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Abstract—Many tools that explore models of protein complexes
are also able to analyze interactions between specific residues
and atoms. A comprehensive exploration of these interactions
can often uncover aspects of protein-protein recognition that
are not obvious using other protein analysis techniques. This
paper describes DiffBond, a novel method for searching for
intermolecular interactions between protein complexes while dif-
ferentiating between three different types of interaction: hydro-
gen bonds, ionic bonds, and salt bridges. DiffBond incorporates
textbook definitions of these three interactions while contending
with uncertainties that are inherent in computational models
of interacting proteins. We used it to examine the barnase-
barstar, Rap1a-raf, and Smad2-Smad4 complexes, as well as a
subset of protein complexes formed between three-finger toxins
and nAChRs. Based on electrostatic interactions established by
previous experimental studies, DiffBond was able to identify
ionic and hydrogen bonds with high precision and recall, and
identify salt bridges with high precision. In combination with
other electrostatic analysis methods, DiffBond can be a useful
tool in helping predict influential amino acids in protein-protein
interactions and characterizing the type of interaction.

I. INTRODUCTION

Deducing the role of chemical bonds is a crucial part
of understanding how protein-protein complexes achieve se-
lective binding. In structural biology, this effort occurs fre-
quently after the structure of a protein-protein complex is
determined. First, bonds are identified with the application
of the appropriate chemical and geometric constraints. Next,
hypotheses are developed about what role certain bonds play in
stabilizing particular parts of the complex. Finally, mutational
experiments that remove or alter specific bonds can begin
to test these hypotheses by establishing the resulting change
in binding affinity. Once the effect of those mutations are
evaluated, new mutational experiments can be devised, until
the role of bonding in the apparatus of recognition is explained.

Unfortunately, a high resolution structure of most protein
complexes is unavailable, so the closest alternative is to de-
velop hypotheses from computational models of the interacting
proteins. This approach must contend with additional uncer-
tainties: First, the presence of intermolecular bonds will be
constrained by the limits of bond geometry, which have been
carefully measured in the chemical literature [1]–[3]. Second,
the parts of a bond that form in vivo might be separated
distantly enough in the model that their potential for assembly
might not be discovered. Finally, intermolecular bonds may
exhibit trends in length and angle that are atypical of the
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general bonds surveyed in the literature. There are few tools
that perform an in-depth search of intermolecular bonds while
attributing a biochemical reason to the interaction. To perform
such a search while contending with existing constraints, this
paper aims to assess the predictability of intermolecular bonds
based on standard descriptions in the chemical literature.

Our approach is to treat the textbook chemical measure-
ments of salt bridges, ionic interactions, and hydrogen bonds
as a predictor for the presence of intermolecular bonds,
and verify these predictors against experimentally established
findings. In the case of hydrogen bonds, standard bond angles
and bond lengths are extremely well defined [1], but in the
case of ionic bonds, it is far less so. Coulomb’s law defines
attraction or repulsion between charged atoms at any distance,
but the degree of attraction or repulsion is modulated by the
presence and geometry of the dielectric between them. High
dielectric aqueous environments attenuate the electric field,
whereas low dielectric environments within a protein enhance
it [4]. Thus, the concept of ionic bond lengths must always
be an approximation based on assumptions of a biological
environment, as several groups have done [2], [5]. Salt bridges,
being the co-occurrence of both a hydrogen bond and an ionic
bond, must also exist in the presence of these assumptions
[5], [6]. Following these conventional definitions of bond
geometry, we created DiffBond, a basic classifier for predicting
the presence of salt bridges, ionic bonds, and hydrogen bonds.

Many methods deduce influential amino acids from compu-
tational models and predict the effects of mutation. Some pro-
vide information about the stability of a mutation by analyzing
heuristic energy changes, rigidity-based mutation analysis, or
molecular dynamic simulations [7]–[9]. Other methods com-
pute and predict interactions from the computational model
and infer mutation stability based on these interactions, such
as hydrogen bond location prediction [1]. Like hydrogen bond
location prediction, this method predicts existence and location
of interactions between complexes. However, DiffBond is the
first to predict the formation and location of intermolecular
salt bridges and ionic bonds, and analyze these results in
conjunction with hydrogen bond predictions. This bottom-up
approach not only provides enough specificity to classify each
interaction, but also is flexible enough to merge with other
methods to improve prediction of influential amino acids.

