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ABSTRACT

We present a new three dimensional representation of hy-
drogen bond donors and acceptors as spherical cones. The
conical representation describes the range of bond lengths and
bond angles at which a hydrogen bond can form. We hy-
pothesized that three dimensional intersections of these cones
can predict the formation of hydrogen bonds and potentially
their contribution to protein-protein interactions. As a result,
this representation enables a new technique for identifying
similarities in bond formation and bond geometry.

I. INTRODUCTION

Algorithms for protein structure comparison often consider
a wide range of biophysical mechanisms. The similarities
they detect, often in binding site geometry [3], [10], [13],
[20] and electric fields [11], [13], can reveal proteins that
catalyze the same chemical reactions [4], [9], [16] or proteins
with remote evolutionary relationships [12]. Differences in
patterns of steric hindrance [5] or electrostatic complemen-
tarity [2] can point to variations that select different binding
partners. Throughout, the algorithmic representation of the
protein and its biophysical mechanisms performs a central role
in achieving precise and accurate comparison. Nonetheless,
some representations of biophysical mechanisms have been
studied more than others. Many methods describe the atoms
of proteins as collections of points in space (e.g. [21]), or the
solvent accessible surface of proteins as triangular meshes (e.g.
[1], [18]). In contrast, few techniques compare the geometry
and angular tolerances of intermolecular hydrogen bonds,
although bond tolerances play a critical role in techniques for
assessing molecular rigidity ( [17], [19]).

The specific problem addressed in this paper concerns
the case where protein structures are arranged in potentially
interacting positions, and it is of interest to assess the degree
of compatibility between all potential intermolecular hydrogen
bond donors and acceptors. We will assess compatibility of
particular donors and acceptors for forming a hydrogen bond
not only in that they satisfy acceptable bond length and
angle limits, but also that margins exist within these limits
for motion by the donor and acceptor without breaking the
hydrogen bond. This novel capability, explored first in this
paper, enables us to identify donors and acceptors that could
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Fig. 1. A spherical cone.

Barstar Glu76

Barnase Arg59

Fig. 2. A hydrogen bond between Barnase E76 and Barstar R59 (pdb:
1brs). Spherical cones (angle 90◦ and slant height 2.3 Å), illustrate potential
bond angles and lengths between donor and acceptor. The hydrogen bond
hydrogen is not shown, for clarity.

be removed through mutation to modify binding preferences.
We hypothesize that donor-acceptor pairs that satisfy hydrogen
bonding limits with the largest margins will be the biggest
contributors to binding specificity.
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We approach this problem by representing the limits of
bond length and angle formation around donors and acceptors
using a spherical cone (Fig. 1). Our representation positions
one spherical cone at the donor atom, and a second spherical
cone at the acceptor atom, and we measure the volume of
intersection between these cones in order to estimate the
margin of hydrogen bond flexibility (e.g. Fig. 2). We determine
the geometry of this intersection using an enhanced version
of pClay [7], [8], a parallel algorithm we developed for
computing constructive solid geometry operations (CSG) on
analytically defined mathematical primitives (Fig 3a). Our
enhancements enable CSG operations on a spherical cone
primitive that can be made arbitrarily precise, to machine
precision, and in parallel on modern multicore architectures.

Our results examine two ways in which spherical cone
representations of hydrogen bond donors and acceptors can
be used to analyze protein-protein complexes. First, we eval-
uated how effectively pairs of spherical cones can predict
the presence of hydrogen bonds. Second, we evaluated how
closely the volume of intersection within a spherical cone
pair reflects the contribution of the resulting hydrogen bond
to binding affinity. Rather than relying on general thresholds
for hydrogen bond lengths and angles, we compared our
findings directly to observations of hydrogen bonds from the
structural literature, to ensure the most accurate evaluation
of our findings. Our results point to new ways to evaluate
the existence and similarity of hydrogen bonds from protein
structures and models.

II. METHODS

A. Definitions

A spherical cone (Fig. 1) is a subset of a sphere defined
by the intersection of the sphere and an infinite cone whose
apex is at the center of the sphere. The base of the spherical
cone is a circle at the intersection of the sphere’s surface and
the cone’s surface. We define each spherical cone by its apex
a = (ax, ay, az), the apex of the cone, its slant height l, a
line from the apex to any point on the base, its perpendicular
vector −áv = vx ı̂+ vy ̂+ vz k̂, a vector pointing from the apex
to the center of the base, and its angle α, the angle between
the perpendicular vector and the slant height.

CSG operations approximate set theoretic computations
defined on closed sets in three dimensions, which in this are
always unions, intersections, or differences. While we define
spherical cones as mathematically exact geometric solids, the
final output from a CSG operation is an approximation of the
exact set theoretic operation, and it is returned as a triangular
mesh, which we visualize later in this paper. Multiple CSG
operations can be performed at once, to avoid the accumulation
of error from this mesh translation.

B. Requirements for CSG operations

We compute CSG operations on spherical cones using pClay
[8], a parallel, variable-precision implementation of marching
cubes [14] that performs CSG operations on mathematically
exact geometric primitives. To make this possible, we de-
fined a spherical cone primitive, which requires three specific
functions for the primitive to be implemented. They are
containsPoint(), intersectSegment(), and findSurfaceCubes().
These functions are defined as follows:

containsPoint(p) begins with any point p in three dimensions
and determines if p is inside or outside the solid. When p is
on the surface of the spherical cone, it is considered inside.
intersectSegment(s) begins with a line segment s and finds all
points where s intersects the surface of the operand, as well
as the interior or exterior state of each subsegment between
intersections. Finally, given a cubic lattice l that surrounds
the cone, findStartingCubes(l) finds a few cubes of the lattice
where at least one corner of the cube is inside and one
corner is outside the cone. Cubes that satisfy this property are
called surface cubes. findStartingCubes() supports a function
called findAllSurfaceCubes(), which is implemented once for
all primitives. This process begins with the surface cubes iden-
tified by findStartingCubes, and, following a parallel breadth
first search, it walks the lattice along the surface of a cone in
order to identify all surface cubes. To accelerate intersections,
a bounding box method, GetInternalBoundingBoxVertices(),
defines the bounding box of a spherical cone; it is used to
avoid marching cubes computations that are not necessary.

