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ABSTRACT

The adaptive immune system is a defense system against repeated
infection. In order to trigger the immune response, antigen pep-
tides from the infecting agent must first be recognized by the Ma-
jor Histocompatibility Complex (MHC) proteins. Identifying pep-
tides that bind to MHC class II is thus a critical step in vaccine
development. We hypothesize that comparing individual subsites
of the peptide binding groove could predict the individual amino
acids of possible antigens. This modularized approach to individ-
ual subsites could reduce the amount of training data needed for
accurate classification while also reducing computing times asso-
ciated with molecular simulation and docking. To test this hypoth-
esis, we evaluated the capability of two classification techniques
and multiple modular representations of the MHC subsites to cor-
rectly classify the binding preference categories of P1 subsites of
MHC class II structures. Our results shows that the average accu-
racies are 0.87 for K-mean and 0.95 for SVM with all feature vector
configurations. Our results demonstrate that accurate predictions
on individual binding subsites is possible, pointing to larger scale
applications predicting whole-peptide preferences.
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1 INTRODUCTION

The T-cell-mediated immune response relies on the proteins of
the Major Histocompatibility Complex (MHC), which exhibit two
main categories: class I and class II. Class II proteins can be found
on the surface of T-cells [5, 12], where they recognize antigen pep-
tides, which are protein fragments left behind by infecting agents.
Once an antigen is recognized, the T-cell can trigger the adaptive
immune response against that agent. For this reason, determining
the peptides that are recognized by a given MHC II protein is a
critical step in vaccine design [13, 19, 31]: Rather than using anti-
gens fromweakened agents, patients can be sensitized to synthetic
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peptides, which are easier to produce and safer because they are
disconnected from the infective agent. This paper develops MAPS
(MHC Analysis of Peptide Subsites), a novel structural analysis
technique intended to assist in predicting the antigen binding pref-
erences of a given class II complex.

The peptide recognition site of all class II complexes consists
of two interrupted helices and eight antiparallel β-sheets [32]. In-
stead of packing against each other, the two helices form a binding
groove (fig. 1) that accommodates the peptide in an extended con-
formation. Within the binding groove, there are five cavities, or
’pockets’, called P1, P4, P6, P7 and P9. The pockets in these po-
sitions accommodate the first, fourth, sixth, seventh, and nineth
amino acids of the peptide.While each pocket is somewhat promis-
cuous in the range of amino acids it accepts, the collected bind-
ing preferences of all pockets largely determines which peptides
bind any MHC in class II. P1, frequently called an anchor residue
binding pocket, is the largest pocket and the major determinant
of peptide binding to MHC II [14, 32]. For this reason, we focus
our initial evaluation of MAPS on predicting ranges of P1 binding
preferences.

Figure 1: Binding groove and bounded peptide of 1DLH

MHC protein. P1,P4,P6,P7 and P9 are the bounding pockets

facing the MHC II in the binding groove.

MAPS is trained on pockets with different amino acid prefer-
ences at the same position. Given a new pocket, MAPS analyzes
the geometry of its molecular surface and electrostatic isopoten-
tials and then predicts which amino acids the given pocket prefers
to bind. We represent the molecular surface and the electrostatic
isopotentials of each pocket as geometric solids. This approach fol-
lows earlier work, where we observed that comparisons of geomet-
ric solids can distinguish steric [9] and electrostatic [8] differences
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that influence specificity. The geometric solids are then used to
train a classifier that makes predictions on query pockets.

This paper evaluates two crucial design questions about MAPS.
First, we assess which molecular characteristics can be used to
achieve the highest classification sensitivity and specificity. Not
only do we consider the molecular surface of the pocket, but be-
cause different degrees of electric charge may best reveal differ-
ences in binding specificity, we also consider multiple positive and
negative electrostatic isopotentials, used together or separately.We
also evaluate classification approaches using k means clustering
and support vector machines (SVMs) to predict the binding pref-
erences of the pocket. These possibilities are evaluated in detail in
our results.

