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ABSTRACT

Conformational flexibility is an underlying cause of error in
all comparisons of protein structure. Using flexible repre-
sentations, some comparison algorithms can identify subtle
functional similarities among distantly related proteins even
when they exhibit different backbone conformations. The
same techniques are not designed to identify subtle varia-
tions among closely related proteins that might cause dif-
ferences in specificity. In such cases, molecular flexibility
obscures structural details that influence the specific recog-
nition of similar but non-identical ligands.
To enhance the analysis of ligand binding specificity, this

paper presents FAVA (Flexible Aggregate Volumetric Anal-
ysis), a conformationally robust tool for comparing similar
binding cavities with different binding preferences. FAVA
examines a large number of conformational samples to char-
acterize local flexibility using Constructive Solid Geometry.
Using molecular dynamics simulations as a source for con-
formational samples, we used FAVA to analyze a nonredun-
dant sample of serine protease and enolase structures. Dif-
ferent snapshots from the same proteins exhibited signifi-
cant variations in binding cavity shape. Nonetheless, anal-
ysis with FAVA revealed subfamilies with different binding
preferences. FAVA also identified amino acids associated
with differences in binding preferences, predicting estab-
lished experimental results. These results illustrate a new
approach to flexible comparison that uses sampled confor-
mational data. It reveals that detailed comparisons of very
similar proteins, such as those within small ligand binding
cavities, are possible even in the presence of conformational
flexibility. Identifying influences on specificity in this man-
ner points to new applications of protein engineering and
drug design.
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1. INTRODUCTION
Algorithms for comparing protein structures widely em-

ploy the simplification that proteins are rigid. Many com-
parisons achieve considerable efficiency because rigid trans-
formations move atoms from different structures into super-
position without a lengthy analysis of alternative conforma-
tions. This simplicity permits many techniques to rapidly
align backbone carbons [28, 29, 34, 40, 31, 9, 7], distance ma-
trices [20], or geometric graphs [32, 15, 45] to discover remote
homologs and proteins with similar functional sites. The
rigidity simplification is also essential for a different class of
comparison methods that seek to distinguish between closely
related proteins with different ligand binding preferences [13,
10, 7]. Without rigidity as a starting point, the comparative
structure-based analysis of function and specificity would be
considerably more difficult.

Comparisons that tolerate greater conformational general-
ity apply specialized flexible representations. A recent class
of algorithms employ hinges [38, 17], graph structures [47,
22], fragments [26], and dynamic programming [44, 6, 24]
to represent proteins as collections of rigid components with
flexible linkers. Most approaches reported to date focus on
discovering remote homologs that might be overlooked be-
cause of different conformations. But conformational flexi-
bility also hinders the comparative analysis of closely related
proteins with different ligand binding preferences. In such
cases, the proteins considered may be very closely related,
but side chain or backbone flexibility may obscure similari-
ties or variations at ligand binding cavities that affect speci-
ficity. To address these issues, this paper focuses on the
flexible comparison of ligand binding cavities, based on a
survey of sampled conformations, to predict differences in
specificity in spite of flexible variation.

The problem we are specifically addressing is the case
where conformational samples of two or more proteins are
available, and it is of interest to identify conserved or vary-
ing regions in their binding cavities that are preserved over
many, but not necessarily all samples. Regions inside cavi-
ties that are solvent accessible in many samples of all pro-
teins (conserved frequent regions) might accommodate a mo-
lecular fragment that is common to substrates acted on by
all proteins (Fig. 1j). Alternatively, cavity regions that
are solvent accessible in many samples of some proteins but
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Figure 1: An overview of the FAVA method. A)
CSG operations used by FAVA, with input regions
(green, dotted outline) and output regions (solid
outline). B,C) Input proteins X (blue) and Y
(green) with ligand binding sites x (light green) and
y (yellow). D,E) x and y in different conforma-
tional samples. F,G) All conformational samples of
x (transparent green) and y (transparent yellow),
superposed, with black outlines. Considerable vari-
ations in cavity shape are apparent. H) Using CSG,
the intersection of all cavity regions in both pro-
teins is too small to accommodate ligands. They
are also identical, revealing little about different
binding preferences. I) Using CSG, FAVA approxi-
mates frequent regions, where every point is inside
at least two thirds of all samples of x (green) and
y (yellow). J) The intersection of frequent regions
indicates regions that might accommodate similar
molecular fragments (red). K) The difference be-
tween frequent regions (yellow) indicates a region
where Y might often accommodate a ligand that X
cannot, causing a difference in specificity.