We evaluated the classifier on a small dataset of protein
complexes with well documented chemical bonds, measuring
how frequently the classifier agreed with the authors’ findings
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on each complex. While such a dataset cannot be representa-
tive of all intermolecular bonds within the space of protein
complexes, it can determine whether intermolecular bonds
infringe conventional norms.

II. METHODS

DiffBond identifies a list of all bonds that have the geomet-
ric and electrostatic capacity to make intermolecular bonds
and affect binding affinity between two proteins that form a
protein complex. First, we identify pairs of residues that are
able to form three types of intermolecular interactions: salt
bridge, ionic bond, and hydrogen bond. Identified residue pairs
must satisfy geometric and electrostatic criteria for forming
any of these three interactions based on textbook and literature
measurements. We then form lists of bond predictions for
each type of interaction as output. Finally, the resulting lists
can be interpreted to help identify significant residues or
aid in experimental design of mutations. This paper explores
our software which encompasses two methods for identifying
protein mutations that affect binding affinity, and discusses
prospects for applying them in conjunction to mutation testing.

A. Scanning for Bond Formation

We outline a method to scan for intermolecular bonds
between two proteins that form a protein complex, especially
at the interface. We first generate a fully connected graph
between all atoms from one protein to all atoms from the other
protein; to identify specific and significant connections within
the graph, we filter the connected graph using biochemical
criteria like distance, residue charge, and contacting atoms.

A list of possible hydrogen bonds were compiled using
HBPlus [1], which takes two hydrogen coordinates and looks
at several criteria to decide if a hydrogen bond is possible and
likely; criteria include minimum bond angles between atoms
at 90°, maximum distance depending on the type of bond with
3.9Å for donor-acceptor pairs and 2.5Å for hydrogen-acceptor
pairs, and minimum covalent separation of 3 covalent bonds.
In addition, we also searched for amino-aromatic hydrogen
bonds. These criteria values have been used in previous
hydrogen bond interaction studies [1], [10], [11].

A list of ionic bonds were compiled by searching within
a distance constraint for oppositely charged amino acids,
namely interactions between arginine, histidine, and lysine
with aspartate or glutamate [12]. In this study, we define an
ionic bond as residues whose charged atoms, namely a positive
N (nitrogen) in basic residues or negative O (oxygen) in acidic
residues, are less than a cutoff distance [3]. Our software
allows variable distance as an input parameter, but for the
purposes of this paper, we use 5 angstroms. The 5Å cutoff is
strict enough to yield only amino acids that are biochemically
likely to form a bond, while the N-O atom pairs make sure
the residue side chains are oriented towards each other. Ionic
bonds, rarely, can form over long distances between 5-10Å in
length [3] and so we also provide ionic bond predictions at
7.5Å and 10Å in Supplemental Text S1.

We also compile a list of salt bridges in the same way that
we compute ionic bonds. Barlow and Thornton define salt
bridges as a pair of oppositely charged residues whose side
chain N-O atoms are within a cutoff distance of 4Å [2]. Fig 1
shows an example of oppositely charged side chains, glutamate
and arginine of a Barnase-Barstar protein complex, within 4Å
distance of each other. A cutoff at 4Å is a well defined distance
that only considers "good" salt bridge geometries [13]. This
4Å measurement of salt bridge length aligns well with the
textbook definition where salt bridges are a co-occurrence of
both a hydrogen bond and an ionic bond [5], [6]. At less
than 4Å, oppositely charged atoms are likely to interact; this
also creates an environmental condition where water molecules
cannot fit between the interacting residues. This implies the
formation of a hydrogen bond which agrees with textbook
measurements [5], [14].

Our bond scanning method consists of searching for neigh-
boring amino acids that satisfy specific electrostatic and dis-
tance criteria; this design allows us to not only search within
dimers, but also scan among higher oligomers consisting of
many subunits.

Fig. 1. Sidechain visualization of Arg59 on Barnase (green) and Glu76 on
Barstar (teal). Arg59 and Glu76 are within 4Å and are oppositely charged
amino acids, so they are predicted to form a salt bridge by DiffBond.

B. Computing Electrostatic Isopotential Surfaces

An electrostatic isopotential surrounding a protein, at some
potential p, is a subset of the electrostatic isopotential field
that has potential equal to p. The electrostatic isopotential
is a surface that outlines an area within an electrostatic
potential at some threshold electrostatic potential k (kT/e).
This isopotential threshold creates a surface where one side
of the surface has isopotentials less than k and the other side
has isopotentials greater than k. When the surface does not
have infinite dimensions, it can be said to describe a geometric
solid with measurable volume.