We constructed our data set with 86 peptide-MHC class II com-
plexes out of the available 115MHC class II related structures from
the Protein Data Bank (PDB) [34]. Our data set includes most of
peptide-MHC class structures. These structures were selected spe-
cifically because we were able to identify experimental results doc-
umenting the binding preferences of the P1 pocket in each complex.
On these data, we exhaustively cross-validated MAPS to assess the
accuracy of the classifiers and pocket representations above. Our
results point to a new strategy for predicting the peptide binding
preferences of individual MHCs.

2 RELATED WORK

Many methods for predicting peptide binding to MHC molecules
can be categorized into two broad categories: sequence-based and
structure-based methods. MAPS is a structure-based method but
it avoids some design constraints of both categories, illustrating a
new approach to the problem.

2.1 Sequence-based methods

Sequence-based methods use motifs and machine learning to pre-
dict peptide sequences that bind to a specific MHC. Methods using
motifs scan the sequences of binding peptides and build qualitative
or quantitative weight matrices that describe the space of compat-
ible peptides [15, 20, 22, 30, 33]. These positional weight matrices
contain 9 columns, one for each amino acid position in the peptide.
The ith column of a weight matrix has 20 elements, representing
the probability of one of the 20 canonical amino acids occuring
in the ith position of a peptide that binds in the MHC. Altogether,
thematrix defines the peptide binding preferences of theMHCpro-
tein, and it is expected that different MHC proteins exhibit differ-
ent weight matrices. Unfortunately, weight matrices can be inac-
curate predictors of binding when the training data is incomplete
[11]. In addition, because weight matrices simplify peptide binding
into a series of independent amino acid preferences, inaccuracies
can also arise from effects that amino acids in the peptide have on
their neighbors [27].

Sequence-based machine learning methods predict the binding
affinity of MHC II using artificial neural networks (ANNs) [7, 22],
hidden Markov models (HMMs) [23] and SVMs [4, 16]. These ap-
proaches are generally trained on sets of peptides that bind and
those that do not. A few machine learning methods are trained on
more detailed categories such as high binders, intermediate binders,
weak binders and nonbinders [21]. The average area under the

ROC curve (AUC) is 0.871 for various MHC II alleles [18]. The reli-
ability of learning methods also relies on comprehensive training
data that outlines the boundaries of the binding preferences of a
given MHC. Typically, 50-100 peptide binding measurements are
required to build a model with reasonable accuracy for each MHC
I [26, 37], but MHC II binding preferences are broader than those
of class I.

MAPS differs from these sequence-basedmethods because it can
focus on classifying individual pockets. While this paper focusses
on P1 to prove the concept, MAPS can be independently trained
to produce predictions for the other pockets. These modular pre-
dictions can then be integrated into a picture of MHC preferences
for the overall peptide. The advantage of this approach is that the
peptide preferences of the MHC can be predicted as long as exam-
ples of the pocket preferences exist in the training set, even if the
pocket preferences never occur in the same MHC. While this ap-
proach does not consider the influences that adjacent amino acids
have on each other, it does not require training sets with the com-
binatorial scale of existing methods.

2.2 Structure based methods
Structure-based methods employ molecular modeling and molecu-
lar docking techniques to predictMHCbinding preferences. Molec-
ular modeling methods use molecular dynamics simulations [10],
monte carlo simulations [22], or ab initio computations [38] to sim-
ulate the atomic motion of the MHC II and the peptide during the
binding process. After simulation, the binding potential energies
of simulatedMHC-peptide complex structures are computed using
statistical potentials derived from the existing 3D protein structure
[1, 6, 29, 38]. These statistical potentials mitigate the need to find
experimental data that describes the affinity between a range of
peptides and a given MHC, and they also create the freedom to ex-
amine new MHCs for which no peptide binding preferences have
been established. Unfortunately, the time consuming nature of sim-
ulation bottlenecks the construction of a combinatorial training set
that examines many possible binding peptides.