not often accessible in others (unconserved frequent regions),
might cause those proteins to prefer different substrates (Fig.
1k). We will identify regions like these using the new method
FAVA (Flexible Aggregate Volumetric Analysis).
Our approach with FAVA is to represent the three dimen-

sional region that is frequently, but not universally, within
the ligand binding cavity of a protein. We call this region
the frequent region (Fig. 1i) because it ignores the geome-
try of unusual conformations that can obfuscate the region
that is typically solvent accessible in the cavity. FAVA com-
putes frequent regions using operations from Constructive
Solid Geometry (CSG) [10], such as union, intersection and
difference (Fig. 1a). The same operations enable compar-
isons of frequent regions: intersections produce conserved
frequent regions, and differences produce unconserved fre-

quent regions. Finally, CSG operations permit the identifi-
cation of amino acids that frequently alter cavity shape, and
thus have a steric influence on specificity. Together, these
techniques create a conformationally general approach for
examining closely related proteins in search of influences on
binding specificity.

Sampled conformations, as a flexible representation of pro-
tein structures explored first in this paper, exhibit novel
advantages. First, all-atom samples provide a more gen-
eral representation of molecular movement than rigid com-
ponents. In every sample, the positions of every atom can be
used to produce a detailed representation of ligand binding
sites for aggregate comparisons, whereas rigid components
and flexible linkers can create uncertainties in the positions
of some atoms. Second, samples generated by molecular dy-
namics simulations, which we use in this work, are subject
to the constraints imposed by biophysical energy functions.
As a result, every sample represents a semi-realistic confor-
mation, whereas existing flexible methods cannot make such
guarantees. These advantages are acquired in exchange for
the computational cost of simulation and of processing far
more structural data for a comparison between a few pro-
teins. For an analysis of ligand binding preferences where
long timescale movements do not play a major role in bind-
ing, conformational samples may be an effective flexible rep-
resentation for structure comparison.

We demonstrate the capabilities of FAVA on subfami-
lies of two protein superfamilies: the serine proteases and
the enolases. Conformational samples were selected from
100 nanosecond simulations of 19 sequentially nonredun-
dant representative structures, and cavities from each sam-
ple were analyzed with FAVA. In many cases, FAVA sensi-
tively classified cavities into subfamilies with different bind-
ing preferences, despite the fact that many conformational
samples exhibited degenerate or misleadingly shaped cav-
ities. We also observed that FAVA was able to correctly
identify amino acids that create steric influences on ligand
binding in spite of sidechain flexibility. These capabilities
point to novel applications in protein engineering and the
characterization of ligand binding specificity in ways that
mitigate inaccuracies from conformational noise.

One such application, for example, is in support of struc-
tural studies that seek to discover the elements of protein
structures that cause related proteins to exhibit different
binding preferences. In such cases, the flexibility of protein
backbones and sidechains can obscure the underlying mech-
anisms in one binding site that stabilize ligands that are not
accommodated in others. FAVA could be applied to identify
the cavity regions or amino acids that influence specificity,
potentially reducing the time consuming and expensive ex-
perimentation necessary to isolate them otherwise. FAVA
can thus assist in the discovery of mutations that cause drug
resistance, alter signal transduction, and otherwise reorga-
nize molecular interactions in biological systems.

2. METHODS
Formally, we define a frequent region as the region in space

that is solvent accessible in more than k/N samples, where
k, the overlap threshold, is provided as input, and N is the
number of samples. When 0 < k/N < 1, frequent regions
represent cavity regions that are solvent accessible in several
conformational samples without being restricted to unusual
conformations that occur less frequently than k/N . FAVA is
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Figure 2: Generating frequent regions. A) Conformational samples A0, A1, . . . AN of protein A, shown as
molecular surfaces (teal, black outlines). B) Ligand l (red dots) bound to protein A (green). C) Aligning
each Ai to A permits l to mark the ligand binding site in Ai. D) Spheres that define the neighborhood around
the atoms of l (transparent blue, black outlines). E) CSG union of the spheres, Sl (blue). F) CSG difference
A′

i that removes the region within the molecular surface of each Ai (dotted outline) from copies of Sl. G)
Envelope surfaces (yellow, black lines) and molecular surfaces (dotted lines) of all Ai. H) Envelope surfaces
aligned. Outlines of all envelopes are shown in black. I) The global envelope region, E(A), generated with
CSG intersections (yellow, heavy black outline). J) CSG intersection between each A′

i, shown in blue, and
E(A) (transparent yellow, black outline). K) Cavities ai defined on each conformational sample. L) Cavity
borders superposed (black outlines). M) frequent region that overlaps at least 3 cavities (red). N) CSG
intersections between several pairs of ai. O) The CSG union of intersections in N: α⋆

k, the approximated
frequent region (teal) overlapping at least 2 cavities.

