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ABSTRACT

Proteins are large flexible biological molecules and confor-
mational flexibility is a shared challenge in comparisons of
protein structure. Many tools have been developed to iden-
tify remote homologs in cases where backbone flexibilities
are considered. However, these methods require compar-
isons of structures of more than one proteins, and this is not
always available. To assist this process, this paper presents
an unsupervised method to predict amino acids that exhibit
substantial flexibility to change the binding site when only
one protein structure is available. Our method is applied on
conformational samples of sequentially nonredundant struc-
tures of the serine protease proteins. We observed that influ-
ential amino acids can be predicted with high specificities in
our whole data set. The results suggest our method as a tool
to detect significant side chain motions that affect binding
specificity of one protein in the presence of great flexibility.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and Genetics

General Terms
Algorithms, Design

1. INTRODUCTION

Discovering the elements of enzyme structures that govern
the selective recognition of substrates is a shared challenge
in many current studies. In computational studies, we have
demonstrated that comparisons of proteins with different
binding preferences can reveal differences in binding cavi-
ties that influence binding specificity. This approach can be
unsupervised when paired with statistical models [11, 10],
and more effective when combined with homology model-
ing, to reduce errors from conformational flexibility [19, 20].
Nonetheless, all these methods require comparisons of the
structures of two related proteins with different binding pref-

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal
classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned hgrstthan
ACM must be honored. Abstracting with credit is permitted. To copy otherwise-
publish, to post on servers or to redistribute to lists, requires priorfgppermission
and/or a fee. Request permissions from permissions@acm.org.

BCB’ 14, September 20-23, 2014, Newport Beach, CA, USA.

Copyright 2014 ACM 978-1-4503-2894-4/14/09 ...$15.00.
http://dx.doi.org/10.1145/2649387.2660837 .

erences, and in many emerging topics of study, such data are
not always available.

This paper examines a novel technique for predicting amino
acids that influence specificity when only a single structure
is available. Our approach is to identify amino acids with
side chains whose motion can dramatically alter the shape
of the binding cavity. Since these amino acids are in the
binding site, and thus unlikely to exhibit evolutionary vari-
ability, we hypothesize that their role may be to sterically
hinder certain ligands from binding.

Our method analyzes the motion of sets of amino acids
within the binding site called motifs, using Boolean oper-
ations from Constructive Solid Geometry (CSG) [13] (Fig-
ure la). Next, using Variational Bayesian Gaussian Mixture
Model (VBGMM)[8], a robust algorithm for data clustering,
we are able to find clusters of conformations (CCs) of the
same protein based on binding site similarity. The CCs rep-
resent structural flexibility in the binding cavity and the
clusters indicate binding sites in similar conformations. An
analysis of these clusters is able to detect influential amino
acids that differentiate CCs of the same protein.

We tested our method on sequentially nonredundant pro-
tein structures of the serine protease superfamily. On simu-
lations of these proteins, we identified clusters of binding site
conformations despite considerable flexibility. Our method
analyzed these clusters and detected 5 amino acids that cre-
ated structural variations of the binding cavity and influ-
enced binding preference of the serine proteases.

2. RELATED WORK

Conformational flexibility is a shared challenge in protein
structure comparison. Many comparisons are possible by
using rigid transformations to bring atoms from different
structures into superposition without considering alterna-
tive conformations. This simplicity enables protein struc-
ture comparisons via backbone positions [34, 36, 38, 41, 9,
12, 45], distance matrices [25], graphs [18, 39, 48] and ge-
ometric surfaces [40, 28, 17, 5, 6] to find similar functional
sites. However, without the assumption of rigidity, protein
structure analysis of function and binding preference would
face a much more general problem because all conformations
must then be considered.

