observed by the user and considered relevant

to the user’s need, we have

𝑐𝑑 = 1⇐⇒ (𝑒𝑑 = 1 and 𝑟𝑑 = 1). (5)

Then, IPW instantiates the local ranking loss as

ℓ𝐼𝑃𝑊 (𝑓 , 𝑞 |𝜋𝑜 ) =
∑︁

𝑑∈𝜋𝑜 ,𝑐𝑑=1

Δ(𝑐𝑑 |𝜋𝑜 )
𝑃 (𝑒𝑑 = 1)

, (6)

where 𝑃 (𝑒𝑑 = 1) is the estimated probability that document 𝑑 is

examined in the query session. A nice property is that only clicked

documents 𝑐𝑑 = 1 contribute to the estimation in Eq. 6.

Bias and Variance Analysis. We analyze the bias and variance of

the inverse propensity weighting approach.

3
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Figure 2: Framework of the Context-aware User Simulator.
Theorem 3.1. The bias of the IPW estimators is

𝐵𝑖𝑎𝑠 [ℓ𝐼𝑃𝑊 (𝑓 , 𝑞 |𝜋𝑜 )] =

������ ∑︁
𝑑∈𝜋𝑜 ,𝑟𝑑=1

𝑃 (𝑒𝑑 = 1) − 𝑃 (𝑒𝑑 = 1)
𝑃 (𝑒𝑑 = 1)

Δ(𝑐𝑑 |𝜋𝑜 )

������
(7)

As shown in Theorem 3.1, when the estimated examination prob-

ability is accurate, i.e., 𝑃 (𝑒𝑑𝑖 = 1) = 𝑃 (𝑒𝑑𝑖 = 1), then 𝐵𝑖𝑎𝑠 [ℓ𝐼𝑃𝑊 ] =
0, indicating accurate estimation can be achieved with rich obser-

vation data. Then, we derive the variance of the IPW estimators.

Theorem 3.2. The variance of the IPW estimator is

VO [ℓ𝐼𝑃𝑊 (𝑓 , 𝑞 |𝜋𝑜 ) ] =
∑︁

𝑑∈𝜋𝑜 ,𝑐𝑑=1

𝑃 (𝑒𝑑 = 1) (1 − 𝑃 (𝑒𝑑 = 1))
𝑃 (𝑒𝑑 = 1)2

Δ(𝑐𝑑 |𝜋𝑜 )2 .

(8)

Theorem 3.2 illustrates that the variance of IPW estimators de-

pends on the estimated propensity. When 𝑃 (𝑒𝑑 = 1) is small, it

may lead to high variance. Especially for long-tail queries with rare

observation data, the high variance of IPW becomes a problem that

directly influences the effectiveness of the ranker.

4 MODEL-BASED UNBIASED LEARNING TO
RANK

In this section, we first introduce the context-aware user simulator,

which generates pseudo-click labels for unobserved ranked lists as

data imputation and addresses the data sparsity. Afterwards, we

propose a doubly robust estimator, which takes the observation

of ranked lists as the treatment, and further incorporates inverse

propensity weighting with pseudo labels from the user simulator

above in a doubly robust way. Lastly, we derive the bias and variance

of the proposedmethod, and demonstrate that our proposedmethod

is more robust than existing methods.

4.1 Context-aware User Simulator
The user simulator consists of two important components: a local

context encoder, which captures different feature distributions from

different queries, and a context-aware click decoder, which produces

the click probability of each document sequentially. The framework

of our user simulator is shown in Fig. 2.