Unlikemodeling approaches, dockingmethods assume that both
the MHC and peptide are rigid. Specifically, that interatomic dis-
tances in MHC II are fixed and that the peptide is rigid. Holding
theMHC II fixed,molecular dockingmethods attempt to rotate and
translate the binding peptide into the binding cavity of the MHC
II. Using statistical potentials similar to those used by modeling
approaches, molecular docking methods search the space of rigid
complexes for a complex with lowest potential energy. Because
molecular flexibility is not considered, molecular docking meth-
ods [2, 3, 24] are faster than molecular modeling methods, but still
many orders of magnitude slower than sequence based methods.

In contrast to these methods, MAPS is a structure based method
that performs classification by comparing MHC structures rather
than simulation or docking. Comparisons have been shown in the
past to be able to reveal steric and electrostatic similarities and dif-
ferences in binding preferences [8, 9], and they can be localized to
individual pockets without loss of accuracy, to support the mod-
ular approach of MAPS. Structure comparisons can also be per-
formed much more rapidly than simulation or docking, because
they do not require the iterative computation of potential energies.



However, unlike other structure-based methods, comparisons de-
pend more on the availability of existing structures, because classi-
fications are performed by simularity and dissimilarity rather than
energies derived from first principles. Our results will enable us to
assess how accurately structure comparisons can support this dif-
ficult classification problem.

3 METHODS

MAPS is composed of 3 steps: First, we generate solid representa-
tions of binding pockets using constructive solid geometry (CSG).
Second, we generate feature vectors from the binding pockets. Fi-
nally, we perform classifier training and prediction.

3.1 Constructive solid geometry

CSG is a category of techniques for building solid objects from
other solids with three basic operations: Boolean Union, Boolean
intersection and Boolean difference (Figure 2). These operations
perform logical operations on geometric solids as if theyweremath-
matical sets containing points in space. CSG was developed for
computer aided design of machine parts [35] and adapted for com-
puter graphics to represent geometric solids [17]. MAPS uses CSG
to represent proteins and binding pockets as geometric solids.

Input Solids Union Intersection Difference

Figure 2: Operations in constructive solid geometry (CSG)

Figure 3: Computing a solid representation of the P1 pocket.

(a) Cartoon representation of an MHC II structure. (b) The

molecular surface of the MHC. (c) The Boolean union of

all P1 amino acids in the data set. (d) The envelope surface.

(e) The Boolean difference of the union of P1 amino acids

minus the molecular surface. (f) The final P1 pocket: The

Boolean intersection between (e) and the envelope surface.

a) b) c)

Figure 4: Computing a solid representation of an electro-

static isopotential in the binding pocket. (a) The molecu-

lar surface of the MHC (dotted) and the P1 binding pocket

(gray, solid outline). (b) Isopotentials of the entire structure

(light black outlines). Positive isopotentials are blue, nega-

tive isopotentials are red. Solid representations of the elec-

trostatic isopotentials in the binding pocket (red and blue

with heavy solid outlines).

3.2 Generating solid representations

MAPS generates solid representations of pockets using CSG op-
erations (Fig. 3). First, using Ska [36], all of the MHC II protein
peptide complexes were structurally aligned to HLA-DRB1 (pdb:
4MD5), which was randomly selected. Second, the peptide-MHC
complexes were split into MHC II proteins and binding peptides,
and the molecular surfaces of MHC II proteins were generated us-
ing trollbase [36] (Fig. 3b). Third, we compute the Boolean union of
all the molecular surfaces of all the P1 amino acids from the bound
peptides in our dataset (Fig. 3c). These amino acids overlap tightly
because they are in complex with the aligned MHC structures, and
the union of these amino acids loosely defines the location of the
P1 pocket in the working surface. Fourth, using trollbase, we com-
pute an envelope surface using a 5.0 Å probe (Fig. 3d). This surface
defines a boundary between the cavities of the protein and the bulk
solvent around it. Fifth, we compute the Boolean difference of the
union of P1 amino acids minus themolecular surface (Fig. 3e), iden-
tifying the region occupied by possible peptide residues that is also
solvent accessible near theMHC structure. Finally, we generate the
Boolean intersection between the difference and the envelope sur-
face (Fig. 3f), eliminating any part of the remaining region that is
within the bulk solvent and thus not in a pocket. This geometric
solid defines the P1 pocket.