To generate an electrostatic isopotential surface, we first
solve the overall potential field of a protein using DelPhi,
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Fig. 2. Intersection using CSG a) Two proteins with oppositely charged electrostatic fields. b) When the proteins are in complex, the oppositely charged
fields overlap forming an intersection region shown in orange. c) The intersection region represents the degree to which the field of one protein complements
the field of the other.

an application that takes a 3-D coordinate molecule as input,
computes solutions to the Poisson-Boltzmann equation for the
input molecule, and outputs the potential field of the whole
system [15], [16]. An algorithm called Marching Cubes then
takes the potential field and some isopotential threshold k
and generates an approximation of the isopotential surface
representing the protein at k [17].

VASP-E is a tool that implements Marching Cubes and is
able to manipulate, and calculate the volume of electrostatic
isopotentials [18]. As implemented in VASP-E, marching
cubes takes the potential field from DelPhi’s output and first
aligns it to a lattice grid. We then approximate the isopotential
by determining which grids the isopotential intersects within
the lattice. We use the intersections to further improve the
isopotential approximation [17]. This technique produces a
high-resolution approximation of the electrostatic potential
surface of a protein [18].

1) Interface Field Comparison: VASP-E extends the
method for manipulating electrostatic surfaces to perform a
comparison of interface fields; VASP-E allows us to manip-
ulate isopotential surfaces using constructive solid geometry
(CSG) [19]. Based on VASP-E implementation, CSG can
calculate the union, intersection, and difference of volumetric
objects [18]. In this method, we use a series of CSG opera-
tions to perform a comparison of the region of electrostatic
interaction between two proteins, called the interface field.
We first generate isopotential surfaces for two proteins that
form a protein complex. For one protein, the isopotential
surface is generated at +k kT/e. On the other protein, a surface
is generated at -k. The intersection between the +k and -k
surfaces is the interface region where the positively charged
region of one protein overlaps with the negatively charged
region of the other protein as seen in Fig. 2. In other words,
the intersection of +k and -k represent the degree to which
the field of one protein complements the field of the other;
the greater the volume of this intersection region, the more
electrostatically complementary the proteins are.

2) Nullification: DelPhi is able to solve the potential field
of a molecule while ignoring the charge contribution by an
amino acid in a process called nullification [20]. Nullification
of amino acids will affect the overall electrostatic surface of

a protein. For example, if a large positive charge is normally
observed in a potential surface, a lack of this positive charge
by nullification will result in volume decrease of the potential.
Important to note, the nullification of an amino acid outside
of the protein-protein interface region will usually result in no
surface volume change since volume is only measured around
the interface region.

In interface field comparison, nullification allows us to
generate volume differences for each amino acid. We use the
interface field comparison method to generate differences in
volume between an un-nullified interface field and a nullified
interface field. An example of the effect of nullification on
volume of an electrostatic surface can be seen in Fig. 3.
Nullification at residue 59 removed a large electrostatic region
at the interface between barnase and barstar.

C. Interpreting Data

We introduced DiffBond, a method that outputs lists of
bonds for three interactions: salt bridges, ionic bonds, and
hydrogen bonds. We also discuss a method for identifying
residue mutations that are likely to change the electrostatic
complementarity between proteins. Nullifying a residue and
comparing the interface field outputs an intersection region
representing the complementarity of two proteins. We discuss
how we can interpret these outputs to identify residues that
are significant to electrostatic interactions and can be strong
candidates for mutation testing.

1) Nullification Graphs: Using a similar method design
to VASP-E, we apply nullification to each amino acid in a
complex and perform wildtype-mutant comparison on each to
generate a volume difference for each amino acid nullification
[18]. We define two conservative prediction thresholds to
identify electrostatically influential amino acid interactions.
We first find the two amino acids, i and j, that maximize or
minimize volume difference. For maximum volume difference
Ω at i, we assign an upper prediction threshold of P = Ω/2;
likewise, for minimum volume difference ω at j, we assign
a lower prediction threshold of p = ω/2. If the nullification
of an amino acid x increases the volume difference above P,
then x is predicted to reduce complimentarity of the complex
and reduce affinity; a decrease in volume difference by amino
acid y below p aligns with a prediction that y improves
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Fig. 3. Effect of Nullification on Barnase-barstar a) Wildtype barnase electrostatic surface at isopotential of +1 kT/e. b) Barnase nullified at residue
59, electrostatic surface at isopotential of +1 kT/e. c) Overlap of wildtype (transparent yellow) and nullified barnase (green) surfaces. a,b,c) The red square
encompasses the main difference in isopotential surface due to nullification. d) Wildtype barnase (blue) in complex with barstar (transparent yellow).