Local Context Encoder. To capture the characteristics of queries,

i.e., different queries may have different distributions in the feature

space [1], we first design a local context encoder for each query and

use it to refine the query-specific features, as shown at the bottom

block in Figure 2. Formally, given the top 𝑁 documents {𝑑𝑖 }𝑁𝑖=1
in a ranked list 𝜋𝑞 from top to bottom, and their corresponding

feature vectors {x𝑖 }𝑁𝑖=1, we use a bi-directional long short-term

memory [19] network to obtain a contextual representation of each

document with respect to the entire ranked list:

h𝑖 = [
−−−−→
LSTM(x𝑖 , 𝑖);

←−−−−
LSTM(x𝑖 , 𝑖)]

h𝜋𝑞 = W⊤h𝑁 ,
(9)

where [·; ·] is concatenation, and −−−−→LSTM(x𝑖 , 𝑖) processes the doc-
ument 𝑥 from top to bottom and returns the LSTM hidden state

at position 𝑖 (and vice versa for the backward direction

←−−−−
LSTM).

We then produce the local context representation h𝜋𝑞 by a linear

transformation of the last hidden state h𝑁 .

Context-aware Click Decoder. To characterize different influences
from the previous actions, we encode actions with an embedding

matrix A. In our settings, there are three types of actions, i.e., click,
skip, and unknown, where unknown is designed for the initial step.

We use h𝑎𝑡 to denote the action embedding corresponding to action

𝑎𝑡 at step 𝑡 . The context-aware click decoder is formulated as:

z𝜋 = W⊤
1
h𝜋𝑞 + b1

z𝑥𝑖 = W⊤
2
x𝑖 + b2

z𝑎𝑡 = W⊤
3
h𝑎𝑡 + b3

z𝑡 = [z𝜋 ; z𝑥𝑖 ; z𝑎𝑡 ]

h𝑡 =
−−−−→
LSTM(z𝑡 , 𝑡),

(10)

whereW1,W2,W3, b1, b2, b3 are the trainable parameters used to

transform the query context vector, the document vector and the

previous action embedding, respectively.

At each step 𝑡 , the hidden state h𝑡 is projected into a conditional
click probability score through the sigmoid function:

𝑝𝑡 = sigmoid(W⊤
4
h𝑡 + 𝑏4), (11)

whereW4, b4 are trainable parameters, and 𝑝𝑡 ∈ [0, 1] represents
the probability that a user clicks document 𝑑𝑡 .

User Simulator Optimization. After obtaining the click proba-

bility score 𝑝𝑡 for each document, we train the user simulator by

applying the binary cross-entropy:

ℓ𝑒 (𝑔, 𝑞 |𝜋𝑜 ) =
𝑁∑︁
𝑡=1

(−𝑐𝑡 log𝑝𝑡 − (1 − 𝑐𝑡 ) log(1 − 𝑝𝑡 )) + _ | |𝜙 | |2, (12)

where 𝑔 is the whole context-aware user simulator, 𝑐𝑡 denotes the

click label of document 𝑑𝑡 in observed ranked list 𝜋𝑜 , 𝜙 denotes

all the parameters of the user simulator 𝑔, and _ denotes the 𝐿2
regularization coefficient.

Discussion. It is worth noting that the goal of this paper is not

to propose a high-performance user simulator. More sophisticated

models, such as utility estimator [12] and UBS4RL [52], can be

applied here. We leverage the user simulator as the imputation

model to generate pseudo-click labels for an arbitrary ranked list.

In the next section, we will leverage the user simulator in a doubly

robust way to obtain unbiased ranking models.

4
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4.2 Doubly Robust Learning
User simulators have the benefit of data imputation [18]. However,

directly optimizing the ranking model through the user simulator

could be highly biased due to the discrepancy between pseudo la-

bels and actual clicks, i.e., the pseudo clicks cannot be as accurate as
real clicks. To address this problem, we resort to the doubly robust

approach. Unfortunately, the treatment, i.e., document examination,

is not directly observable in click data. It is because when a docu-

ment is not clicked, we cannot determine whether the user chose

not to click or the user did not examine it [31]. To overcome this

bottleneck, we propose to take the observation of ranked lists as the
treatment. After that, we incorporate inverse propensity weighting

with pseudo-clicked labels in a doubly robust way, where the user

simulator essentially functions as the imputation model.

