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Abstract5

Comparing binding sites as geometric solids can reveal conserved features of protein structure that6

bind similar molecular fragments and varying features that select different partners. Due to the7

subtlety of these features, algorithmic efficiency and geometric precision are essential for comparison8

accuracy. For these reasons, this paper presents pClay, the first structure comparison algorithm to9

employ fine-grained parallelism to enhance both throughput and efficiency. We evaluated the parallel10

performance of pClay on both multicore workstation CPUs and a 61-core Xeon Phi, observing11

scaleable speedup in many thread configurations. Parallelism unlocked levels of precision that12

were not practical with existing methods. This precision has important applications, which we13

demonstrate: A statistical model of steric variations in binding cavities, trained with data at the level14

of precision typical of existing work, can overlook 46% of authentic steric influences on specificity15

(p ≤ .02). The same model, trained with more precise data from pClay, overlooked 0% using the16

same standard of statistical significance. These results demonstrate how enhanced efficiency and17

precision can advance the detection of binding mechanisms that influence specificity.18

2012 ACM Subject Classification Applied Computing → Molecular Structural Biology; Computing19

Methodologies → Volumetric Models; Parallel algorithms20

Keywords and phrases Specificity Annotation, Structure Comparison, Cavity Analysis21

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2322

1 Introduction23

Molecular shape and electric fields have a strong influence on binding specificity. At binding24

interfaces, complementary molecular shapes can accommodate some ligands and hinder25

those that fit poorly. Electric fields attract molecules with complementing charges and repel26

others. This connection, between molecular recognition and the geometric complementarity27

of surfaces and fields, is evidence by which human investigators infer the roles of individual28

mechanisms in function. Comparison software can detect this kind of evidence and use it to29

make similar inferences. Some methods detect proteins with geometrically conserved binding30

sites, supporting the inference that they bind similar partners [11, 7, 4, 26, 32, 10, 14, 17].31

Other methods find variations in the electric fields near binding sites, suggesting that they32

accommodate differently charged ligands [18, 5, 28, 33]. These techniques, and their potential33

for large scale and accurate applications, depend on rapid and precise digital representations34

of molecular shape, which are the focus of this paper.35

Rapid and precise algorithms can integrate many observations to support inferences that36

are impossible with single comparisons. For example, a single comparison does not provide a37

frame of reference that would be needed to assess whether or not two binding sites are different38

enough that they have different binding preferences. After all, conformational variations39

and single mutations can occur in many ways that change nothing about binding. This kind40

of inference is traditionally reserved for experts with a wealth of biochemical experience.41

However, statistical models can be trained on the steric differences between closely related42

ligand binding sites that prefer the same ligands. In such cases, structures of close homologs43

or even single mutants could provide the primary data, but the subtle variations needed to44

train the model would have to be found with many individual comparisons. Once trained,45
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the statistical model provides a frame of reference that reveals steric variations that are too46

large to be typical of binding sites with the same binding preferences. The large variations47

found would therefore be indicators of binding sites that have different binding preferences48

[6]. To support and advance statistical models like these, this paper presents pClay, the first49

structure comparison algorithm that maximizes precision and computational throughput50

using arbitrary precision representations and parallel algorithms.51
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Figure 1 CSG operations on Molecular Surfaces. a) Basic CSG operations. Input solids are
yellow with dotted outlines. Outputs have solid outlines. b) Ligand with grey atoms and white
bonds, with spheres centered on each atom (light blue). c) The union of atom-centered spheres.
d) Two molecular surfaces (blue, red) in complex with two ligands shown as sphere unions (black
lines). e) CSG difference of the sphere unions minus molecular surfaces (dotted lines), shown with
molecular surfaces (blue and red, no outline) and envelope surfaces (black outline). f) Intersection
of differences with envelope surfaces (light blue and red). g) The CSG difference between binding
cavities reveals a variation in steric hindrance that causes differences in binding preferences.