In recent years, structure comparison algorithms have used
hinges [21, 44], graph structures [29, 50], fragments [32]
and dynamic programming [7, 30, 47] to represent protein
structures. These techniques use rigid structures with flex-
ible linkers. Most methods are designed to find remote ho-
mologs with similar folds that might be overlooked due to



different conformations. However, rigid substructures and
flexible linkers do not represent the small motions of side
chains inside binding cavities. Thus, conformational flexi-
bility still prevents precise comparisons of functional sites
because small motions are not represented by existing flexi-
ble comparison methods. In such cases, backbone structures
may even be highly similar but side chains motions may gen-
erate variations in the binding sites that are overlooked.

3. METHODS

3.1 Overview

Taking conformational samples of one protein structure
as input, our method is designed to find CCs in the ligand
binding cavity. First, we explain how to define the struc-
tural motif: positions of adjacent residues to the ligand sur-
face, and the motif is taken as a feature vector representa-
tion of the ligand binding cavity. A set of motifs describe
the same amino acids from different conformational sam-
ples of binding cavities of the same protein structure, and
most geometric features in the motif are highly similar. So
these features will increase the dimensionality of the geo-
metric feature space but do not give enough discriminative
information in structure to cluster analysis, leading to the
motivation for dimension reduction step. Also, dimension
reduction makes feature space analysis easier by decoupling
the dimensionality of the feature space from the size of the
input.

We then describe how we obtain CCs using VBGMM in
the reduced feature space. VBGMM is a full Bayesian algo-
rithm for data clustering and has several advantages. First,
the Bayesian method solves the singularity problem in max-
imum likelihood when one Gaussian cluster collapses to only
one data point [8]. Second, VBGMM has an automatic spar-
sity property where clusters with very few members become
more and more empty, whereas popular clusters get more
and more members. By removing empty clusters, it is able
to automatically determine the optimal number of Gaussian
components without seeking other techniques with arbitrari-
ness, such as cross validation and information criterion [1].

Given two CCs, {CC;, CC}}, of sampled binding cavities
of the same protein, a cavity in C'C; is frequently dissimilar
from C'Cj, and a set of amino acids is responsible for making
their binding structures different. Finally, we discuss how to
detect such amino acids automatically.

3.2 Structural Motifs Definition

Formally, we refer to the conformational samples of a pro-
tein structure A as {A1, Aa, ..., An}, and a ligand bound to
A as . In each conformation sample A;, we keep the co-
ordinates of every atom so that sufficient samples will be
provided to represent the structural flexibility of A.

Every sample A; is aligned onto A using Ska [49], an algo-
rithm for whole-structure alignment. Then, for every atom
in [, we generate a sphere with radius 5.0 A . We use VASP
[13], a volumetric analysis tool for rigid region comparisons
of protein structures, to compute the CSG union (Figure
la) of these spheres, S;, which defines the vicinity of the
ligand binding cavity. The amino acid r is added into the
motif if these exists at least one conformation where r in-
tersects with S;. Then, the motif of sample A; is defined as
m; = {AA1, AA,, ..., AAR} where AA, indicates positions
of all atoms in amino acid r. The motif is considered to
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Figure 1: A) CSG operations. Input regions are
shown in light yellow with dotted boundaries. Out-
puts are shown in solid boundaries. B) Input pro-
tein A,, (gray) in CC; with ligand binding cavity
am (light blue), one amino acid 1 (red) and another
amino acid r; (yellow). C) Another input protein A,
(gray) in CC; with ligand binding cavity a, (green).
D) Superimposition of a,, and a,, based on the whole
structure alignment of A,, and A,. E) A small in-
tersection region «; (red) between r1 and a,. F) A
large intersection region «; (yellow) between r; and
an and this indicates that r2 could be a potentially
influential amino acid to make binding cavities in
CC; different from cavities in CC}.

be close to the ligand binding cavity and its flexibility may
influence the shape and structure of the binding site.

Given a protein conformational sample A;, the defined
motif m,; is encoded as a geometric feature vector and each
feature indicates one direction of the coordinate position of
one atom: either x or y or z. The set of feature vectors,
M = {mi,ma,...,mn}, is a vector representation for motif
conformations in binding cavities of A. Each motif m; defines
a point in the high-dimensional space and motifs with similar
structures should be nearby where distance is measured by
Euclidean distance.