Before we describe our doubly robust estimator for unbiased

learning to rank, we introduce two concepts: prediction error and

imputation error. We refer to the local ranking loss ℓ𝑛𝑎𝑖𝑣𝑒 in Eq 2

with actual clicks as prediction error. Then the imputed error ℓ𝐼𝑀𝑃 ,
i.e., the estimated value of the prediction error, is defined as:

ℓ𝐼𝑀𝑃 (𝑓 , 𝑞 |𝜋𝑜 ) =
∑︁

𝑑∈𝜋𝑜 ,𝑐𝑑=1
Δ(𝑐𝑑 |𝜋𝑜 ), (13)

where 𝑐𝑑 is the imputed click generated from the user simulator

for each document 𝑑 in the observed ranked list 𝜋𝑜 under query 𝑞.

Let Π𝑞 be the set of document permutations, i.e., all possible
ranked lists. We simplify Π𝑞 as Π when there is no ambiguity for

the issued query 𝑞. We propose our doubly robust (DR) estimator

by combining the imputed errors for all ranked lists, and the IPW-

based prediction error for observed ranked lists. The loss function

of the DR estimator given query 𝑞 is defined as:

ℓ𝐷𝑅 (𝑓 , 𝑞 |𝜋𝑜 ) =
1

|Π |
∑︁
𝜋 ∈Π

{
ℓ̂𝐼𝑀𝑃 (𝑓 , 𝑞 |𝜋)

+ 𝑜𝜋
[
ℓ𝐼𝑃𝑊 (𝑓 , 𝑞 |𝜋) − ℓ̂𝐼𝑃𝑊 (𝑓 , 𝑞 |𝜋)

]}
=

1

|Π |
∑︁
𝜋 ∈Π

{ ∑︁
𝑑∈𝜋,𝑐𝑑=1

Δ(𝑐𝑑 |𝜋)

+ 𝑜𝜋
[ ∑︁
𝑑∈𝜋,𝑐𝑑=1

Δ(𝑐𝑑 |𝜋)
𝑃 (𝑒𝑑 = 1)

−
∑︁

𝑑∈𝜋,𝑐𝑑=1

Δ(𝑐𝑑 |𝜋)
𝑃 (𝑒𝑑 = 1)

]}
,

(14)

where ℓ̂𝐼𝑃𝑊 (𝑓 , 𝑞 |𝜋) =
∑
𝑑∈𝜋,𝑐𝑑=1

Δ(𝑐𝑑 |𝜋 )
𝑃 (𝑒𝑑=1)

is the propensity score

weighted imputed error, and 𝑜𝜋 = 1{𝜋 = 𝜋𝑜 } indicates whether
𝜋 is an observed ranked list. A nice property of the DR estimator

is: if either the imputed error of any unobserved ranked list or

the estimated propensities of any observed ranked list is accurate,

the DR estimator is then unbiased [17, 55], which is recognized as

double robustness.
Discussion. Careful readers may notice that our method is simi-

lar in spirit to result randomization. Ideally, if the pseudo-click labels

generated from the user simulator are accurate for any unobserved

ranked lists, learning from user simulators would be equivalent to

learning from online result randomization, which is unbiased in

principle [25, 46]. However, online result randomization is often

impractical since it can negatively affect the user experience. Our

method overcomes the aforementioned limitations by leveraging

the user simulator in a doubly robust way, and simultaneously

obtains unbiased ranking models.

4.3 Bias and Variance of DR Estimator
In this section, we derive the bias and variance of MULTR, and

prove its double robustness.

Theorem 4.1. Let 𝛿𝜋,𝑑 = 𝑐𝑑Δ(𝑐𝑑 |𝜋) − 𝑐𝑑Δ(𝑐𝑑 |𝜋) be the error
deviation, and 𝜌𝑞,𝑑 =

𝑃 (𝑒𝑑=1)−𝑃 (𝑒𝑑=1)
𝑃 (𝑒𝑑=1)

be the propensity deviation.