We generate solid representations of electrostatic isopotentials
following the technique described by VASP-E [8] (Fig. 4). We be-
gin with the solid representation of the P1 pocket (Fig. 4a). Sec-
ond, using VASP-E, we compute electrostatic isopotentials of the
entire protein (Fig. 4b). To evaluate several thresholds, we gener-
ated isopotentials at +/-1, +/-3 and +/-5 kT/e. Finally, we compute
Boolean intersections between the isopotentials and the pocket
(Fig. 4c). The resulting intersections describe solvent accessible re-
gions that are exposed to positively or negatively charged parts of
the electrostatic field.

3.3 Generating feature vectors

Once the P1 pockets and their electrostatic isopotentials have been
generated, we translate them into feature vectors for classification.
First, note that all MHC structures were structurally aligned, so
all P1 pockets and their electrostatic isopotentials are also super-
posed. Second, we generate a lattice of uniformly sized cubes. We
refer to the length of the side of one cube as the resolution of this



lattice, which is held at .5 Å in this work. Using Boolean opera-
tions and the Surveyor’s formula [28], we measure the volume of
intersection between each cube and each solid representation, and
normalize the intersection volume to the volume of the cube. The
normalized volumes inside all cubes in the bounding box, includ-
ing the cubes that have no intersection, are treated as the elements
of a feature vector. We process three kinds of solids in this way:
binding cavities, which represent the solvent accessible shape of
the binding cavity that accommodates one of the amino acids in
the peptide, positive electrostatic isopotentials at a positive poten-
tial threshold, and negative electrostatic isopotentials at a negative
potential threshold.

Uncertain of which solids might yield the most informative data
for classification, we generated feature vectors from binding cavi-
ties alone (whichwe refer to simply as shape), from positive electro-
static isopotentials alone, and from negative electrostatic isopoten-
tials alone. The feature vectors that combine multiple such charac-
teristics were generated by concatenating their elements. All com-
binations of characteristics were tested in our experimentation. In
our results, we refer to feature vectors that include binding cavities
and positive electrostatic isopotentials as shape + positive, those
that include all features as shape + positive + negative, and so on.
Generating feature vectors from solid representations was imple-
mented in Python and C++. Generation time was less than 30 sec-
onds on a 2.4GHz CPU.

3.4 Classification

In order to select a classifier that could effectively identify pock-
ets with similar and different binding preferences, we examined
the classification performance achieved by K-means clustering and
SVMs, which are suitable for high dimensional feature vectors. K-
means clustering is an unsupervisedmachine learningmethodwith
unlabeled data. It finds K groups in the data, where K is an input
variable describing the number of clusters. This algorithm works
iteratively to classify each input data point to one of K clusters
basing on feature similarity, constantly seeking to minimize the

objective function J =
∑k
j=1

∑n
i ‖x

j
i
−cj ‖

2, where ‖x j
i
−cj ‖

2 is the

Euclidean distance between the jth data vector x j and the cluster
centroid cj , n is number of data point vectors and k is the number
of clusters. SVMs are a class of supervised machine learning meth-
ods that use labeled data for training. SVMs are effective in high
dimensional data, even when the number of dimensions is greater
than the number of samples, as is the case with our data. SVMs use
training data to select an objective function from several categories
of mathematical kernel functions.We considered SVMswith linear,
polynomial, and Gaussian kernels. Our experimentation evaluates
the capacities of K-means clustering and SVMs to distinguish P1
pockets with different binding preferences. All classification was
automated using the Sci-kit learn[25] python library and default
parameters are used in both methods.

All feature vectors of MHC II binding pockets are taken as the
input for the classification of binding pockets with the number
of clusters k = 2. The K-means method was used to classify the
binding preferences of binding pocket and predict the binding pref-
erence with a higher accuracy. Our experimentation using the K-
means and SVM methods employed the Sci-kit learn[25] python

library. We evaluated the capacity of the K-means clustering algo-
rithm to separate binding cavities that prefer either charged amino
acids or hydrophobic amino acids.