3.3 Dimension Reduction

In this paper, Principal Component Analysis (PCA) is
chosen because it is suitable to express small linear motion
of backbones or side chains [16]. PCA [27] is a linear di-
mension reduction procedure to orthogonally convert M, a
set of possibly correlated variables, to X, a set of uncorre-
lated variables named principal components (PCs) with the



number of PCs usually less than the dimension of original
variables. Here, we just retain the top 2 PCs because they
are more significant than the others and capture a large per-
cent of original variances (See section 5.3). Thus, PCA is
capable of largely reduce the dimension by mapping motifs
into a 2D space.

3.4 Variational Bayesian Clustering

Gaussian Mixture Model (GMM) is a probabilistic model
written as a linear combination of Gaussians in the form
p(z) = 3, TN (zn|pr, Ay ') where 7y is the mixture co-
efficient, pj is the mean and Ay is the precision matrix.
In the Bayesian approach, we consider conjugate priors for
model parameters: Dirichlet distribution for matrix coeffi-
cients, Gaussian distribution for mean and Wishart distri-
bution for precision matrix. Using mean field theory [35]
for Bayesian inference, these parameters can be accurately
estimated with an iterative method that is similar to Ex-
pectation Maximization (EM) in the maximum likelihood
framework. In this section, the input is X = {z1, z2,...,z~5},
the vectors in the reduced feature space. After convergence,
the mixture coefficients indicate the cluster membership of
each data point, forming CCs of sampled binding cavities.
More details of VBGMM can be found in [8].

3.5 Volumetric Similarity Computation

Given the conformational samples { A1, As, ..., Ax } of pro-
tein structure A and the binding ligand [, we define the shape
of the sampled ligand binding cavities as {a1, az, ...,an } fol-
lowing our earlier work [22], leading to the volumetric rep-
resentation for surface properties of binding cavities [13].
Then, we measure the volumetric distance, D(a;,a;), be-
tween two protein sampled cavities using Tanimoto Coeffi-
cient [26]:

|a,- ﬂa]-\

D(ai,a]—) =1- |a‘ Ua~\
i J

(1)
where |z| indicates the volume of a solid region z. The
volume is calculated by the Surveyors Formula [42] and has
been used in some of our earlier works [13, 11, 10]. Here,
the less D(ai,a;) is, the more volumetrically similar these
two binding cavities are.

Note that, after using VBGMM clustering on vector rep-
resentation of protein motifs, {a:,a;} could come from the
same CC with similar motif structures or different CCs with
dissimilar structures. Here, we expect that sampled binding
cavities in the same CC will also be nearby in volumetric
distance.

3.6 Influential Amino Acid Detection

Given two clusters CC; and CC}j, we consider one confor-
mation A,, in CC; and another conformation A, in CCj of
protein structure A. For one amino acid r in the motif of
Am, we define the molecular surface of r as m(r) using the
rolling probe algorithm [14] with the standard radius size
of 1.4 A . We say that r makes the cavity of A,,, called
am, different from the cavity of A, called a, if m(r) has a
nonempty intersection region a with a, (Figure 1 f). In this
case, « is not solvent accessible to a., but accessible to an.

Amino acids that radically change the structures of cav-
ities alter binding shape. To evaluate how influential of a
given amino acid r, we compute INT,(CC;,CCj;), the me-

dian intersection volume between r of A,, in CC; and bind-
ing cavity of A, in CCj, for all pairs of m and n. Nontrivial
value of INT,(CC;, CCj) indicates that r frequently makes
cavity structures of C'C; different from CC; and r is defined
as influential amino acid.

4. DATA SET CONSTRUCTION

Serine Protease Superfamily:
Chymotrypsins: lex3

Elastases: 1b0Oe, lelt

Trypsins: 1a0j, lane, 1laq7, 1bzx, 1fn8, 1h4dw, 1trn,
2eek, 291

Figure 2: PDB codes of structures used.