The bias of the doubly robust (DR) estimator is

𝐵𝑖𝑎𝑠 [ℓ𝐷𝑅 (𝑓 , 𝑞 |𝜋𝑜 )] =
����� 1

|Π |
∑︁
𝜋 ∈Π

∑︁
𝑑∈𝜋

𝜌𝜋,𝑑𝛿𝜋,𝑑

����� . (15)

As shown in Theorem 4.1, when the imputed error is accurate

(𝛿𝑞,𝑑 = 0) or the propensity estimation is accurate (𝜌𝑞,𝑑 = 0), the
bias of DR estimator 𝐵𝑖𝑎𝑠 [ℓ𝐷𝑅 (𝑓 , 𝑞 |𝜋𝑜 )] = 0. Next, we derive the

variance of the DR estimator.

Theorem 4.2. The variance of the DR estimator is

VO [ℓ𝐷𝑅 (𝑓 , 𝑞 |𝜋𝑜 ) ] =
1

|Π |2
∑︁
𝜋∈Π

∑︁
𝑑∈𝜋

{
𝑃 (𝑒𝑑 = 1) (1 − 𝑃 (𝑒𝑑 = 1))

𝑃 (𝑒𝑑 = 1)2
· 𝛿2

𝑞,𝑑

}
(16)

In Theorem 4.2, we demonstrate that the variance of the DR

estimator depends on the estimated propensity, i.e., 𝑃 (𝑒𝑑 = 1),
which may lead to a high variance problem. Recall the variance of

the IPW estimator in Theorem 3.2; it is worth noting that our DR

estimator can still reduce the variance of the IPW estimator, if any

given observed ranked list satisfies [𝑐𝑑Δ(𝑐𝑑 |𝜋) − 𝑐𝑑Δ(𝑐𝑑 |𝜋)]2 ≤
[𝑐𝑑Δ(𝑐𝑑 |𝜋)]2. Then, the variance of the DR estimator is smaller

than that of the IPW-based estimator.

4.4 Learning Framework
We summarize the learning framework in Algorithm 1. It is worth

noting that the proposed MULTR is a plug-in model, which can

be seamlessly integrated into any IPW-based unbiased learning to

rank framework without result randomization, such as DLA [2]

and REM [47].

5 EXPERIMENTAL SETUP
To analyze the effectiveness of MULTR, we conduct two types

of experiments. The first is simulation experiments based on two

of the largest public learning-to-rank datasets. The second is an

experiment based on the actual rank lists and user clicks collected

from a commercial web search engine.

5.1 Simulation Experiment Setup
To fully investigate the spectrum of propensity estimation and

performance of MULTR, we conduct experiments on two of the

largest publicly available datasets:

1
Due to the large sample space of all possible ranked lists (i.e., 𝑁 documents have 𝑁 !

permutations), we decrease the sample size in practice.
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Algorithm 1:Model-based Unbiased Learning to Rank

Input :query set Q, an IPW-based framework 𝐹

Output : ranking model 𝑓 (\ ) and user simulator 𝑔(𝜙)
1 Initialize the parameters \, 𝜙 ;

2 for number of steps for training the user simulator do
3 Sample a batch of queries 𝑄 from Q, with observed

ranked lists Π𝑜 ;

4 Update 𝜙 , according to Eq. 12 ;

5 end
6 for number of steps for training the unbiased ranking

model do
7 Sample a batch of queries 𝑄 from Q, with observed

ranked lists Π𝑜 ;

8 Obtain unobserved ranked lists Π𝑢 by result

randomization over Π𝑜 ;

9 Generate pseudo-click labels 𝑐𝑑 for all ranked list

Π = Π𝑜 ∪ Π𝑢 by sampling on the click probabilities,

according to Eq. 11
1
;

10 Update \ , according to Eq. 14

11 end

• Yahoo! LETOR2
comes from the Learn to Rank Challenge ver-

sion 2.0 (Set 1), and it is one of the largest benchmark datasets

widely used in unbiased learning to rank [2, 20]. It consists of

29,921 queries and 710K documents. Each query-document pair

is represented by a 700-D feature vector, and annotated with

5-level relevance labels [4].