complementarity and therefore increases affinity. If more than
10% of amino acids exceed the prediction threshold P, it is
likely the case that no amino acids contributed a significant
decrease to electrostatic complementarity, or that the data
contains a large amount of noise. In either case, we ignore
the prediction threshold and predict that there are no amino
acids that reduce complementarity. Similarly, if 10% of amino
acids are less than p, then we predict that no amino acids
increase electrostatic complementarity.

2) Nullification and DiffBond Mutation Prediction: Elec-
trostatic complementarity predictions in nullification graphs
can be analyzed in conjunction with bond formation data by
cross-referencing influential amino acids with bonds formed.
Based on nullification, we can predict whether mutating an
amino acid will increase or decrease electrostatic complemen-
tarity. Similarly, knowing what intermolecular bonds can be
formed by an amino acid can help predict changes in comple-
mentarity when mutated. For example, mutating one end of
an ionic bond to an uncharged or like-charged residue would
cause the pair to lose the attraction. Although predictions from
nullification and intermolecular bond prediction have not yet
been shown to be related, both methods predict behaviors in
electrostatic complementarity. Predictions from two separate
sources can help point to significant mutation candidates.

D. Data Set Construction

DiffBond was designed to identify electrostatic influences
and bonds and, with VASP-E, form predictions of mutations
that would either increase or decrease affinity for protein-
protein interaction. Because of this design, we validate Diff-
Bond using several families of protein for which specific
bond formations that are highly involved in protein electro-
statics are well documented. The three-finger toxin family
(pdb: 1yi5, 4hqp, 2qc1, 1kc4), barnase-barstar complex (pdb:
1brs), rap1A-RAF complex (pdb: 1c1y), and smad2-smad4
complex (pdb: 1u7v) were selected for validating DiffBond
because they have all been extensively studied for specific
electrostatically influential amino acids and bonds that affect
binding affinity to their corresponding binding partners.

1) Barnase-Barstar: Barnase is an extracellular RNase of
Bacillus amyloliquefaciens that is often co-expressed with its
inhibitor barstar; without the concurrent expression of barnase
in complex with barstar, barnase can be lethal to the cell [21].
Barstar inhibits barnase by forming a tight complex with many
intermolecular steric and electrostatic interactions at binding
site residues [22]–[24]. As a result, mutating residues involved
in these intermolecular interactions often results in enhanced
or diminished electrostatic complementarity between barnase
and barstar.

2) Rap1a-Raf: Ras is a family of GTPase that transmits
signals via protein-protein interaction to regulate many bi-
ological systems, like cell cycle progression, cell division,
apoptosis, lipid metabolism, DNA synthesis, and cytoskeletal
organization [25]. While little is known about ras structure in
complex with its effector ligands, rap1a has a similar structure
to ras; it has an almost identical binding interface, and binds
competitively to ras effectors like raf, an oncogene involved in
ERK 1/2 signaling [26], [27]. Like ras, the binding interface
of rap1a-raf consists of a few crucial intermolecular bond
interactions whose mutations alter binding affinity [26], [28],
[29].

3) Smad2-Smad4: Smads is a family of structurally sim-
ilar proteins that act as main signal transducers for TGF-B
receptors, a super family of proteins that help regulate cell
development and growth [30], [31]. R-Smad proteins, like
Smad2, direct the TGF-B signaling while Smad4 help mediate
the formation of the heterometic complex between R-Smads
and Smad4 [30]. This dataset uses the trimer consisting of one
Smad4 and two Smad2 subunits whose binding interface are
well studied for electrostatic interactions and mutation effect
[32].

4) Three-finger Toxin Family: Three-finger toxins are a
protein superfamily consisting of many small and structurally
similar toxin proteins from elapid snake venom [33], [34].
Their distinct structure consist of three beta strand loops
emanating from a cysteine rich core, which facilitates inter-
action with many receptor or channel proteins; neurotoxin
members of the family, such as α-bungarotoxin [35]–[37] and
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Total Ionic Bond Hydrogen Bond Salt Bridge
True Positive 14 35 6
False Positive 2 5 1
False Negative 3 12 6
True Negative Unknown Unknown Unknown
Precision 87.5% 87.5% 85.7%
Recall 82.4% 74.5% 50.0%

TABLE I
PRECISION AND RECALL OF THE BOND LIST FOR PREDICTING THE FORMATION OF BONDS.