pClay performs geometric comparisons using Constructive Solid Geometry (CSG) opera-52

tions (fig. 1a) on analytically represented three dimensional solids. These operations, which53

include unions, intersections and differences, can be combined like arithmetic operators to54

sculpt a geometric solid. This sculptural nature of CSG inspires both the name pClay, a55

portmanteau of “protein” and “clay,” and also the solid geometric approach to the analysis of56

protein shape that pClay makes possible. For example, the union of large spheres centered at57

ligand atoms can represent the neighborhood of a ligand (fig. 1b,c). The difference between58

the spheres and the molecular surface of a receptor can describe the solvent-accessible binding59

cavity in the receptor (fig. 1d,e). The CSG difference between one binding cavity and another60

is the cavity region that is solvent accessible in one protein and inaccessible in the other (fig.61

1g). This difference, the variation between the two cavities, could be small, when binding62

preferences are similar, or large, when steric hindrance creates differences in specificity.63

The utility of these computations can be seen in multiple applications: When applying64

this approach to the S1 subsites of trypsins and elastases, we observed that it could identify65

threonine 226 which, in elastases, sterically hinders the longer substrates prefered by trypsins66

that might otherwise bind [8]. To illustrate the importance of precision, that region of67

hindrance is only 50 percent larger than a carbon atom (31 Å3). A similar approach identified68

“gatekeeper” residue 338 in the tyrosine kinases [13], which creates steric clash with larger69

drugs [21]. We have also observed that a CSG-based comparison of electrostatic isopotentials70

can reveal single amino acids crucial for selecting ligands in the in the cysteine proteases [5]71

and for stabilizing the three interfaces of the SMAD trimer [28]. Experimental validation has72

demonstrated the correctness of our prediction that arginine 235 forms critical electrostatic73

interactions for the activity of the ricin toxin [33]. By making CSG analysis possible on74

geometric solids that are exact, up to machine precision, pClay ensures that subtle but75

influential details cannot be overlooked.76

The precision that pClay achieves derives from solids that have analytical representations,77

like spheres and tetrahedra. pClay can assemble these primitives into solvent excluded78
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regions, which we call molecular solids. The boundary of a molecular solid is the classic79

molecular surface, also known as the solvent excluded surface, which was originally developed80

by Richardson and others [20, 9]. While we can construct molecular solids with CSG81

operations on many individual primitives, pClay exploits molecular properties to sidestep82

those operations and achieve greater efficiency. The resulting molecular solids avoid the83

“photocopier effect”, where multiple CSG operations can accumulate geometric errors. They84

can also be exported as triangle meshes, generated at an arbitrary degree of precision, for85

compatibility with other software.86

pClay enhances computational efficiency through parallelism. We achieve parallelism in87

pClay in a number of ways, most notably by recasting Marching Cubes, a traditional method88

for implementing CSG operations [22, 16], into a series of parallel breadth first searches89

(BFS). In pClay, we use BFS to traverse cubic lattices and identify contiguous regions of cubes90

within defined boundary regions. These breadth first traversals can be distributed evenly91

across arbitrary numbers of threads. By dividing the computation in this way, parallelism92

can make comparisons faster and also enable more detail to be considered. This advancement93

stands in qualitative contrast with existing efforts to parallelize structure comparisons (e.g.94

[7]), where throughput was increased without enhancing precision. To demonstrate the95

parallel scalability of our method, pClay was tested on both modern multicore processors as96

well as on a Xeon Phi, a manycore processor with 61 cores.97

Relative to existing methods, pClay is the first algorithm to use arbitrarily precise98

representations of molecular surfaces for protein structure comparison. It is also the first99

structure comparison method to use fine grained parallelization, enhancing both precision and100

computational throughput. Several methods do employ arbitrarily precise representations of101

the molecular surface, using NURBs [2], alpha shapes [31] or spherical coordinates [25, 27],102

but they are used for visualization and have not been integrated into comparison algorithms.103

Other methods parallelize structure comparison to refine representations of binding sites104

[7], to accelerate database searches [19], or create cloud-based search services [15], but use105

parallelism to enhance throughput and not also precision. To our knowledge, pClay is the106

first integration of arbitrary precision and parallelism into a structure comparison method.107

2 Methods108

As input, pClay accepts a collection of geometric solids and an expression of CSG operations.109