3.5 Data Set

Training our classifiers required ground truth data describing the
binding preferences of the P1 pockets inMHC II proteins. To gather
this data, we began with the 86 MHC II protein-peptide complexes
stored in the PDB as of 1 January 2017. To determine the binding
preferences of the P1 pockets in each structure, significant litera-
ture search was performed to identify experimental evidence sub-
stantiating the binding preferences at each P1. These references
are provided in Table 1. Some papers referenced in the PDB only
illustrated theMHCstructure and did not describe the binding pref-
erences of each binding pocket, leading us to examine related publi-
cations. Since classification is performed on the P1 binding pocket,
and since some publications examined multiple pockets, only ci-
tations for the binding preferences of the pocket are referenced.
According to the literature, the majority of P1 structures in our
dataset prefer hydrophobic residues, and approximately 10 percent
prefer charged residues. For this reason, the K-means and SVM
classifiers described above were used to perform dichotomous clas-
sification.

Variations in the way binding preferences are described in publi-
cation led us to define some preferences as “nonpolar” rather than
“hydrophobic” in Table 1. For the purposes of classification, we
treat them as members of the same category. Likewise, all pockets
that prefer charged amino acids prefer negatively charged amino
acids, except one, which prefers positively charged amino acids,
butwe treat them asmembers of the same category. In future work,
subdividing or expanding these categories is a logical extension of
this proof of concept.

3.6 Accuracy, Sensitivity, and Specificity

Since our classifiers are performing dichotomous classification be-
tween “hydrophobic” and “charged” categories, we measure pre-
diction accuracy by counting the number of predictions. Normally,
dichotomous prediction scenarios involve predicting whether or
not a particular statement is true, but in this case the two cate-
gories are biophysical opposites in nature. As such, we count true
positives (TPs), false positives (FPs), true negatives (TNs) and false
negatives (FNs) as follows:

• TP=# MHC II predicted to prefer hydrophobic amino acids
in P1, and actually do

• FP=# MHC II predicted to prefer hydrophobic amino acids
in P1, and actually prefer charged

• TN=#MHC II predicted to prefer charged residues in P1, and
actually do

• FN=#MHC II predicted to prefer charged residues in P1, and
actually prefer hydrophobic

To establish best practices during calibration, we compute accu-
racy as a single-dimensional value to illustrate the relative perfor-
mance of our classifiers in different configurations. We evaluate
accuracy as T P+T N

T P+T N+F P+F N . Accuracy is the fraction of correct
predictions relative to the total number of predictions made, and
it ranges from 0.0 (least accurate) to 1.0 (most accurate). Once con-
figured, to provide detailed information on the performance of our



Table 1: P1 pocket binding preferences of MHC II

# pdb Res. Pref. # pdb Res. Pref. # pdb Res. Pref. # pdb Res. Pref.
1 1DLH Y H 2 1A6A Y H 3 2SEB M H 4 1AQD W H
5 1IAK D C 6 1BX2 V H 7 1FYT Y H 8 1F3J R C
9 1FV1 F H 10 1JK8 E C 11 1HQR F H 12 1HXY Y H
13 1J8H Y H 14 1H15 Y H 15 1KG0 W H 16 1LO5 W H
17 1KLG I H 18 1KLU Y H 19 1JWM Y H 20 1JWS Y H
21 1JWU Y H 22 1PYW F H 23 1S9V P H 24 1UVQ L H
25 1T5W Y H 26 1T5X Y H 27 1SJE V H 28 1SJH V H
29 1R5I W H 30 1YMM V H 31 1ZGL F H 32 2G9H Y H
33 2FSE F H 34 2IAM I H 35 2IAN I H 36 2NNA E C
37 2OJE W H 38 2Q6W W H 39 2ICW Y H 40 3C5J I H
41 3LQZ F H 42 3PDO M H 43 3PGC M H 44 3PGD M H
45 3L6F Y H 46 2XN9 Y H 47 3MBE R H 48 4Z7W E C
49 3QXA M H 50 3QXD M H 51 3S4S Y H 52 3S5L Y H
53 4GG6 E C 54 4GBX Y H 55 4AEN M H 56 4AH2 M H
57 4D8P E C 58 4H1L I H 59 4H25 I H 60 4H26 I H
61 4IS6 L H 62 4MCY V H 63 4MCZ Y H 64 4MD0 W H
65 4MD4 W H 66 4MD5 V H 67 4MDI V H 68 4MDJ V H
69 4I5B V H 70 4P2O L H 71 4P2Q L H 72 4P2R V H
73 4P4K F H 74 4P4R F H 75 4P5K F H 76 4P5M W H
77 4P57 Ph H 78 3WEX K C 79 4OZF P H 80 4OZG P H
81 4OZH P H 82 4OZI P H 83 4C56 W H 84 4OV5 A H
85 4Z7U E C 86 4Z7V E C