• Istella-S3 contains 33K queries and 3,408K documents (roughly

103 documents per query) sampled from a commercial Italian

search engine. Each query-document pair is represented by 220

features and annotated with 5-level relevance judgments [28].

We follow the predefined data split of training, validation and test-

ing of all datasets. The Yahoo! set splits the queries arbitrarily and

uses 19,944 for training, 2,994 for validation and 6,983 for testing.

The Istella-S dataset has been divided into train, validation and test

sets according to a 60% − 20% − 20% scheme.

Click Simulation. We generate click data on both datasets with

a two-step process as in Joachims et al. [25] and Ai et al. [2]. First,

we train a Rank SVM model [22] using 1% of the training data with

real relevance labels to generate the initial ranked list 𝜋𝑞 for each

query 𝑞. Then, we simulate the user browsing process and sample

clicks from the initial ranked list by utilizing the simulation model.

The simulation model generates clicks based on the examination

hypothesis in Equation 5. Following the methodology proposed by

Chapelle et al. [6], the relevance probability is set to be

Pr(𝑟𝑑𝑖 = 1|𝜋𝑞) = 𝜖 + (1 − 𝜖) 2
𝑦 − 1

2
𝑦max − 1 , (17)

where 𝑦 ∈ [0, 𝑦max] is the relevance label of the document 𝑑𝑖 , and

𝑦max is the maximum value of𝑦, which is 4 on both datasets. 𝜖 is the

noise level, whichmodels click noise such that irrelevant documents

2
https://webscope.sandbox.yahoo.com/

3
http://quickrank.isti.cnr.it/istella-dataset/

(i.e., 𝑦 = 0) have a non-zero probability to be perceived as relevant

and clicked. We fix 𝜖 = 0.1 as the default setting.

We use the cascade model [11] to generate the examination prob-

ability. It is a context-aware click model, and a user is modeled as

searching and clicking documents from top to bottom, and deciding

whether to click each result before moving to the next; users stop

examining a search result page after the first click. The cascade

model is defined as,

Pr(𝑒𝑑1 = 1) =1
Pr(𝑒𝑑 𝑗 |𝑒𝑑 𝑗−1 = 𝑒, 𝑐𝑑 𝑗−1 = 𝑐) =𝑒 · (1 − 𝑐) (18)

where 𝑒 and 𝑐 are binary variables that indicate whether the docu-

ment 𝑑 is examined and clicked.

Baselines. To demonstrate the effectiveness of our proposed

method, we compare with baseline methods, including IPW-based

methods and bias modeling methods, which are widely used in

ULTR problems.

• DLA: The Dual Learning Algorithm [2] treats the problem of

unbiased learning to rank and unbiased propensity estimation as

a dual problem, such that they can be optimized simultaneously.

• REM: The Regression EM model [47] uses an EM framework to

estimate the propensity scores and ranking scores.

• PairD: The Pairwise Debiasing (PairD) Model [20] uses inverse

propensity weighting for pairwise learning to rank.

• PAL: The Position-bias Aware Learning framework [16] is a bias

modeling method. It introduces a position model to explicitly

represent position bias, and jointly model the bias and relevance.

• Oracle: This model utilizes human experts’ annotated labels to

train the ranking model and test its performance. Its performance

can be considered as an upper bound for the ranking model.

• Naive: This model just uses the raw click data to train the ranking

model, without any correction. Its performance can be considered

as a lower bound for the ranking model.

In addition, we also consider two variants of MULTR as follows,

• Rand-MULTR: We replace the well-trained user simulator with

the model with random initialization, i.e., we skip lines 2-5 in the

Algorithm 1. We refer to this variant as Rand-MULTR.