α-cobratoxin [38] interact with neuronal and muscle nicotinic
acetylcholine receptors (nAChRs) while other members can
interact with muscarinic acetylcholine receptors (mAChRs)
or different neuronal nAChR subtypes [34]. The interaction
between many members of this toxin family and nAChRs are
well studied with known interactions across the interface.

The protein complexes formed by barnase-barstar, rap1a-raf,
and smad2-smad4 are commonly used protein complexes for
studying electrostatic interaction. They are comprehensively
tested and reviewed in literature on both sides of the interface,
and provide clear descriptions of bond formation between
residues and altered binding affinity due to mutation. Although
some three-finger toxin members are not as well studied as the
three protein complexes mentioned prior, α-bungarotoxin and
α-cobratoxin are both studied extensively in mutation testing.

III. RESULTS

DiffBond is the first method for identifying ionic bonds and
salt bridges, and it uses HBPlus, one of the only methods for
identifying hydrogen bonds. Consequently, DiffBond cannot
be compared to HBPlus and there are no other existing meth-
ods it can be compared against for identifying salt bridges and
ionic bonds. Instead, we compare predictions from DiffBond
to experimental data.

A. Bond Prediction Validation

We validate the DiffBond bond prediction method by com-
paring bond predictions with known interactions published in
experimental findings. Intermolecular bond formations were
gathered from published journal papers rather than from a
database because we not only want to confirm the existence
of a bond formed between a pair of amino acids, but we
also want to attribute a reason for bond formation that came
from experts in biology through mutation testing or in-depth
crystallographic analysis. By collecting the predictions as a
set of ionic bonds, hydrogen bonds, and salt bridges, we can
measure the prediction performance of predicted bonds on
each type of bond separately.

We start by counting true positives (TPs), false positives
(FPs), true negatives (TNs), and false negatives (FNs). A bond
prediction is defined as a TP if our findings predict that a bond
forms between an amino acid pair and the literature agrees for
the same specific amino acid pair. Similarly, hydrogen bonds
are TPs only if experimental findings conclude a hydrogen
bond exists between the pair. Finally, salt bridges are TPs
only if studies either state the bond contains both a hydrogen
bond and electrostatic interaction or explicitly states a salt

bridge exists. FPs are bond predictions that were found but
are not considered to form the predicted bond by experimental
findings. TNs are bond predictions that we predicted would not
occur and that experimental findings agree would not occur.
FNs are bonds that DiffBond did not predict would occur, but
experimental findings found those bonds to form.

We cannot fully count TNs because no studies specifically
discuss and analyze the electrostatic influence of every amino
acid in a protein. However, we can evaluate the prediction
accuracy of DiffBond without TNs; we compute precision and
recall to verify accuracy. Precision is the fraction of correctly
predicted bonds among all bonds verified in experimental
findings, and recall (sensitivity) is the fraction of correctly
predicted bonds among all true interactions.

When searching literature for intermolecular interactions, if
a bond was generated by our bond list but was not mentioned
in literature, we considered this prediction to be a FP. This
strict criteria verifies that the precision we report is a lower
limit, with the possibility that any unmentioned bond predic-
tions may be validated in the future.

The precision and recall for individual protein complexes
and the cumulative accuracy statistics are reported in Table I.
Although the total number of ionic predictions were low at
16, ionic bond prediction exhibited high precision and recall
at 87.5% and 82.4% respectively. Hydrogen bond predictions
showed both strong precision and recall at 87.5% and 74.5%
over a large set of predictions at n=40 . Salt bridge prediction
had a high precision but a low recall at 85.7% and 50%
respectively, over a small sample size of n=7.

Of the 3 false negatives from ionic bond prediction, all 3
pairs were correctly predicted by expanding distance threshold
to 7.5Å instead of 5Å. Similarly, of the 6 false negatives for
salt bridge prediction, 3 of the 6 were correctly predicted by a
distance threshold of 5Å instead of our chosen threshold of 4Å.
Although hydrogen bond prediction had 12 false negatives,
HBPlus uses many more constraints, including an additional
minimum distance cutoff that may create false negatives.
However, we did not measure a larger threshold range for
hydrogen bonds to determine whether distance played a large
role in lowering recall.