We convert the CSG expression into a binary tree, a CSG tree, where the nodes of the110

tree are geometric solids. The input solids, which include spheres, spindles, tetrahedra or111

molecular surfaces, are leaves on the CSG tree, while the result of CSG operations are the112

nonleaf nodes. The final result of all operations, the root node, is the output. pClay can also113

generate a closed triangular mesh at user-defined resolutions to approximate the boundary114

of the output.115

To perform CSG operations, pClay implements a parallel version of Marching Cubes [22]116

(Section 2.1), which we summarize below. Our method requires three basic functions to be117

performed by every node in the CSG tree. These functions are containsPoint(), intersectSeg-118

ment(), and findSurfaceCubes(). Given any point p in three dimensions, containsPoint(p)119

determines exactly if p is inside or outside the solid. A point exactly on the surface is said120

to be inside the solid. Second, given a line segment s, intersectSegment(s) determines all121

points of intersection between the surface of the operand and s, as well as the interior or122

exterior state of each interval on the segment. Finally, given a cubic lattice l that surrounds123

the primitive, findStartingCubes(l) finds a few cubes of the lattice that are surface cubes,124

having at least one corner inside and one corner outside the solid. These cubes are used125

CVIT 2016
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to initiate a parallel breadth first search for all surface cubes, called findAllSurfaceCubes(),126

which is implemented once for all primitives (Section 2.2). To implement leaf nodes it is127

thus sufficient to describe how these basic functions are implemented for that solid. Nonleaf128

nodes implement the basic functions as logical operations, as we will explain in Section 2.3.129

Below, we first describe how the output approximations are generated using a paral-130

lelization of Marching Cubes and how we find all surface cubes beginning the output from131

the starting cubes generated by the basic function. We next explain how the three basic132

functions are implemented for every primitive. Finally, we detail how the basic functions are133

implemented in nonleaf nodes.134

2.1 Parallel Marching Cubes135

As input, Marching Cubes accepts a set of geometric solids (fig. 2a), which we will refer to136

as operands, and a CSG expression tree to be performed on the operands. It also accepts a137

resolution parameter in angstrom units that specifies the degree to which the result of the138

CSG expression should be approximated in the output.139

We begin by defining an axis aligned cubic lattice surrounding the input operands, where140

each cube has sides equal to the user-specified resolution parameter (fig. 2b). This step is141

performed by examining the sizes of all operands and the related CSG operations.142

Once the lattice is defined, we invoke findStartingCubes(l) on each input solid (fig. 2c,f).143

The surface cubes identified are provided as input to findAllSurfaceCubes(), which identifies144

all remaining surface cubes of all inputs solids in parallel (fig. 2h). The process of identifying145

surface cubes for all input solids also necessarily determines the interior/exterior state of the146

points on these cubes in relation to specific solids. We then compute the interior/exterior147

state of these points in relation to all other solids in an embarrassingly parallel manner. Once148

this assessment is made for any point, we can access whether that point is inside or outside149

the output region (fig. 2i). In this way, we find the subset of cubes that contain a corner150

inside and a corner outside the output region.151

Figure 2 a) Input operands (red, green). b) Cubic lattice around operands (gray). c,f) surface
cubes (gray boxes). d,e,g) several steps of floodfill propagation (starting at yellow circle, following
yellow arrow). i) Corner points of each surface cube with exterior (yellow) or interior (red) state. j)
Segments that cross the boundary of the output surfaces (Black lines). k) Intersection points (white
circles) segments intersect the output surface. l) Lookup table of 3D surface constructions with
different edge intersection patterns. m,n) Triangles (black lines) approximating output region (gray).

Next, on each cube of the output surface, we identify edges that connect one corner that is152

inside the output region to one that is outside (fig. 2j). Since these edges must pass through153

the output surface, we call segIntersect() on the root node to find the point of intersection154

between the edge and the output surface (fig. 2k). This process is parallelized across the list155

of edges, ensuring that the calculation is never duplicated when dealing with adjacent cubes.156