completely agnostic as to the source of the conformational
samples, which can be drawn from experimental or com-
putational data, such as structural restraints from NMR,
molecular dynamics trajectories, and others. Below, we de-
scribe how we compute frequent regions using a series of
CSG operations, but we leave the description of individual
CSG operations (union, ∪, intersection, ∩, and difference,
−) to earlier publications [10]. We then describe how we
compare frequent regions from multiple proteins to identify
conserved frequent and unconserved frequent regions. Fi-
nally, we explain how we use solid representations to char-
acterize the flexible geometry of individual amino acids and
their steric impingement on nearby binding cavities.

2.1 Generating frequent regions
As input, we require the overlap threshold k, N confor-

mational samples of a protein structure A, and a ligand l
bound to A (Fig. 2b). We refer to the conformational sam-
ples as A0, A1, . . . AN . Samples can be provided from any
source that specifies the position of every atom, with the
expectation that sufficient samples are provided to describe
short timescale motion near the binding cavity. From this
data, generating a frequent region occurs abstractly in two
steps, where we first define the shape of the ligand binding

cavity in each conformational sample, and then use those
cavities to determine the shape of the frequent region.

First, every sample Ai is superposed onto A by minimiz-
ing the root mean squared distance between identical amino
acids [43]. Next, in every Ai, we use GRASP2 [31] to gen-
erate the molecular surface m(Ai) (Fig. 2a). This surface
is defined by the classical rolling probe algorithm [11] with

the standard probe size of 1.4Å. Since every conformational
sample is superposed onto A, we use l to locate the ligand
binding site in every superposed m(Ai) (Fig. 2c).

At every atom in l, we center a sphere with radius 5
Å (Fig. 2d). The CSG union of the spheres defines a neigh-
borhood, Sl (Fig. 2e), that defines the vicinity of the ligand
binding cavity in every sample. Making a copy of Sl for ev-
ery Ai, we compute a CSG difference A′

i that removes the
molecular surface of each Ai from the copy of Sl, revealing
part of the cavity (Fig. 2f).

Next, we generate an envelope surface, e(Ai), for every
sample. The envelope surface is also generated with GRASP2,
except that the probe radius is changed to 5.0Å (Fig. 2g).

Because the larger probe is 10 Å in diameter, it does not
roll into smaller clefts and cavities, making e(Ai) a logi-
cal exterior boundary between the cavity and the solvent.
Since e(Ai) can vary significantly between different confor-
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Figure 3: A comparison of frequent regions. A,B)
Frequent regions α⋆

k (teal) and β⋆
k (light blue). C)

Conserved frequent region, FC(A,B) (yellow). D,E)
unconserved frequent regions (teal, light blue).

mational samples, especially because of solvent-facing side
chains (Fig. 2g) unrelated to cavity shape, we mitigate these
differences by computing their intersection (Fig. 2h,i):

E(A) =
⋂

∀i

e(Ai) (1)

We refer to E(A) as the global envelope region. Because
our samples are generated at a medium timescale, larger
backbone motions are not a major factor in the shape of
E(A). Next, we compute the CSG intersection of A′

i and
E(A) (Fig. 2j). The result is the binding cavity in every
conformational sample, ai = (Sl −m(Ai))∩E(A) (Fig. 2k).
We use the sampled cavities ai together to approximate

the frequent region αk. Before we approximate this region,
it is critical to recognize first that computing αk explicitly,
on a protein with many sampled conformations, is compu-
tationally impractical for many k. Consider, for example,
the simple case of k = 30. The region α30 includes the
CSG intersection of a0, a1, a2, . . . , a30, because any point in-
side all of these regions is inside at least 30 ai, and thus
inside α30. The same is true for any thirty member subset
of {a0, a1, . . . , aN}, so α30 is the union of all intersections of
thirty distinct sample cavities:

(

N

30

)

intersections. Where N
is several hundred samples and k is nontrivial, the exponen-
tial size of the calculation is clearly impractical, given the
number of combinations.
FAVA approximates αk by randomly selecting subsets of

size k. We call the approximated result α⋆
k, and compute

it in the following manner: Given any k, we randomly se-
lect 500 distinct subsets of {a0, a1, . . . , aN} of size k, and
compute their CSG intersection (a smaller, diagrammatic
random selection is shown in Fig. 2n). Finally, we com-
pute the CSG union of the resulting intersections, α⋆

k (Fig.
2o). While random selections of different sizes were tested
(see Supplementary materials, Section 1), frequent regions
based on different random subsets of 500 had consistent vol-
umes. We deemed 500 samples to be sufficient for accurate
representations.

2.2 Comparing frequent regions
Given two proteins A and B, we use their frequent re-

gions α⋆
k and β⋆

k , to evaluate the similarities and differences
of their ligand binding sites over time (Fig. 3). These calcu-
lations are only performed once both structures and all con-
formational samples are structurally aligned, to avoid errors
from poor superposition (e.g. poor registration). Specifi-
cally, B is structurally aligned onto A using ska [46]. Next,
every snapshot Ai is superposed onto A and every Bi is su-
perposed onto B respectively, by minimizing the root mean
squared distance between identical amino acids [43]. If more

than two proteins were being considered, they would also be
aligned to A first. Ultimately, every snapshot is aligned to
A and B, which were first aligned onto each other.

After all superpositions are performed and frequent re-
gions α⋆

k and β⋆
k are calculated, we use the frequent regions

to compute conserved frequent regions. The conserved fre-
quent region between the samples of A and B is FC(A,B) =
α⋆
k∩β⋆

k (Fig. 3c). Because FC(A,B) is the region conserved
between two frequent regions, it approximates a binding cav-
ity region that is solvent accessible in both proteins in more
than k conformational samples. We measure the volumet-
ric distance, D(A,B), between the frequent regions of two
proteins using the following expression,

D(A,B) = 1−
|FC(A,B)|

|α⋆
k ∪ β⋆

k |
, (2)

where the expression |x| denotes the volume within a solid
region x. We measure volumes using the Surveyor’s formula
[35], which we described earlier [10].

A comparison of cavities ai and bj from individual confor-
mational samples of two different proteins is also possible.
We evaluate their volumetric distance as:

d(ai, bj) = 1−
|ai ∩ bj |

|ai ∪ bj |
(3)

2.3 Frequently influential amino acids
Given two proteinsA andB, if the cavity ofA is frequently

different from B, then some set of amino acids is responsible
for making these cavities different on a frequent basis. We
identify such amino acids with FAVA.

At the level of individual samples, consider two samples
of A and B, called Ai and Bj , and an amino acid r in A.
We say that r makes the cavity ai different from the cavity
bj if the intersection of the molecular surface of r in Ai,
called m(ri), has a nonempty intersection with bj . If so,
then m(ri) occupies a region that is not solvent accessible
in ai but solvent accessible in bj . Between these two samples
ri is thus one cause for the difference between ai and bj .

To evaluate how frequently r, an amino acid of A, creates
differences between the cavities of A and B, we compute
INTr(A,B), the median volume of intersection |m(ri)∩ bj |,
for all pairs of samples Ai and Bj . When INTr(A,B) is
large, then r frequently makes the cavity of A different from
B; small values indicate that it rarely does.

2.4 Data set construction
To demonstrate that FAVA can separate proteins with

different binding preferences, we selected two superfamilies
based on established results documenting the existence of
distinct families in each superfamily with different binding
preferences (Figure 2.4). Within the serine proteases, we se-
lected the trypsin, chymotrypsin, and elastase subfamilies.
In the enolase superfamily, we selected the enolase, mande-
late racemase, and muconate lactonizing enzyme families.