Accuracy (positive kT/e, negative kT/e) (1,-1) (1,-3) (1,-5) (3,-1) (3,-3) (3,-5) (5,-1) (5,-3) (5,-5)
Shape 0.793 0.793 0.793 0.793 0.793 0.793 0.793 0.793 0.793
Positive 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953
Negative 0.867 0.847 0.706 0.867 0.847 0.706 0.867 0.847 0.706
Shape + Positive 0.793 0.793 0.793 0.805 0.805 0.805 0.805 0.805 0.805
Shape + Negative 0.863 0.854 0.720 0.900 0.854 0.720 0.900 0.854 0.720
Positive + Negative 0.964 0.847 0.705 0.952 0.847 0.706 0.940 0.847 0.706
Shape + Positive + Negative 0.900 0.850 0.720 0.900 0.854 0.720 0.900 0.854 0.720

Table 2: Prediction Accuracy of K-means clustering at several electrostatic isopotential thresholds.

Accuracy (positive kT/e, negative kT/e) (1,-1) (1,-3) (1,-5) (3,-1) (3,-3) (3,-5) (5,-1) (5,-3) (5,-5)
Shape 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927
Positive 0.976 0.976 0.976 0.965 0.965 0.965 0.965 0.965 0.965
Negative 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Shape + Positive 0.927 0.927 0.927 0.915 0.915 0.915 0.927 0.927 0.927
Shape + Negative 0.950 0.927 0.927 0.950 0.927 0.927 0.950 0.927 0.927
Positive + Negative 0.928 0.929 0.941 0.928 0.941 0.941 0.940 0.929 0.918
Shape + Positive + Negative 0.938 0.939 0.927 0.938 0.927 0.915 0.938 0.939 0.915

Table 3: Prediction Accuracy of SVMs at several electrostatic isopotential thresholds

classifiers, we compute sensitivity and specificity. In our classifica-
tion scheme, sensitivity of hydrophobic amino acids denotes the
probability of all hydrophobic binding preferences that that are
predicted as hydrophobic binding preferences and specificity of
hydrophobic amino acids denotes the probability of predicted hy-
drophobic binding preferences that are actual hydrophobic binding
preferences. The sensitivity and specificity of hydrophobic amino
acids are computed T P

T P+F N and T P
T P+F P , respectively. The sensi-

tivity and specificity are evaluated as T N
TN+F P and T N

TN+F N respec-
tively.

4 RESULTS

Our results evaluate the prediction accuracy of K-means and SVM-
based classifiers, as well as the contributions of different steric and
electrostatic representations of the P1 pocket as a feature vector.
We also evaluated the accuracy of predictions made with SVM clas-
sifiers using different kernel functions. In each case, exhaustive
leave-one-out validation was used to ensure that results reflect the
true accuracy, sensitivity, or specificity of each classifier.