Finally, once intersections for every edge on every surface cube are determined, triangles157

are generated in each cube following a lookup table (fig. 2l). The collection of all resulting158

triangles form a closed triangular mesh that approximates the output region (fig. 2m,n).159
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2.2 Finding All Surface Cubes160

findAllSurfaceCubes() accepts a cubic lattice (fig. 2b), a list of starting cubes (e.g. fig. 2c,f),161

and a CSG tree node for which to find all remaining surface cubes. We perform a parallel162

floodfill algorithm to find all remaining surface cubes: Each available thread is assigned a163

cube from the queue. Each thread tests cubes adjacent to the assigned cube to find any164

that are also on the surface of the input solid (fig. 2d). This test is performed by calling165

containsPoint() on the corners of the adjacent cube. If at least one corner is inside the input166

solid and another corner is outside, the adjacent cube is stored on a queue of upcoming167

cubes. Once all cubes adjacent to the initial surface cubes have been either added to the168

queue or discarded, all threads are then directed to find cubes adjacent to those still on the169

queue (e.g. fig. 2e), and so on, until the queue is empty, and all cubes on the surface of the170

input solid have been identified. Duplicate entries onto the queue are avoided by recording171

previously-examined cubes on a parallel hash table.172

2.3 Nodes of the CSG Tree173

pClay supports several kinds of simple and complex solids for CSG operations. These are174

spheres, tetrahedra, spindles, and molecular surfaces. Our implementation of each type175

supports three basic functions: containsPoint(), intersectSegment(), and findSurfaceCubes().176

To describe the implementation of these solids, we describe how each method is implemented177

for the solid. Spheres and tetrahedra are excluded because their implementations are trivial.178

Figure 3 a) Spindle. b) Formation of a spindle (gray) from two atoms (red) and a solvent sphere
(yellow). c) “Broken” spindle. d) Torus defining the characteristics of a spindle, including center
point (black dot), perpendicular vector (vertical arrow), major radius (arrow from center point to
ellipse), minor radius (arrow from ellipse to torus surface). e) Cylinder (light blue).

Spindles Spindles (fig. 3a) define the solvent excluded region between two atoms that are179

too close to permit a sphere representing a solvent molecule to pass between them (fig. 3b).180

“Broken” spindles (fig. 3c) can occur when the edge of the solvent sphere can pass beyond181

the centerline of the two atoms. Conceptually, spindles are the volume within a cylinder182

minus the volume within a coaxial torus. We define spindles by center point, perpendicular183

vector, major radius, and minor radius taken from the torus (fig. 3d), and end cap positions184

along the perpendicular vector (fig. 3e). The center point is the perpendicular projection185

of the center of the solvent sphere onto the segment between atom centers (fig. 3b). The186

perpendicular vector points from the center point towards the center of one atom. The major187

radius is the radius of the circle defined by the center of the solvent sphere as it rotates188

about the two atoms. The minor radius is the radius of the solvent sphere. The endcaps are189

circles perpendicular to the perpendicular vector that are defined by the point of tangency190

between the solvent sphere and the atoms, as the solvent sphere rotates about the atoms.191

The boundary surface of a spindle is defined by the end caps and elsewhere by the interior192

curve of the torus (fig. 3d).193

To implement containsPoint(p), note that the spindle is rotationally symmetric about the194

perpendicular vector. Thus, a plane K can be defined coplanar to p and the perpendicular195

vector of the torus. In K, p is inside the spindle only if it is inside the rectangle that196

defines the rotational cross section of the cylinder and also outside the circle that defines the197

rotational cross section of the torus.198
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intersectSegment(s) is computed by first setting up the calculation by translating the199

center of the spindle to the origin and rotating its axis to align it with the x axis. s is200

translated and rotated with it. We can describe the torus aligned to the x axis as201

(x2 + y2 + z2 +R2 − r2)2 − 4R2(y2 + z2) = 0
where R is the major radius, and r is the minor radius of the torus. In the torus equation,202

we substitute x, y and z with the line expressions x0 + tdx, y0 + tdy, and z0 + tdz, where203

x0, y0, z0 are segment starting points, and t parameterizes the line containing the line segment.204

The result of this substitution is a quartic equation on t, and roots of the equation will be205

parameters on the segment at points of intersection between the segment and the torus. We206

converted this equation into a monic quartic using Maxima, a computer algebra system [24].207