B. Nullification Graph Predictions

Using VASP-E, we performed a nullification over each
amino acid of protein complexes and calculated the volume
difference between wildtype and nullified surfaces. The vol-
ume difference for each nullification in the barnase-barstar
complex can be seen in Fig. 4, represented by the colored lines.
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Fig. 4. Volume difference between wildtype and mutant barnase-barstar complex when nullifying barnase amino acids at k= +/-1, +/-3, +/-5, and +/-7.
Significant residue nullifications are those that surpass either the upper or lower threshold.

We present all predictions from nullification in Supplemental
Table S2 alongside predictions from the bond list.

IV. DISCUSSION

We have presented DiffBond, a method for identifying
significant bonds in protein-protein interactions and predicting
influential amino acids for mutation testing. There are few
tools that perform an in-depth search of intermolecular bonds
while attributing a biochemical reason to the interaction. To
our knowledge, none have paired this search with a volumet-
ric electrostatic analysis to further inform possible mutation
testing. In experimental settings, the design of mutational
studies can be difficult because there are many amino acids to
consider, and picking a misguided mutation candidate can be
time consuming, expensive and unproductive. DiffBond was
designed to guide mutation testing by gathering additional
structural and electrostatic information that may not be ap-
parent to support experimental designs.

Scanning for salt bridges, ionic bonds, and hydrogen
bonds is a novel approach introduced in this paper and has
demonstrated promising capability in identifying intermolecu-
lar bonds in protein complexes with high precision and recall.
Bond prediction was able to predict 14 ionic bonds and their
paired partners out of 17 bonds known in literature. Similarly,
salt bridge prediction maintained a high precision. Recall for
salt bridge prediction was slightly lower which was expected
due to the very strict distance cutoff when defining a salt
bridge. Hydrogen bond prediction also demonstrated high pre-
cision and recall. When using textbook defined measurements
for each type of interaction, we found that these definitions
are strong predictors for each bond type.

One criteria in collecting data that reduced precision was
that any bond predictions that had no mention in literature
were considered false positives. This supports that our preci-
sion statistic is a lower limit and that future studies may verify
bonds that we considered false predictions. To our knowledge,
no experimental results have established that predictions we

considered false positive do not occur, and so we present it as
an open prediction.

Furthermore, we expect DiffBond parameters like distance
threshold or bond list interpretation to vary on a case-by-
case basis. The assumption for a 4Å distance threshold for
salt bridges, or a 5Å distance threshold for ionic bonds may
not always hold true; low resolution structures can introduce
a margin of error for amino acid spatial placement. Even
with high resolution structures, we cannot always account
for side chain flexibility especially when residues are not
sequestered. Some studies may be interested in gathering more
data at the cost of precision. For example, a study may be
interested in finding more salt bridges, but the conventional salt
bridge definition yields few residues due to its strict distance
criteria for a good salt bridge geometry. Expanding the dis-
tance threshold means fewer true salt bridges are missed, but
more false positives are identified. Incorporation of dynamic
information might also be helpful in improving predictions
of bond locations generally, and will be considered in future
work.

Similar to scanning for intermolecular bonds, VASP-E and
the use of nullification presents another method for identifying
mutation candidates and mutation prediction. In conjunction,
nullification and intermolecular bonds offer two perspectives
on electrostatic interactions that can compliment each other
without necessarily being related. If both methods point to a
residue for mutation prediction, we can consider two hypothe-
ses: First, mutating this residue may affect binding affinity
when mutated, either increasing electrostatic complementarity
if the peak points upward or decreasing electrostatic comple-
mentarity if the peak points downward. Second, mutating this
residue to one that no longer forms the predicted bond may
break the bond. For example, mutating from a charged acidic
residue like lysine to an uncharged residue like glycine likely
means any predicted ionic interactions before are no longer
possible.

Outside of selecting for high quality mutation candidates,
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the additional information provided by these methods offers
high value to researchers in experimental design. Pointing
out possible interactions and predicting electrostatic comple-
mentarity can inform how researchers design a mutation; for
example, they can test each of the hypotheses above with
mutations to different residues.