Serine proteases selectively cleave peptide bonds using a
nucleophilic serine residue. Preferences for hydrolyzing a
specific scissile bond are achieved by recognizing amino acids
on both sides of the bond, most notably the P1 residue im-
mediately before the bond. The S1 specificity pocket, which
recognizes P1, is large and hydrophobic in chymotrypsins
and prefers to bind large hydrophobic residues [25]. In trypsins,
S1 stabilizes positively charged amino acids, complementing
its notable negative charge [16]. Enolases exhibit a small
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Serine Protease Superfamily:
Chymotrypsins: 1ex3
Elastases: 1b0e, 1elt
Trypsins: 1a0j, 1ane, 1aq7, 1bzx, 1fn8, 1h4w, 1trn,
2eek, 2f91
Enolase Superfamily:
Enolases: 1iyx, 1ebh, 1te6, 3otr
Mandelate Racemase: 1mdr, 2ox4
Muconate Lactonizing Enzyme: 2pgw

Figure 4: PDB codes of structures used.

hydrophobic S1 cavity that binds small hydrophobic amino
acids [4].
Members of the enolase superfamily exhibit a TIM-barrel

fold and an N-terminal “capping domain” [33]. Using amino
acids at the C-terminal ends of beta sheets in the TIM-
barrel, superfamily members achieve a range of different
functions that generally abstract a proton from a carbon
adjacent to a carboxylic acid [1]. The enolase family cat-
alyzes the dehydration of 2-phospho-D-glycerate to phospho-
enolpyruvate [23], mandelate racemases convert (R)-man-
delate to and from (S)-mandelate [36], and muconate lac-
tonizing enzyme catalyze the reciprocal cycloisomerization
of cis,cis-muconate and muconolactone.
Selection. Serine protease and enolase structures were se-
lected from the protein data bank (PDB) [5] on 6.21.2011.
Based on enzyme classifications (EC), the PDB contained
676 serine proteases and 66 enolases in the families selected
for our data set. From these structures, mutants, struc-
tures with disordered regions, and enolases with closed or
partially closed capping domains were removed. Next, one
structure from any pair of structures with greater than 90%
sequence identity was removed, with a preference for keep-
ing structures associated with publications. Technical prob-
lems with simulation prevented proteins 8gch, 1aks, and
2zad from being added. From the 12 serine protease and
7 enolase structures that remained, ions, waters, and other
non-protein atoms were removed. Hydrogens, unavailable
in some structures, were also removed, but non-canonical
amino acids (e.g. selenomethionines) were not removed.
Alignment. For the all-pairs comparison of frequent re-
gions, we superposed all structures and conformational sam-
ples in each superfamily. All serine proteases and their sam-
ples were superposed onto 8gch, a chymotrypsin, and all
enolases and enolase samples were superposed onto 1mdr.
These structures were selected because of the presence of a
bound ligand, which we used to define the binding cavity.

2.5 Protein structure simulation
For each structure in the data set, conformational samples

were computed using GROMACS 4.5.4 [19]. To prepare for
the simulation, a cubic waterbox is created, and the pro-
tein molecule is centered in the box. The box was popu-
lated using SPC/E, an equilibrated 3-point solvent model
[3]. Fully periodic boundary conditions were used through-
out the equilibration and simulation steps. The waterbox
size was set to contain the solute protein structure with a
1.0 nanometer space between the protein and the nearest
point on the boundary plane. Charge balanced sodium and
potassium ions were then added to the solvent at a low con-
centration (< 0.1% salinity).
Energy minimization using a steepest descent algorithm

is then performed for the entire system. Isothermal-Isobaric

(NPT) equilibration is performed in four 250 picosecond
steps to allow the solvent to equilibrate temperature and
pressure prior to the primary simulation. Starting at 1000
kJ/(mol∗nm), each step reduced the position restraint force
by 250 kJ/(mol ∗ nm) over the 1 nanosecond minimization
period. Backbone position restraints were released for the
primary NPT simulation.

System energies were generated at the start of the equili-
bration phase. Initial temperature was 300 Kelvin and ini-
tial pressure was 1 bar. The Nosé-Hoover thermostat [3] was
used for temperature coupling. The P-LINCS [18] bond con-
straint algorithm was used to update bonds. Electrostatic
interaction energies were calculated by particle mesh Ewald
summation (PME) [19]. The Parrinello-Rahman algorithm
was used for pressure coupling [30, 27]. All temperature and
pressure scaling was performed isotropically.

Full MD simulation is started using the atomic positions
and velocities of the final equilibration state. The total sim-
ulated duration of the molecular dynamics simulation was
100 nanoseconds, with 1 femtosecond steps. P-LINCS and
PME were chosen for their parallel efficiency. OpenMPI was
used for node and inter-process communication. Simulations
were run on multiple nodes with 16 cores each, with PME
distribution automatically selected by GROMACS.

After simulations were completed, the trajectory file was
converted to a simple Protein Data Bank format with atom
positions only. The waterbox was removed and at each
timestep, the protein was rigidly superposed to the original
orientation. From these timesteps, we selected 600 confor-
mational samples at uniform intervals for our data set, and
then computed frequent regions.