To find the roots of this equation, we produce the Frobenius companion matrix of this208

quartic polynomial. The roots are the eigenvalues of this matrix. Here, complex eigenvalues209

will correspond to nonexistent points of intersection between the segment and the torus while210

real eigenvalues correspond to intersection points on the torus. We find these intersection211

points and eliminate any intersections that are outside of the cylinder. Separately, we also212

find intersections with the end caps of the spindle, treating them first as infinite planes and213

then determining if the intersection point is within the circle on the plane. Intersections214

between the segment and the endcaps or between the segment and the torus are returned as215

intervals where the segment is inside the spindle.216

findStartingCubes() is implemented by first generating the segment between the centers217

of the endcaps. The lattice cube containing one centroid is identified, and if it is not a surface218

cube, the adjoining cube, through whose face which the segment passes, is identified as the219

next cube to examine. This process is repeated until either the segment ends at the other220

centroid of a surface cube has been found. In the case where the spindle is broken (fig. 3d),221

two segments are generated, starting at one endcap centroid and moving towards the other222

endcap centroid, but ending at the center.223

Molecular Solids pClay generates molecular solids by positioning structural components224

with the power diagram [1]. This approach follows the classic methods for generating225

molecular surfaces, such as CASTp [31], MSMS [30], GRASP2 [29], which also use power226

diagrams or similar constructs. For this reason, we paraphrase our approach here, expanding227

on points that differ from classic methods. As in the earlier methods, our approach represents228

water molecules as solvent spheres, which can be of any given radius. By calling basic229

functions from simpler primitives, pClay achieves an efficient implementation of the basic230

functions for the entire molecular solid without describing it as a CSG operation of many231

individual primitives.232

Figure 4 Molecular Surface Construction. a) Dual graph of a power diagram on four atoms
(black lines, points). b) Sphere primitives from atoms (teal). c) Atoms (yellow) with one spindle
(teal). d) Atoms with all spindles from edges of the dual graph. e) Tetrahedron primitive (teal). f)
One triangle of the dual graph (black lines, dots). g) Solvent sphere (yellow) tangent to three atoms.
h) New tetrahedron (teal) with corners in the center of the three atoms of the triangle and the
solvent sphere. i) Cup region inside the new tetrahedron (teal). j) Cup, shown with three adjacent
spindles (teal) and three atoms of the triangle (yellow). k) Finished molecular solid.
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We begin with an input file from the Protein Data Bank (PDB). Using atomic coordinates233

and Van der Waals radii for each atom, we first compute a power diagram with REGTET [3].234

The power diagram divides three dimensional space into cells corresponding to each atom of235

the input. The size of a cell relates to the Van der Waals radius of the atom, through the236

power function. Using the power diagram, we construct a topologically dual geometric graph237

(fig. 4a), which has a vertex at the center of each atom and an edge between any vertices238

that correspond to adjacent cells. This dual graph defines the location of the primitives that239

will comprise the molecular solid. In sequential stages, we generate all primitives of the same240

type in parallel, starting with sphere primitives, then spindles, tetrahedra, and so on.241

At every vertex of the dual graph, we create sphere primitives with the appropriate Van242

der Waals radius of each atom (fig. 4b). Next, we examine every edge on the dual graph and243

generate a spindle between the atoms on at the endpoint of each edge, except for overlong244

edges that are longer than the sum of Van set Waals radius of the endpoint atoms and245

the diameter of the solvent sphere (fig. 4c,d). Once all spindles are completed, we identify246

all tetrahedra in the dual graph that lack an overlong edge and we generate a tetrahedron247

primitive for each one (fig. 4e).248

Next, we identify triangles on the dual graph that are not between two tetrahedra (fig. 4f).249

These triangles define triplets of atoms that may be on the molecular surface. To determine250

whether the atoms are on the surface, we place a solvent sphere tangent to all three atoms251

(fig. 4g). If the solvent sphere does not collide with any other atoms, we create a negsphere: a252

sphere primitive in the tangent location in the same size as the solvent that describes a region253

of the solvent outside the molecular surface. We also generate a tetrahedron with corners on254

the triangle and at the center of the negsphere (fig. 4h). The region inside this tetrahedron255

and outside the negsphere is both inside the solvent excluded region and not occupied by256

spindles or atoms or other tetrahedra. We call this concave subset of a tetrahedron a cup257

(fig. 4i), and describe cups as a negsphere-tetrahedron pair. The concave surface of the cup258

is continuous with the three adjacent spindles and atoms (fig. 4j). Once all triangles that are259

not between two tetrahedra have been examined for the presence of a cup, the combination260

of spheres, spindles, tetrahedra and negspheres form a molecular solid (fig. 4k).261