4.1 Calibrating electrostatic isopotentials in
MAPS

Electrostatic isopotentials can be computed at multiple thresholds.
Considering the possibility that bothK-means and SVM-based clas-
sifiers might be more accurate when using electrostatic isopoten-
tials at informative thresholds, we trained them with feature vec-
tors that included up to two isopotentials, one positively charged
and one negatively charged. We evaluated the classification accu-
racy of both classifiers with thresholds equal to -5.0, -3.0, -1.0, 1.0,
3.0 and 5.0 kT/e. We also considered feature vectors that incorpo-
rate molecular surfaces only (“shape”), which was simply the ge-
ometry of P1 without any electrostatic isopotentials, and thus iden-
tical at all charge thresholds. Also, we considered feature vectors
that incorporate only one of the two isopotentials, which are re-
ferred to as “Positive” and “Negative” in Tables 2 and 3. In each
case, accuracy was computed as the number of correct predictions
divided by the totally number of predictions made, and the pairs of
isopotential thresholds were described as an ordered pair of values,
(positive threshold, negative threshold).

Overall, feature vectors with positive and negative isopotentials
at 1.0 kT/e and -1.0 kT/e respectively produced the most accurate
predictions on average.

Feature vector type RBF linear Polynomial
Shape 0.878 0.915 0.878
Positive 0.882 0.965 0.882
Negative 0.880 1.00 0.880
Shape + Positive 0.875 0.927 0.875
Shape + Negative 0.878 0.938 0.878
Negative + Positive 0.880 0.916 0.880
Shape + Postive + Negative 0.875 0.938 0.875

Table 4: SVM Accuracy on three kernels

4.2 Selecting SVM Kernels

SVMs can be trained with a variety of kernel functions. We eval-
uated three kernels: Gaussian kernels, also known as radial basis
functions (RBF), linear kernels, and polynomial kernels. We eval-
uated classifications performed with these kernels on the feature
vectors we created, including positive and negative isopotentials
alone, and molecular surfaces only. Following the observations of
Section 4.1, electrostatic isopotentials were generated at 1.0 kT/e
and -1.0 kT/e to produce maximum accuracy. These results are
summarized in Table 4.

Overall, linear SVM kernels exhibited average accuracy on all
feature vectors equal to .943, which was distinctly more accurate
than gaussian kernels (.878) and polynomial kernels (.878). Evalu-
ated on every feature vector, linear kernels outperformed RBF and
polynomial kernels.

4.3 Classifier Sensitivity and Specificity

Having established that both aK-means classifier and an SVM clas-
sifier perform best with feature vectors that include positive and
negative isopotentials at 1.0 kT/e and -1.0 kT/e, and having ob-
served that the SVM classifier performs best with a linear kernel,
we measured the sensitivity and specificity of both our calibrated
predictors. We also measured the sensitivity and specificity of the

other feature vector configurations that we examined earlier. Re-
sults on K-means clustering are outlined in Table 5, and Table 6
describes results on SVMs.

Overall, linear SVMs performed with sensitivity and specificity
greater than the K-means classifier. The sensitivity and specificity
of prediction on hydrophobic pockets was nearly perfect for most
feature vector configurations, with Negative feature vectors per-
forming best. Sensitivity and specificity on P1 pockets that prefer
charged residues was generally similar betweenK-means and SVM
classifiers, while classification sensitivity on pockets that prefer hy-
drophobic residues was lower when using K-means classification
on most feature vector configurations.

5 DISCUSSION

Our results with MAPS have evaluated several classifiers for pre-
dicting the binding preferences of the P1 binding pocket of MHC
class II structures. The performance of our most successful classi-
fiers demonstrate proof of concept that it is possible to use struc-
ture comparison to accurately predict the binding preferences of
a pocket in the MHC binding groove. This validate our hypothe-
sis that comparing individual subsites of the binding groove can
predict preferences for individual amino acids. Due to the modu-
larity of this comparison strategy, these results point to future ap-
plications of this strategy for predicting the binding preferences at
each pocket in the peptide binding groove. Together, modular pre-
dictions could support the discovery of new antigens that could be
used to protect patients from infective agents.

Beyond modularity, the advantage of this approach is a seam-
less capacity to consider a diverse range of biophysical phenom-
ena without the computational expense of molecularmodeling and
docking. MAPS demonstrates that high resolution steric and elec-
trostatic descriptors can be produced with a volumetric represen-
tation and integrated into the classification system. This result in-
dicates that future opportunities exist for including additional bio-
physical descriptors that can be compared in the same volumetric
manner.
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