DiffBond has the potential to be extended to different
applications. Although we have not assumed any correlation
between mutation predictions from nullification and from in-
termolecular bond list, we can assimilate other predictor tech-
niques to begin an artificial reasoning process. Nullification
as a first step implies change in electrostatic complementarity
by mutation, but does not provide a biochemical reason. The
intermolecular bond list interprets three possible interactions
when explaining nullification peaks. Adding more prediction
techniques for different interactions can form a decision tree
of reasoning for mutation prediction.
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SUPPLEMENTAL MATERIALS

TABLE S1: Bond predictions and validation by literature. [22]–[24],
[26], [28], [29], [32], [35]–[38]

Protein/PDB Bond Type/Distance Interacting Amino Acid Pair Shown by Literature
1YI5 Ionic Bond

5A F ASP27 / B LYS34 N
7.5A F ARG33 / A GLU149 N

F ARG33 / A ASP194 N
F ARG36 / A ASP194 N

10A F ASP8 / A ARG148 N
F ASP8 / A LYS180 N
F ARG33 / A ASP85 N
F ARG33 / A GLU190 N
F LYS35 / B GLU163 N
F LYS49 / B GLU163 N
F ARG68 / B ASP108 N
F ARG68 / B GLU110 N

Hydrogen Bond F ASP27 / A TYR185 Y
F LYS35 / A SER186 Y
F ASP27 / TYR185

Salt Bridge F ASP27 / B LYS34 N
Missed None

4HQP Ionic Bond
5A I ASP30 / A ARG182 Y

I ARG36 / A ASP193 N
I LYS38 / A GLU185 Y

7.5A I ARG25 / A GLU185 N
I LYS38 / B GLU185 N

10A I ARG36 / A ASP87 N
I ARG36 / A GLU151 N
I LYS38 / B ASP160 N
I GLU41 / A ARG182 N
I HIS68 / A GLU185 Y
I HIS68 / A GLU189 N
I LYS70 / A GLU185 Y

Hydrogen Bond I VAL40 / A PHE183 Y
I ASP30 / A TYR184 Y
I LYS38 / A GLU185 Y

Salt Bridge I ASP30 / A ARG182 Y
Missed ARG36 / TYR91 Hydrogen Bond

ARG36 / TRP145 Hydrogen Bond
LYS38/GLU185 Salt Bridge

2QC1 Ionic Bond
5A None
7.5A A ARG36 / B ASP152 N

A LYS52 / B GLU129 N
10A A ASP30 / B LYS145 N

A ARG36 / B ASP89 N
A ARG36 / B ASP200 N
A GLU41 / B LYS145 N
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Table S1 continued from previous page
Protein/PDB Bond Type/Distance Interacting Amino Acid Pair Shown by Literature

A GLU41 / B HIS186 N
Hydrogen Bond A ASP30 / B TYR190 Y

A ARG36 / B CYS192 Y
A ARG36 / B THR148 Y
A ARG36 / B ARG149 Y
A LYS38 / B SER191 Y
A VAL40 / B PHE189 Y
A HIS68 / B SER191 N
A LYS70 / B CYS192 N

Salt Bridge None
Missed None

Barnase/Barstar Ionic Bond
5A A ARG59 / D GLU76 Y

A ARG59 / D ASP35 Y
A HIS102 / D ASP39 Y

7.5A A LYS27 / D GLU80 N
A ARG59 / D GLU80 N
A ARG59 / D ASP39 Y
A GLU60 / D HIS17 N
A ARG83 / D ASP39 Y
A ARG87 / D ASP39 Y

10A A LYS27 / D ASP39 Y
A LYS39 / D GLU46 N
A LYS62 / D ASP35 N
A HIS102 / D ASP35 Y

Hydrogen Bond A LYS27 / D THRE42 Y
A ARG59 / D ASP35 Y
A ARG59 / D GLU76 Y
A GLU60 / D ASP35 N
A GLU60 / D LEU34 Y
A ARG83 / D TYR29 Y
A ARG83 / D ASP39 Y
A ARG83 / D GLY43 Y
A ARG87 / D ASP39 Y
A HIS102 / D ASN33 Y
A HIS102 / D GLY31 Y
A HIS102 / D ASP39 Y

Salt Bridge ARG59 / D GLU76 Y
Missed ARG83/ASP39 Hydrogen Bond + Electrostatic

ARG87/ASP39 Hydrogen Bond + Electrostatic
ASN84 / TYR29 Hydrogen Bond

Rap1a/Raf Ionic Bond
5A A GLU3 / B LYS65 Y

A ASP33 / B LYS84 Y
A GLU37 / B ARG67 Y
A ASP38 / B ARG89 Y

7.5A A GLU37 / B ARG59 Y
A GLU54 / B LYS65 N
A GLU54 / B ARG67 N

10A A GLU30 / B LYS87 N
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Table S1 continued from previous page
Protein/PDB Bond Type/Distance Interacting Amino Acid Pair Shown by Literature