• EIB-MULTR: We alternate the doubly robust loss in Equation 14

with the error imputation based loss [18], defined as ℓ𝐸𝐼𝐵 =
1

|Π |
∑
𝜋 ∈Π ℓ𝑛𝑎𝑖𝑣𝑒 (𝑓 , 𝑞 |𝜋). It is called EIB since it uses the user

simulator to compute an imputed error, i.e., the estimated values

of the ranking loss, for each unobserved ranked list, and then

used it to estimate the true ranking loss for all the ranked lists.

We refer this variant as EIB-MULTR.

Experimental Protocols. We implement MULTR and use the base-

lines in ULTRA
4
[42] to conduct our experiments. In particular,

MULTR is integrated with DLA, as we consider it to be the best

method to estimate propensity. For each query, only the top 𝑁 = 10

documents are assumed to be displayed to the users. For both

datasets, all models are trained with synthetic clicks. Following

the setting in Ai et al. [2], the click sessions for training are gener-

ated on the fly. We fix the batch size to 256 and train each model

for 10K steps. The user simulator is also trained with batch size of

256 and 10K steps; afterwards, we fix it to generate pseudo-click

4
https://github.com/ULTR-Community/ULTRA_pytorch/
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labels. We use the AdaGrad optimizer [14] and tune learning rates

from 0.01 to 0.05 for each unbiased learning-to-rank algorithm.

In our experiments, we train neural networks for our ranking

functions. All reported results are produced using a model with

three hidden layers with size [512, 256, 128] respectively, with the

ELU [10] activation function and 0.1 dropout [40]. In terms of

imputation model, the dimension of the hidden states is 64. We tune

the 𝐿2 regularization coefficient _, ` in range of {1𝑒−5, 1𝑒−4, · · · , 1},
and the number of pseudo samples in {2, 4, 8, 16, 24, 32} based on

results in the validation set.

To evaluate all methods, we use the normalized Discounted

Cumulative Gain (nDCG) [21] and the Expected Reciprocal Rank

(ERR) [6]. For both metrics, we report the results at rank 1, 3, 5,

and 10 to show the performance of models at different positions.

Following Ai et al. [2], statistical differences are computed based

on the Fisher randomization test [39] with 𝑝 ≤ 0.05.

5.2 Real Click Experiment Setup
In order to show the effectiveness of MULTR in practice, we also

conduct experiments on click data Tiangong-ULTR5
collected

from a commercial web search engine [2, 3]. It contains 3,449 queries

written by real search engine users and the corresponding top 10

results are sampled from a two-week search log collected on Sogou
6
.

The raw HTML documents are downloaded, and then the rank

lists that cannot be crawled are removed. After cleaning, there are

333,813 documents, 71,106 ranked lists and 3,268,177 anonymous

click sessions.

Feature Extraction. To train the learning-to-rankmodels, features

are extracted based on the text of queries and documents. The

ranking features are constructed based on the URL, title, content

and whole text of the documents and queries [2]. In total, each

query-document pair has 33 features.

Evaluation. Tiangong-ULTR provides a test set with 100 queries

written by real users. Each query has 100 candidate documents

(retrieved by BM25) and each query-document pair has 5-level rele-

vance annotation. We train the ranking model in MULTR and base-

lines on the training set with clicks following the same protocols

in the simulation experiments, and we evaluate their performance

on the test set with human annotations. Similar to the simulation

experiments, we report nDCG and ERR for all models.

6 RESULTS AND ANALYSIS
In this section, we discuss the results of our proposed model-based

unbiased learning to rank method with existing approaches using

both simulated and real-world experiments. In general, we expect

the experimental results to answer the following research questions:

• RQ1: Can MULTR outperform state-of-the-art unbiased learning

to rank methods?

• RQ2: What influence do variant designs have on MULTR?

• RQ3: How does the sample number of unobserved ranked lists

influence the performance of MULTR?

• RQ4: How does MULTR perform on real click logs?