To support the three basic functions, we store all of these primitives in a data structure262

for rapid range-based lookup. First, we generate a bounding box for each primitive. Next, we263

generate a lattice of cubes, where each cube is 2 angstroms on a side. Finally, we associate264

each primitive with all lattice cubes that intersect its bounding box. These associations265

act as a hashing function that enables us to rapidly identify any primitives nearby a given266

cube in the lattice. Since real molecules have finite atomic density, and since primitives are267

constructed from atoms and between atoms, the number of primitives associated with any268

cube is finite. As a result, a hashing function based on the lattice achieves algorithmically269

constant time lookup of nearby primitives.270

For containsPoint(p), given a point p, if p is outside the coarse lattice, then we immediately271

return false, because p must be outside the molecular surface. If not, we determine which272

cube c of the coarse lattice contains p. Next, we identify all primitives associated with c. We273

use the containsPoint() function of each associated primitive to determine if p is inside the274

primitive. If p is inside a negSphere, then p is outside the molecular surface. if p is inside275

any other primitives, then p is considered inside the molecular surface. If p is not inside any276

primitives, it is outside.277

For intersectSegment(s), given a segment s, we generate a list of cubes C that contain278

some interval of s. Next, we generate a list of primitives P associated with the cubes in C.279

We then query each primitive p in the list P for an interval of intersection between p and s280
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using the intersectSegment() method of each primitive. The output intervals generated are281

the union of the intervals in tetrahedra, spindles and spheres minus the union of intervals282

inside negspheres.283

For findStartingCubes(l), during the construction of the molecular solid, we record the284

points of tangency between all negspheres and atom spheres. For each of these points, we285

identify the lattice cubes of l that contain them. We also generate starting cubes from all286

spindles and isolated spheres in the protein structure, calling findStartingCubes() on each of287

these primitives. From these cubes, we return only cubes that exhibit one corner inside and288

one outside the molecular solid.289

CSG Operations CSG operation nodes are non-leaf nodes that represent the outcome of a290

CSG operation on its operand nodes. They fulfill the three basic functions by calling on its291

operand nodes, which we refer to as A and B in the text below.292

Given a point p, the CSG union returns true only when containsPoint(p) returns true293

on at least one operand. The CSG intersection returns true only when containsPoint(p)294

returns true on both operands. The CSG difference between A and B returns true only when295

A.containsPoint(p) is true and B.containsPoint(p) is false.296

For a given segment s, intersectSegment(s) on any CSG operation calls intersectSegment(s)297

on operands A and B, generating intervals a and b. When run on a CSG Union, Intersection298

or Difference, the output is, respectively, the union, intersection, or difference of a and b.299

Given a cubic lattice l, calling getSurfaceCubes(l) on a CSG union, intersection, or300

difference returns the setwise union of cubes returned by calling A.getSurfaceCubes() and301

B.getSurfaceCubes(). We always return a union of cubes because examining the union302

of cubes can avoid circumstances where a disconnected region in the final solid is lost.303

Performance profiling revealed that considering the union of all cubes is a minor cost in304

overall performance, except in artificially constructed cases that create many irrelevant cubes.305

Implementation Details pClay is implemented in C and C++. Interprocess communication306

was built with Intel’s Threading Building Blocks library. A C wrapper connects REGTET307

[3] to pClay. Benchmarks were run on a dual Xeon E5-2609 system with 8 cores at 2.5 Ghz308

and 32GB of ram and on a Xeon Phi 7120P with 61 cores at 1.2 Ghz and 16GB ram.309

Datasets Used Dataset A is 100 nonredundant pdb structures from VAST [23], with BLAST310

p-value cutoff 10e-7. Dataset B is 30 spheres, spindles and tetrahedra randomly generated in311

a cube with 10Å sides. Dataset C is 14 binding cavities from a nonredundant subset of the312

trypsins (1a0j,1aks,1ane,1aq7,1bzx,1fn8,1hrw,1trn,2eek,2f91), chymotrypsins (1eq9,8gch) and313

elastases (1b0e,1elt). More info: www.cse.lehigh.edu/~chen/papers/WABI2019/appendix.pdf314