4.1 Protein Selection

To demonstrate that our method is capable of effectively
finding CCs in binding cavity conformations, protein struc-
tures in three subfamilies, the trypsin, chymotrypsin and
elastase, of the serine protease superfamily were selected.

The serine protease structures in our dataset were down-
loaded from the Protein Data Bank [4] on 6.21.2011. These
676 structures, which were selected based on their enzyme
classification (EC), were then filtered to remove mutants
and structures with disordered regions were removed. Next,
the structures were filtered to maintain less than 90% pair-
wise sequence identity, with a preference to keep structures
associated with publications. Technical problems with sim-
ulation prevented proteins 8gch and laks from being added.
From the remaining 12 structures, ions, waters, and non-
protein atoms were removed. Since hydrogens were avail-
able in only some structures, all hydrogens were removed
for uniformity.

All structures in our data set were aligned to bovine gamma-
chymotrypsin (pdb:8gch) because of its availability of the
bound ligand which was used to generate sampled binding
cavities through rigid structure representations.

4.2 Protein Structure Simulation

Conformational samples for each structure in the data
set were generated using GROMACS 4.5.4 [24]. Structures
were prepared for simulation by centering them inside a cu-
bic waterbox with fully periodic boundary conditions that
was populated using the 3-point solvent model SPC/E [2].
The waterbox was sized to contain the protein with at least
10 A between the protein and the nearest part of the box.
Charge balanced sodium and potassium ions were then added
to the solvent at a low concentration (< 0.1% salinity). After

Table 1: Protein Motif Examples
PDB Motifs
1b0e H57 1138 L160 G185 S189 G190 C191
Q192 G193 D194 S195 G196 T213
S214 F215 V216 C220 K224 T226
1h4w H57 1138 L158 D189 S190 C191
Q192 S195 V213 S214 W215 G216

G219 C220 R224 P225 Y228

lex3 | G142 L160 W172 V188 S189 S190 C191
G193 D194 S195 V213 S214 W215
G216 S217 S221 T224 P225 Y228
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Figure 3: Aggregate variations in sampled cavity volume in our whole data set. All protein cavity samples

varied considerably.

preparation, energy minimization was performed on the en-
tire system using a steepest descent algorithm. Isothermal-
Isobaric (NPT) equilibration was performed in four 250 pi-
cosecond steps to permit temperature and pressure equi-
libration prior to the primary simulation. Over the 1000
picosecond minimization period, at 1000 kJ/(mol * nm),
each equilibration step reduced the position restraint force
by 250 kJ/(mol * nm). For the primary NPT simulation,
backbone position restraints were released. System energies
were generated at the start of the equilibration phase. Ini-
tially, temperature was set to 300 Kelvin and pressure was
set to 1 bar. Temperature coupling was calculated using the
Nosé-Hoover thermostat [2], and the Parrinello-Rahman al-
gorithm [37, 33] was used for pressure coupling. P-LINCS
[23] was used to update bonds, and electrostatic interaction
energies were calculated by particle mesh Ewald summa-
tion (PME) [24]. P-LINCS and PME were chosen for their
parallel efficiency. The primary MD simulation was started
using the atomic positions and velocities of the final equilib-
rium state. The simulation was maintained for 100 nanosec-
onds, with 1 femtosecond timesteps. OpenMPI was used for
inter-node and inter-process communication, on multiple 16
core nodes. PME distribution was automatically selected by
GROMACS. After the simulation was completed, 600 con-
formational samples were selected at uniform intervals for
our data set.

5. RESULTS

First, we demonstrate how substantially volumes of ligand
binding cavities vary over the simulation, leading to the mo-
tivation to find CCs through unsupervised methods. Then,
we demonstrate the clustering results on sampled proteins
using VBGMM, and showed volumetric similarity within the
same CC. Finally, we demonstrate the prediction of influen-
tial amino acids with high specificity.