2.6 Clustering frequent regions by volumetric
distance

We hypothesize that similarities and differences between
frequent regions can be used to classify samples of ligand
binding cavities based on their binding preferences. To eval-
uate this hypothesis, we generated frequent regions with an
overlap threshold of 50, and measured volumetric distance
between all pairs of frequent regions in the same superfamily.
We then used the neighbor tool from Phylip [14] to perform
UPGMA clustering (Unweighted Pair Group Method with
Arithmetic mean) [42] based on volumetric distance.

Since frequent regions avoid inaccuracies that may be de-
rived from individual conformational samples, we compared
frequent region clustering against 10 clusterings of individual
binding cavities from conformational samples selected ran-
domly from each simulation. Again, we used Phylip to per-
form UPGMA clustering on volumetric distances between
samples. All trees were visualized using Newick Utilities
version 1.6 [21].

2.7 Comparing FAVA against statistical
models for rigid comparison

We compared FAVA against VASP-S [8], a statistical anal-
ysis of protein structures that is trained on original struc-
tures without sampled conformations. VASP-S can distin-
guish variations in original binding cavity shape that are
large enough to create different binding preferences from
variations that are too small to affect specificity [8]. We
hypothesized that the variations we observed between dif-
ferent conformational samples of the same binding cavities
were so large that VASP-S would incorrectly classify them
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Figure 5: Conformational samples of the ligand
binding cavity in yeast enolase (pdb: 1ebh). A)
The position of the cavity (teal) within the tertiary
structure of enolase (blue cartoon). B) The ligand
binding cavity in the original crystal structure. C-F)
Binding cavities from other conformational samples
of yeast enolase. All panels illustrate the cavity from
the same perspective, generated with the global en-
velope surface, as described earlier.

as having different binding preferences. These incorrect pre-
dictions would demonstrate the importance and utility of
a technique like FAVA in enabling accurate comparisons of
binding cavities despite the presence of conformational noise.

2.8 Implementation Details
FAVA is a high-level procedure that uses CSG operations

from VASP [10]. Computation time was proportional to the
volume of the operands: Intersections between amino acids
and binding cavities required fractional seconds; operations
on molecular surfaces were approximately 10 seconds. Simu-
lations and CSG operations were run on AMD Opteron 6128
processors with 2 gigabytes of memory per core. Figure 5
was generated with custom software and Pymol [12].

3. RESULTS

3.1 Ligand binding cavities vary considerably
over time

Figure 5 illustrates changes in the ligand binding cavity
of yeast enolase, as sampled from a 100 nanosecond simula-
tion. Sidechain motions, and smaller backbone motions cre-
ated significant variations that enlarged, shrank, and even
separated regions of the cavity. Relative to other proteins in
the dataset, the shape of the binding cavity of yeast enolase
was not the most variable nor was it the most conserved.
Binding cavities in some proteins, such as elastase, varied
much more, while others varied less.
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Figure 6: Volume of cavity sizes observed in confor-
mational samples of serine proteases (A) and eno-
lases (B), shown in red bars. Lines plot the quantity
and spatial volume of cavities sampled for specific
families.

In Figure 6, we plot the volumes of binding cavities in
conformational samples of the entire dataset. Among the
serine proteases, samples of trypsin cavities ranged from 248
Å3 to 692 Å3, chymotrypsin cavities ranged from 276 Å3 to
568 Å3, and elastase cavities ranged from 126 Å3 to 552 Å3,
despite the general principle that chymotrypsin S1 cavities
are larger to accommodate aromatic sidechains, and elastase
cavities are smaller to accommodate amino acids like alanine
or valine. Similar variations can be seen amongst the ligand
binding cavities of the enolase superfamily. Enolase cavities
ranged from 90 Å3 to 507 Å3, mandelate racemases ranged
from 225 Å3 to 673 Å3, and cavities sampled from muconate
lactonizing enzyme were between 89 Å3 and 343 Å3. This
degree of structural variation demonstrates the fundamental
difficulty of accurately comparing binding site geometry in
the presence of flexibility.

Statistical modeling with a rigid model for classification
does not add precision to the structural comparison of flex-
ible binding sites. We used VASP-S [8] to classify all CSG
differences between pairs of cavities sampled from the same
protein. Over 65 percent of CSG differences were incorrectly
classified by VASP-S as being so large as to be consistent
with different binding preferences. Based on the frequency
of incorrect classifications, a comparison of individual struc-
tures has a high probability of being inaccurate.