3 Experimental Results315

3.1 Accuracy of molecular solid generation316

We compared the surfaces of molecular solids from pClay to surfaces made with the trollbase317

library, an established tool for molecular surface generation used in GRASP2 [29], VASP [8],318

VASP-E [5], and MarkUs [12]. pClay surfaces were created at 0.25Å resolution to yield a319

similar number of triangles and thus a fairer comparison. Using proteins from dataset A,320

surfaces generated by pClay had an average of 197,718.54 points. From these points, we321

measured the distance to the closest point on the surface generated by trollbase for the same322

protein. On average, that distance was 0.00383 Å (std dev 0.0004 Å). This tiny deviation323

between pClay and trollbase surfaces demonstrates the accuracy of pClay surfaces.324
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3.2 Performance Comparison and Parallel Scaling325

To our knowledge, VASP [5] is the only existing algorithm for comparing molecular solids326

using CSG. It lacks exact primitives or parallelism, but it can identify steric elements of327

protein structure that control specificity [8, 6, 13]. We compared the performance of pClay328

and VASP on the same CSG operations using Xeon (CPU) and Xeon Phi (PHI) processors.329

Random Primitives First, we compared CSG performance on the union of primitives in330

dataset B, generating mesh outputs at resolutions 1.0Å, .5Å, .25Å and .125Å. Since VASP331

does not use primitives, it was provided triangle meshes of identical primitives. All CSG trees332

were balanced, but imbalanced trees had nearly identical runtimes (not shown for brevity).333

On one CPU core, pClay required .113 seconds to compute the union at 1.0Å resolution.334

9.492 seconds were required to compute the same union at .125Å resolution (fig. 5a).335

Increasing to 8 threads, runtime dropped to .03 seconds for unions at 1.0Å resolution, and336

1.465 seconds to at .125Å. In contrast, single-threaded VASP required 3 seconds to compute337

the same union at 1.0Å , and 64 at .125Å. pClay far outperformed VASP on one thread.338

On 8, 16, 32, and 60 PHI cores, which are slower than CPU cores, runtimes exhibited339

sublinear improvement (fig. 5b). Runtimes on coarser resolutions improved less than for finer340

resolutions. The difference in parallel speedup (fig. 5c) arises from small problem sizes at341

coarse resolutions, where communications and setup outweigh the advantages of parallelism.342

Figure 5 a) Time to compute the union of 30 random primitives at varying resolutions and CPU
cores. VASP performance (single threaded) is shown in vertical bars. b) Time spent to compute the
unions on PHI cores. c) Parallel speedup on PHI cores. d) Time spent for pClay to produce several
binding cavities on CPU cores, compared to single-core VASP. e) Time to produce the same cavities
on PHI cores. e) Parallel speedup of pClay in cavity production on varying PHI cores.

Binding Cavities We also tested pClay by generating binding cavities, using the method343

from fig. 1, on dataset C. While pClay is capable of much finer resolutions, all cavities were344

generated at .25Å, the practical resolution limit for VASP. Figure 5d plots cavity generation345

times for these cavities. pClay required between 493 and 643 seconds on one CPU core,346

and between 149 and 233 seconds on 8 cores. Single threaded VASP required between 499347

and 538 seconds to perform the same work. Single threaded, pClay was slightly slower than348

VASP, but much faster when adding a second core, and faster still when adding more.349

Cavity generation was also run on 8, 16, 32, and 60 Xeon Phi cores. Runtimes on PHI350

cores are slower than on CPU cores because PHI cores have slower clock speeds. Runtimes351

fell slowly as threads increased (fig. 5e). Substantial increases in the number of PHI cores352

resulted in only modest improvements in runtimes (fig. 5f). This result contrasted from353

those performed on CPU cores, where performance improved substantially with increases in354

parallelism. These results point to bottlenecks in the PHI architecture affected by cavity355

generation, which is more data intensive than unions of random primitives.356
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3.3 Evaluating pClay on Existing Applications357