5.1 Ligand Binding Cavities Vary Consider-
ably

In Figure 3, we observe significant volume variations of
binding cavities in conformational samples of protein struc-
tures in our data set. Specifically, we observe that the
trypsin cavity volumes ranged from 248 A% to 692 A3, the
chymotrypsin cavity volumes ranged from 276 A3 to 568
A3 and the elastase cavity volume ranged from 126 A3 to
552 A3, despite the general idea that chymotrypsin cavi-
ties are larger so that to accommodate aromatic side chains

Figure 4: 3D structure of S1 pocket of porcine pan-
creatic elastse (pdb:1b0e) and the binding motif is
shown in purple. This figure is generated with Py-
mol [15].

[31] while elastase cavities are smaller to accommodate small
amino acids, such as valine and alanine [3]. The volume of
sampled binding cavities varied because of side chain mo-
tions and smaller backbone motions, which enlarged, shrank
or separated the structures of the cavity.

From these observations, we found that the flexibility of
the serine proteases creates considerable variations among
sampled binding cavities of the same protein, preventing
accurate prediction of protein binding preference. Cluster
analysis, which is able to find similar binding cavity confor-
mations, may be a solution to avoid this problem.

5.2 Generating Binding Cavity Motifs

In Table 1, we show the motifs of one representative pro-
tein structure in each subfamilies. We observe that these
motifs are highly similar, and we believe that the common
amino acids jointly construct residues that are potentially
influential to S1 pocket of the serine protease structures.
The Figure 4 shows 3D structure of the motif in one confor-
mational sample of porcine pancreatic elastase(pdb: 1b0Oe).

5.3 Clustering Binding Cavities

Figure 5 illustrate the average percentage of total vari-
ances of top 10 PCs over all the 12 serine protease con-
formations. It is obvious that top 2 PCs are much more
significant than other PCs and account for a large percent
of the total variances.



Figure 6 illustrate a VBGMM demo on the protein of
porcine pancreatic elastse (pdb:1b0e). It is clear that after
model convergence, there are only four non-empty Gaussian
components while the rest are automatically dropped since
VBGMM is able to trade-off between fitting the data and the
complexity of the model, resulting in automatic detection of
the optimal number of clusters.

Figure 7 shows volumetric similarities between all sampled
protein cavities of porcine pancreatic elastase (pdb:1bOe).
We observe that protein cavities in the same cluster are
highly similar in the volumes. Besides, in Figure 7, we
find infrequently-occurred extra-cluster similarities (e.g. be-
tween green cluster and teal cluster). These similarities are
generated by arbitrariness of data clustering, and, following
these extra-cluster volumetric similarities, we usually find
geometric similarities between corresponding CCs. For ex-
ample, we find that the green cluster and the teal cluster
are highly close in Figure 6. Similarly, we can always found
intra-cluster volumetric similarities for other protein struc-
tures in our data set.

5.4 Detecting Influential Amino Acids

Changes in the backbone and side chain positions create
structural flexibility of ligand binding cavities, leading to
different CCs in conformational samples. To evaluate how
different amino acids create such changes, for protein A, we
computed INT,(CC;, CCj) for all residues r in all sampled
structures A, in one cluster C'C; and all binding cavities in
another cluster CCj.

Most amino acids exhibited very small median intersec-
tion volume, indicating little influence on structural flexibil-
ity between two different CCs. However, some amino acids
were identified with frequently large intersections. Figure 8
shows the median intersection volume between amino acids
from conformational samples in the red cluster and bind-
ing cavities from conformational samples in the teal cluster
of porcine pancreatic elastase (pdb:1b0e). Only serine 195
exhibited a large median intersection of 23.5 A3 One ex-
ample, illustrated in Figure 9 depicts that influential serine
195 from one conformational sample in CCrep intersected
a large volume of 44.6 A% with cavity from one conforma-
tional sample in CCrgar. However, another amino acid
of the same conformational sample, lysine 224, intersected
a very small volume of 1.4 A® despite its adjacency to the
binding ligand.