From these observations, it is clear that the flexibility of
serine proteases and enolases creates significant variations
between different samples of binding cavities from the same
protein. Because of the variability in the data, it is also clear
that comparisons of individual conformational samples can
point to erroneous similarities and variations that relate to
that sample alone and not a larger trend. Thus, a tech-
nique like FAVA, which incorporates flexibility from confor-
mational samples into the analysis, is essential for accurate
general comparison.

3.2 Evaluating frequent region approximation
FAVA approximates frequent regions using random selec-

tions of conformational samples. Actual frequent regions
cannot be computed on realistic data because of their com-
binatorial nature. This situation prevents a direct evalua-
tion of the accuracy of our approximation technique, but it
does not prevent us from evaluating the geometric consis-
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Figure 7: Volumes of frequent regions in serine pro-
tease (A) and enolase (B) cavities, computed at
varying thresholds.

tency of the approximations generated. Specifically, when
considering conformational samples from the same protein,
frequent regions with higher overlap thresholds must always
have equal or smaller volume than frequent regions with
lower overlap thresholds. This fact holds logically because
regions where k cavities overlap are also, by definition, a
region where fewer than k cavities overlap.
We evaluated the degree to which this rule holds for our

approximation by computing the volumes of frequent regions
at a wide range of overlap thresholds for all proteins in our
data set. Figure 7 indicates that volumes of frequent regions
are almost monotonically descending as overlap thresholds
increase. They also indicate that frequent regions from some
proteins remain consistently larger than others, suggesting
fewer conformational changes that interfere with the shape
of the binding cavity. The only inconsistency appears to be
in a small increase in the volume of the approximated fre-
quent regions of crayfish trypsin (pdb: 2f91), at an overlap
threshold of 175. It is also notable, though not inconsis-
tent, that volumes of frequent regions from sampled cavities
of Atlantic salmon elastase (pdb: 1elt) become zero above
overlap thresholds of 25, indicating that conformational flex-
ibility radically alters the shape of that cavity. This effect is
shown in detail in Supplementary meterials Section 4. Over-
all, these observations suggest that FAVA is generating sta-
ble, logically consistent approximations of frequent regions.

3.3 Clustering frequent regions
Figure 8a illustrates a UPGMA clustering of serine pro-

tease frequent regions based on volumetric distance. Trypsins
were correctly clustered away from other serine proteases.
Elastases were also separated, but Atlantic salmon elastase
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Figure 8: Comparison of clusterings of frequent re-
gions and of individual cavities from serine pro-
tease structures. A) Clustering of frequent regions.
B) Clustering of cavities from individual conforma-
tional samples. In both trees, topology is calculated
based on volumetric distance. Coloring, which is in-
dependent of clustering topology, indicates the lig-
and binding preference of the protein.

was placed as an outlier because it has zero volume. Chy-
motrypsin was correctly separated from both trypsins and
elastases. Figure 8b is an example of a UPGMA clustering
generated from randomly selected conformational samples
of each protein. We can see that one salmon elastase (pdb:
1elt) is classified as more similar to the trypsins than it is
to porcine elastase (pdb: 1b0e), and that 1b0e is more sim-
ilar to the chymotrypsin than anything else. This kind of
miscategorization was typical of other clusteriings of cavities
from randomly selected conformational samples.

A UPGMA clustering of frequent regions derived from
enolase binding cavities is shown in Figure 9a. Frequent re-
gions from enolase and muconate lactonizing enyzyme were
correctly separated, as were frequent regions from mandelate
racemase, except that the mandelate racemase from Pseu-
domonas putida (pdb: 1mdr) was clustered with yeast eno-
lase instead of with mandelate racemase from Zymomonas
mobilis (pdb: 2ox4). Clusterings of individual conforma-
tional samples of enolase cavities (e.g. Fig 9b) showed sim-
ilar errors. Overall, UPGMA clustering of frequent regions
in the serine proteases and enolases generally reflected sim-
ilarities and differences in specificity with equal or greater
accuracy than clusterings of individual conformational sam-
ples. This result demonstrates that a flexible representation
of binding cavities exhibits fewer classification errors caused
by conformational flexibility.