A GLU37 / B ARG89 N
A ASP38 / B ARG67 N
A ASP38 / B LYS84 N
A ASP57 / B LYS84 N
A ASP57 / B ARG89 N

Hydrogen Bond A ASP33 / B LYS84 Y
A GLU37 / B VAL69 Y
A GLU37 / B ARG59 Y
A ASP38 / B THR68 Y
A ASP38 / B ARG89 Y
A SER39 / B ARG67 Y
A SER39 / B ARG89 Y
A ARG41 / B ASN64 Y

Salt Bridge ASP33 / B LYS84, Y
Missed ASP38 / ARG89 Salt Bridge

GLU37/ARG67 Salt Bridge
GLU37 / ARG59 Salt Bridge
ARG41 / GLN 66 Hydrogen Bond

1KC4 Ionic Bond
5A A LYS38 / B GLU188 Y

A HIS68 / B GLU188 Y
7.5A A ARG25 / B GLU188 N

A ARG36 / B GLU192 N
10A A ARG36 / B GLU184 N

A ARG36 / B GLU188 Y
Hydrogen Bond A TRP28 / B TYR194 N

A ARG36 / B GLU188 Y
Salt Bridge None
Missed Arg36 / Phe186 Hydrogen Bond

Arg36 / Tyr 194 Hydrogen Bond

Smad2/Smad4 Ionic B chain with C chain
5A B LYS340 / C GLU288 Y

B ASP493 / C ARG321 Y
B ASP493 / C ARG329 Y

7.5A B HIS317 / C ASP304 N
B ASP493 / C ARG330 N
B ASP494 / C ARG329 N
B ASP494 / C ARG330 N
B ARG496 / C GLU281 N
B ARG496 / C GLU326 N
B ARG497 / C GLU326 N
B ASP537 / C ARG310 Y
B HIS541 / C ASP300 N
B ASP547 / C ARG330 N
B ASP547 / C HIS331 N

10A B GLU337 / C ARG285 N
B GLU337 / C HIS291 N
B ASP494 / C ARG321 N
B ARG502 / C GLU326 N
B LYS519 / C GLU281 N
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Table S1 continued from previous page
Protein/PDB Bond Type/Distance Interacting Amino Acid Pair Shown by Literature

B GLU526 / C ARG321 Y
B HIS528 / C GLU288 N
B HIS530 / C GLU288 N
B HIS530 / C ASP304 N
B ASP537 / C ARG329 N
B HIS541 / C ASP304 N

Hbond B THR338 / C GLU288 N
B LEU533 / C THR303 Y
B ASP537 / C ARG310 Y
B GLU526 / C SER317 Y
B ASP493 / C ARG321 Y

Salt bridge B LYS340 / C GLU288 Y
B ASP493 / C ARG321 Y
B ASP493 / C ARG329 Y

Missed LYS340 / GLU288 Hydrogen Bond
ASP332 / ASN320 Hydrogen Bond
HIS528 / SER318 Hydrogen Bond
GLN534 / ASP304 Hydrogen Bond
ASP537 / THR303 Hydrogen Bond
ASP537 / ASP304 Hydrogen Bond

TABLE S2: Nullification predictions and agreement with bond list.

PDB ID Nullification Peak Direction Agrees with Bond List?
1YI5

ASP27 - Y
ALA28 - N
ARG33 + Y
ARG36 + Y

4HQP
ASP30 - Y
SER34 + N
SER35 + N
ARG36 + Y
GLY37 + N
LYS38 + Y
GLU56 - N
LYS70 + Y

2QC1
ASP30 - Y
SER35 + N
ARG36 + Y

1brs
LYS27 + Y
ASP54 - N
SER57 + N
ARG59 + Y
GLY65 - N
GLU73 - N
SER80 - N
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Table S2 continued from previous page
PDB ID Nullification Peak Direction Agrees with Bond List?

ARG83 + Y
ARG87 + Y

1c1y
GLU3 + Y
5 - N
16 - N
ASP33 + Y
36 - N
GLU37 + Y
ASP38 + Y
SER39 - Y
ARG41 - Y
GLU54 + Y
ASP57 + Y

1KC4
ARG36 - Y
GLY37 + N

SMAD2/SMAD4
VAL492 - N
ASP493 + Y
ARG496 - Y
ARG497 - N
ARG502 - Y
LYS519 - N
ASP537 + Y
ASP547 + Y

13