As illustrated on Table 2, influential amino acids are pre-
dicted on all serine proteases. We validated these amino

Median Percentage of Total Variances
e R
5 & 8 & & &

o

o

Top 10 Principal Components

Figure 5: Average percentage of total variances of
top 10 PCs over all 12 structures in our whole set.

VBGMM Initialization VBGMM Convergence

Principal Component 2
Principal Component 2

Figure 6: VBGMM demo applied on the protein
of porcine pancreatic elastse (pdb:1b0e). Left Fig-
ure shows the initialization plot using K-means algo-
rithm in the PCA mapped feature space where the
prior number of clusters is 15. The ellipses denote
the one standard deviation density contours for each
of the clusters and each red point marked as o cor-
responds to the center of each cluster. Right Figure
shows the data plot after convergence where those
empty clusters are not plotted and the colors denote
cluster labels.

1b0e Volumetric Similarity Dotplot
T T

Figure 7: Volumetric similarity dotplot of porcine
pancreatic elastase (pdb:1b0Oe). The axis (x or y)
shows the sequences of sampled binding cavities of
1b0Oe and colors along the axes denote the cluster
labels shown in Figure 6.

acids against the experimental literature, and observed that
most of these predictions play notable roles in specificity
and function. For example, in atlantic salmon trypsin (pdb:
1a0j), serine 195 is the nucleophilic serine [43]. In salmon
elastase (pdb: lelt), valine 216 creates steric hindrance in
the S1 binding site that prevents larger molecules from bind-
ing [46]. In total, six predictions were made from 220 amino
acids. 5 predictions were correct when validated against ex-
perimental findings, and one, tryptophan 215 was not func-
tional to our knowledge. It appears that because W215 is
adjacent to V216, it also overlaps with cavity conformations
in many cases.

6. CONCLUSION

We have presented a technique for predicting amino acids
that exhibit substantial flexibility within the ligand bind-
ing sites of an individual protein structure. Unlike exist-
ing methods, this approach does not require comparisons



Figure 8: Aggregate intersection volumes of amino acids from conformational samples in CCrgp with cavities
from conformational samples in CCrgar of porcine pancreatic elastase (pdb:1b0e). The subscript color of

CCs can be found in Figure 6.

Table 2: Amino acid prediction on all paris of CCs
of all serine protease proteins in our data set.

PDB code | Predicted Amino Acids
1a0j S195
lane None
laq7 None
1bzx None
1fn8 None
1hdw None
ltrn W215, V216
2eek None
2191 None
1b0e S195
lelt V216, S195
lex3 None

Amino acids are selected yvhen the median intersection
volume is greater than 20 A3 and the bolded amino acids
are validated in the literatures.

against a similar structure with different binding prefer-
ences. Instead, it relies on the inference that amino acids
in the binding site that are large enough to alter the appar-
ent shape of the site must be evolutionarily selected for their
purpose and that they will sterically hinder some ligands at
the binding site.

Our findings support this claim on the serine proteases,
where we identified 5 amino acids that influence specificity
and function with 1 false positive prediction. While a larger
number of influential amino acids can be identified with com-
parative methods, they rely on the presence of at least two
protein structures, and the method described here does not.

Applications of our method exist in contexts where the
identification of influential amino acids is required and only
a single protein structure exists. In such cases, experimen-
tal procedures are time consuming and expensive, and it is
thus critical to avoid false positives. The predictions identi-
fied here, on a limited set of proteins, indicate that it may be
possible to find such amino acids without many extraneous
predictions, and thus that a flexibility study of individual
structures may still reveal elements of structure that influ-
ence binding.

A)

- . Serl95
“c. L ye
N ——— Lys22i

Figure 9: A) The ligand cavity from one conforma-
tional sample in CCrgar of porcine pancreatic elas-
tase (pdb:1b0e). B) The positions of serine 195 and
lysine 224 from one conformational sample in CCrgp
of porcine pancreatic elastase (pdb:1b0e).
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