5
http://www.thuir.cn/data-tiangong-ultr/

6
https://www.sogou.com/

6.1 Performance Comparison (RQ1)
To answer RQ1, we compare MULTR with other unbiased learning-

to-rank algorithms in the simulation experiments. Table 1 sum-

marizes the performance of different unbiased learning to rank

algorithms under various click situations. We find that:

• Our model-based unbiased learning to rank achieves the best

performance among all the state-of-the-art methods in terms

of nDCG and ERR, which indicates our model is robust when

propensity cannot be accurately estimated.

• Reducing variance can enhance performance on unbiased learn-

ing to rank. As MULTR shares the same method with DLA in

estimating propensity, the improvements over DLA demonstrate

the necessity of handling variance in IPW-based methods.

• The naive method may achieve better performance than some

unbiased learning to rank methods when clicks are generated by

a cascade model. One explanation is that documents displayed

at a lower rank have a higher opportunity to be examined; thus

they receive more clicks, which alleviates the bias in click data.

This observation confirms that a mismatch between propensity

estimation and real bias could lead to performance even worse

than raw click data.

• The oracle model with human annotation consistently achieves

the best performance. It implies that there is still room to improve

in unbiased learning to rank methods.

6.2 Ablation Study (RQ2)
MULTR has specific design features, including a context-aware user

simulator and a doubly robust loss function to train rankers. To

demonstrate their effectiveness, we analyze their respective impacts

on the model’s performance via ablation study. The experimental

results of its two variants on two datasets are summarized in Table 1.

We analyze their respective effects as follows.

(1) Rand-MULTR: When we replace the well-trained user sim-

ulator with one from random initialization, the performance of

Rand-MULTR significantly degrades. This observation verifies the

necessity of an accurate user simulator for the doubly robust esti-

mator learning process: when the user simulator has a high bias

due to inaccurate click imputations, it will mislead the rankers.

(2) EIB-MULTR: When we use the same treatments for real clicks

from observations and pseudo clicks from user simulators, the

performance of EIB-MULTR suffers a significant decrease. This

suggests, naturally, that there is a discrepancy between real clicks

and pseudo clicks. The doubly robust approach effectively leverages

pseudo clicks and improves the performance of rankers.

6.3 Parameter Sensitivity Study (RQ3)
As we have explained previously, when 𝑁 is the maximum number

of documents that can be shown to users, there will be 𝑁 ! candi-

date ranked lists, which could be large. Therefore, we decrease the

number of samples for unobserved ranked lists in practice. To inves-

tigate its impact in MULTR, we vary the sample size for unobserved

ranked lists in the range of {0, 2, 4, 8, 16, 24, 32}. Figure 3 shows the
NDCG@K and ERR@K for MULTR with respect to different sample

sizes on both datasets.

First, MULTR with sample number 0, i.e.,we merely sample from

unobserved candidate rank lists, derives the worst performance.
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Table 1: A comparison of the overall performanceMULTR and competingmethods on Yahoo! and Istella-S datasets. “∗” indicates
a statistically significant improvement over the best baseline.

Methods

Yahoo! LETOR Istella-S

NDCG@K ERR@K NDCG@K ERR@K

K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10

Oracle 0.689 0.691 0.714 0.761 0.350 0.428 0.449 0.465 0.671 0.641 0.667 0.729 0.598 0.709 0.725 0.731

MULTR 0.681∗ 0.682∗ 0.705∗ 0.751∗ 0.348∗ 0.426∗ 0.447∗ 0.463∗ 0.664∗ 0.627∗ 0.648∗ 0.704∗ 0.594∗ 0.701∗ 0.717∗ 0.724∗

DLA 0.669 0.671 0.694 0.743 0.346 0.422 0.444 0.460 0.639 0.607 0.629 0.683 0.572 0.683 0.700 0.707

REM 0.636 0.638 0.661 0.711 0.336 0.410 0.432 0.448 0.590 0.551 0.568 0.618 0.528 0.640 0.659 0.669

PairD 0.653 0.662 0.687 0.738 0.333 0.413 0.436 0.451 0.604 0.586 0.617 0.687 0.537 0.661 0.680 0.688