The added precision of pClay creates several new applications. We demonstrate one such358

application by producing training data for VASP-S, a statistical model for detecting differences359

in ligand binding specificity with steric causes [6]. VASP-S is trained on the volumes of360

individual CSG differences computed from cavities with the same binding preference. This361

training enables VASP-S to estimate the probability (the p-value) that two given cavities have362

similar binding preferences. If p is lower than a threshold α, VASP-S rejects the hypothesis363

that two cavities have similar binding preferences, and predicts that they are different.364

Figure 6 The p-value of the largest fragment between every trypsin-elastase and trypsin-
chymotrypsin pair in Dataset C, estimated with training data generated at several resolutions
(red, blue, orange lines). Fragments are sorted in ascending p-values along the horizontal axis.
The black line indicates the α threshold of 0.02, below which we predict that the fragment is
representative of proteins with different binding preferences. The finer-resolution training data,
made possible with pClay, yielded more accurate predictions.

We hypothesized that training the VASP-S model with data generated at finer resolutions365

will produce more accurate predictions than a VASP-S model trained with coarser data.366

To test this hypothesis, we used cavities from the trypsins, which prefer to bind positively367

charged amino acids. These cavities contrast from those of the chymotrypsins and the368

elastases, which prefer large aromatics or small hydrophobics, respectively. Three training369

sets were constructed from these cavities by generating all possible CSG differences between370

all pairs of trypsins. VASP was used to produce a copy of the training set at 0.25 Å resolution371

and pClay was used to produce the same set at resolutions of 0.125 Å and .0625 Å. We then372

computed CSG differences between every trypsin and every nontrypsin at these resolutions.373

Finally, we estimate the p-value of the largest CSG difference between every trypsin and374

every non-trypsin in Dataset C, at all three resolutions (fig. 6). We expect VASP-S to375

produce a low p-value on these CSG differences.376

Using the conservative α threshold of 2%, when trained at 0.25 Å resolution, VASP-S377

predicts that 43 of the 81 CSG differences between trypsin and non-trypsin cavities indicate378

binding preferences. This discrepancy indicates 38 false negative predictions, where VASP-S379

incorrectly overlooked cavities with different binding preferences. However, when trained380

at 0.125 Å or 0.0625 Å resolution, VASP-S correctly predicts that all CSG differences381

were from cavities with different binding preferences, a 0% false negative rate. These results382

demonstrate that pClay can provide superior precision, ensuring that existing aggregate383

methods do not lose accuracy by overlooking useful predictions.384

4 Discussion385

We have presented pClay, the first parallel algorithm for performing CSG analysis of protein386

structures at arbitrarily high resolutions, up to machine precision. It leverages mathematically387

exact primitives that can be assembled into molecular solids and parallel depth first search388

to compute CSG operations with multiple threads.389
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Molecular solids from pClay are nearly identical to molecular surfaces generated by390

existing, widely used software. At hundreds of thousands of positions, pClay surfaces differed391

from surfaces generated by existing methods by only thousandths of an angstrom. While392

existing surface methods have generally been validated by visual examination, this exhaustive393

comparison sets a new standard for validation. Surface generation stresses the algorithms394

that underpin CSG operations, illustrating that pClay is making accurate comparisons.395

We showed that pClay performs CSG operations efficiently on both artificial and realistic396

data. Evaluating the method on both Xeon CPU and Xeon Phi architectures, pClay exhibited397

scaleable multithreaded performance on all tests, though scaling was modest on the Xeon398

Phi for cavity generation. These results show that parallelism can drive both efficiency and399

precision for the comparison of protein structures.400

Finally, we showed how the precision of pClay can advance existing methods by training401

a statistical classifier to distinguish elements of protein structures that have a steric influence402

on binding specificity. pClay provided training data to the classifier that was more precise403

than what could have been provided by existing methods, enabling more accurate estimates404

of statistical significance, and ultimately a total elimination of false negative predictions.405

These capabilities enable applications in the detection and explanation of structural406

features that influence binding preferences. For example, the statistical model tested here407

finds elements of protein structures that could have a steric influence on specificity, thereby408

generating an explanation based on a steric mechanism that typically requires human409

expertise. As high throughput technologies increasingly reveal the ways in which disease410

proteins can vary, pClay is a glimpse into a new space of techniques that can use protein411

variants to supplement human experience in deciphering the structural mechanisms of412

molecular recognition.413
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