3.4 Influential amino acids
Differences in binding preferences between two proteins

can be caused by changes in the backbone and sidechain po-
sitions of nearby amino acids. To evaluate how accurately
FAVA can detect amino acids that create such changes, we
compute the median intersection volume INTr(A,B), for all
residues r in all elastase structures (A), and all non-elastase
serine protease cavities (B). For each conformational sam-
ple of each elastase residue and each serine protease cavity,
we also measured the minimum, 25th percentile, 75th per-
centile, and maximum volume of intersection.
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tures. A) Clustering of frequent regions. B) Clus-
tering of cavities from individual conformational
samples. In both trees, topology is calculated based
on volumetric distance. Coloring, which is inde-
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binding preference of the protein.

Most amino acids exhibited zero or very small intersection
with any serine protease cavity, including cavities from the
same protein, because the amino acid is distant from cavity.
Nonetheless, some amino acids do occasionally intersect with
binding cavities of the same protein. For example, among
amino acids of porcine pancreatic elastase (pdb: 1b0e), the
amino acid that most intersects the binding cavity of 1b0e
is serine 195, the nucleophilic serine responsible for catalysis
in serine proteases [37]. It occupies an median of 5 Å3 inside
samples of binding cavities in 1b0e.
When considering intersections between elastase residues

and cavities from trypsins, different amino acids exhibited
much larger median volumes of intersection. As an exam-
ple, Figure 10 illustrates the degree of intersection between
amino acids of porcine elastase (pdb: 1b0e) and cavities
from conformational samples of salmon trypsin (pdb: 1bzx).
Samples of valine 216 exhibited a median intersection vol-
ume of 45 Å3 with trypsin cavities. Threonine 226 exhibited
median intersection volumes of 29 Å3. These predictions
correspond to experimental findings: Both V216 and T226
are known to occupy parts of the S1 pocket (inset, Figure
10), shortening it accommodate small hydrophobic residues
[41]. We observed similar volumes of intersection between
elastase amino acids and other trypsin cavities as well.
Finally, we also measured median intersection volumes be-

tween elastase residues and the sampled cavities of bovine
chymotrypsinogen (pdb: 1ex3). Again, most amino acids
exhibited small or zero median volumes of intersection with
cavity samples. Serine 195, valine 216 and threonine 226 ex-
hibited larger median volumes, at 16 Å3, 20 Å3, and 15 Å3,
respectively. These results again illustrate that amino acids
that alter cavity geometry can be detected despite confor-
mational flexibility in both the amino acids and the cavity.

4. DISCUSSION
We have presented a new volumetric method for the geo-

metric comparison of protein binding cavities. FAVA imple-
ments a conformationally general approach to protein struc-
ture comparison that permits detailed comparisons of bind-
ing cavities despite considerable structural variations. This
capability is possible by leveraging a novel representation
of molecular flexibility that uses conformational samples to
represent variations in binding cavities.
We demonstrated FAVA on applications to the serine pro-

tease and enolase superfamilies. Ligand binding cavities
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in both superfamilies exhibited considerable conformational
flexibility. Despite this variability, FAVA was able to clas-
sify members of both superfamilies according to known dif-
ferences in ligand binding preferences. Classifications with
frequent regions were equal or superior to classifications that
would be generated if only a single conformation had to be
selected at random. Measuring the median volume of in-
tersection between sampled amino acids of one protein and
the sampled cavities of another, FAVA was also capable of
identifying amino acids that have an experimentally estab-
lished influence on binding specificity, despite the flexibility
of their side chains. These results demonstrate that struc-
tural comparisons of very similar proteins can reveal subtle
variations that cause differences in specificity in spite of con-
formational flexibility tha radically alters cavity shape.
As a tool for the flexible volumetric comparison of lig-

and binding cavities, FAVA has considerable potential for
wider applications. First, the precision of FAVA depends
on the quality of conformational samples that are provided.
As our capability to simulate molecular conformations ex-
pands [39, 2], a larger and more representative range of con-
formational samples can be provided to FAVA to achieve
superior comparison accuracy. Second, in many cases, ef-
forts to create proteins with engineered binding preferences
already involve the simulation of protein structures. FAVA
introduces an analysis of the resulting simulation data that
might yield more detailed comparisons of the binding sites
and point to specific amino acids that could be altered for a
desired binding preference. Finally, sampled representations
of protein structure could also be applied to the detection
of remote homologs. By using conformational variations to
match distantly related proteins in different conformations,
sampled representations might offer an important tools for
both function annotation and the analysis of ligand binding
specificity.
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