PAL 0.645 0.660 0.683 0.735 0.328 0.410 0.432 0.448 0.620 0.595 0.623 0.691 0.553 0.672 0.690 0.698

Naive 0.651 0.660 0.685 0.737 0.332 0.411 0.434 0.450 0.613 0.592 0.622 0.690 0.546 0.667 0.686 0.694

Rand-MULTR 0.667 0.670 0.693 0.743 0.341 0.419 0.441 0.457 0.633 0.604 0.631 0.693 0.564 0.681 0.698 0.706

EIB-MULTR 0.674 0.678 0.700 0.749 0.346 0.423 0.445 0.460 0.653 0.611 0.631 0.684 0.585 0.690 0.707 0.714
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Figure 3: Study of effect of sample size for unobserved ranked lists on Yahoo! LETOR and Istella-S.
This observation shows that the well-trained user simulator enables

the unobserved rank lists to provide rankers with useful informa-

tion. Second, when the sampling number increases from 0 to 8,

the performance at all levels increases. This shows that sampling

more unobserved rank lists can bring more beneficial information

to rankers. Third, overly large sampling does not show a significant

improvement, even though we should sample all unobserved rank

lists in theory. We even observe that NDCG starts to decrease when

the sample number increases from 8 to 32. One possible reason

could be that the observed rank lists are typically sparse in practice,

meaning that we cannot ensure that the rankers obtain sufficient

information. For both datasets, the optimal sampling size is 8. In

conclusion, setting the sampling size too conservatively or too ag-

gressively may adversely affect the ranking performance, and too

aggressively also brings in unnecessary computational cost.

6.4 Real Data Study (RQ4)
As we have demonstrated that the proposed MULTR works well

in the simulation study, we would further investigate how it per-

forms on real click logs recorded by the search engine. We compare

MULTR with existing unbiased learning to rank algorithms on real

data. The experimental results are summarized in Table 2. From the

results, we can see that MULTR outperforms state-of-the-art unbi-

ased learning to rank algorithms. This shows that the user simulator

in MULTR provides reliable pseudo-clicks for the ranker,which en-

hances the ranking performance. In addition, propensity models in

both MULTR and baseline methods are developed upon position-

based examination assumption, which makes accurate propensity

estimation infeasible on real data. Therefore, they are more likely to

suffer from the high variance problem. The superior performance

of MULTR over baseline methods verifies the necessity of reducing

the variance via doubly-robust learning.

Table 2: Comparison of MULTR and competing methods on
Tiangong-ULTR.

Methods

NDCG@K ERR@K

K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10

MULTR 0.483 0.465 0.469 0.476 0.448 0.578 0.606 0.618
DLA 0.472 0.443 0.425 0.443 0.443 0.571 0.594 0.610

REM 0.450 0.455 0.457 0.476 0.422 0.566 0.594 0.606

PairD 0.388 0.371 0.369 0.383 0.364 0.494 0.522 0.542

PAL 0.365 0.384 0.395 0.413 0.342 0.483 0.516 0.533

Naive 0.412 0.413 0.408 0.411 0.386 0.528 0.556 0.570

7 CONCLUSION
In this work, we propose MULTR, a model-based unbiased learning

to rank framework. We first design a context-aware user simulator

to produce labels for unobserved ranked lists as supervision sig-

nals, which addressed data sparsity for long-tail queries. However,

the natural discrepancy between pseudo and actual clicks could

mislead the ranking models, as pseudo data cannot be as accurate

as real users. Therefore, we resort to DR approaches. In particular,

we take the observation of the ranked lists as the treatment, which

addresses the treatment unobservation when naively applying ex-

isting DR methods. Afterward, we take the pseudo-click data as

data imputation, and propose a doubly-robust learning algorithm

to obtain unbiased ranking models. Theoretical analysis reveals

that our method is more robust than existing methods. Extensive

experiments on benchmark datasets, including simulated datasets

and real click logs, demonstrate that the proposed model-based

method consistently outperforms state-of-the-art methods.

8
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