C. Marching Cubes on Spherical Cones

While pClay supports multiple geometric primitives and
CSG operations, we leave the general description to earlier
work [8]. Here, we paraphrase the process as it would be
applied to compute the intersection of two cones. First, we
define a cubic lattice l, oriented to the x,y, and z axes. Each
cube in l will have sides equal to r. The boundary of l is
selected so that there are an integer number of cubes in each
of the three dimensions, and that both operands are contained
completely within l (Fig. 3c).

Once we have defined the l, we call findStartingCubes(l) on
both of the input cones, finding several surface cubes on each
cone (Fig. 3d). Next, for each set of starting cubes c, we call
findAllSurfaceCubes(c), in order to identify all cubes of the
lattice that are surface cubes for each cone (Fig. 3e). Using
containsPoint(), this process determines the interior/exterior
state of the corners of these cubes in relation to specific solids
(Fig. 3f). We then compute the interior/exterior state of these
points in relation to all other solids in an embarrassingly
parallel manner. Once this information is computed, a logical
operation based on the desired CSG operation determines
whether the corner of each cube is interior or exterior to the
final output region (Fig. 3g). This process identifies the subset
of cubes identified by the findAllSurfaceCubes() functions that
will be surface cubes of the output region.

On the resulting cubes, we find all segments s that will
connect a corner that is interior to the output region to a
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Fig. 3. CSGoperations on spherical cones. a. CSG union (∪), intersection (∩), and difference operations (−) performed on input solids (white, dotted
outlines) and their outputs (yellow). b. two spherical cones. c. The lattice l (gray grid). d. starting cubes for the red cone (top, black squares), and the blue
cone (bottom, black squares). e. All surface cubes for the red cone (top, red squares), and blue cone (bottom, blue squares). f. Cube corners for both cones,
with interior corners shown as red dots and exterior corners shown as yellow dots. g. After the logical operation, corners interior to the output intersection are
shown as red dots and exterior corners are shown as yellow dots. h. segments that connect an interior corner to an exterior corner (heavy black segments). i.
Segment intersections with the output surface (white dots). j. Final output surface generated from segment intersections.

corner that is on the exterior (Fig. 3h), and find the point
along these edges that intersects the output surface, using
intersectSegment(s) (Fig. 3i). This process is computed in
parallel and stored in a datastructure that avoids duplication,
ensuring that once it is computed for one cube, it will never be
computed again for the adjacent cubes that share the segment.

Fig. 4. Two superposed spherical
cones.

Fig. 5. Cone intersection.

Finally, once all edge intersections have been compled in
the manner above, we generate triangles within each surface
cube of the output region (Fig. 3j). Triangle topology is defined
using a lookup table based on the corners that are interior or
exterior to the cube, even though the exact position of triangle
corners depends on the input data. The set of all triangles
generated in this manner produces a closed triangular mesh
that approximates the output region (Fig. 4,5). What remains is
then to describe how containsPoint(), intersectSegment(), and
findSurfaceCubes() is defined for a spherical cone primitive.

D. ContainsPoint(p)

Given a point p = (px, py, pz). To determine if p is in the
spherical cone, we have to show that p is in both the sphere
and the cone. Thus, it is sufficient to show that the euclidean
distance from a to p is less than l and the angle of −áap and
−áv is less than α. Suppose −áap = mx ı̂ + my ̂ + mz k̂. Thus,
the point p is in the spherical cone if p satisfies the following
inequalities.

(ax − px)2 + (ay − py)2 + (az − pz)2 < l2 (1)

mxvx +myvy +mzvz√
m2

x +m2
y +m2

z

√
v2x + v2y + v2z

> cos(α) (2)

Equation 1 restricts the point p to being within the sphere
of proper radius by using the euclidean distance (Fig. 6), and
equation 2 restricts the point p to being within the proper angle
by using the dot product (Fig. 7).

Fig. 6. p violates equation 1 Fig. 7. p violates equation 2

E. IntersectSegment(S)

Let S be a line segment parameterized over t ∈ [0, 1].
Suppose S = {(sx + dxt, sy + dyt, sz + dzt) | t ∈ [0, 1]}.
Since intersection points of S and the spherical cone are
on either slant surface or spherical surface, it is sufficient
to find all points where S intersects the sphere and the
cone, and then remove all points those are not contained in
the spherical cone. To find intersection points on the slant
surface, we have to find all points p = (px, py, pz) such that
the angle between −áap and −áv is equal α, and the euclidean
distance from a to p is less than l. Also, to find intersection
points on the spherical surface, we have to find all points
p = (px, py, pz) such that the angle between −áap and −áv is
less than α, and the euclidean distance from a to p is equal
l. Suppose −áap = mx ı̂ + my ̂ + mz k̂. Thus, the point p is an
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intersection of S and the spherical cone if p satisfies either
one of the following systems.

System I: Intersection on Slant Surface

(ax − px)2 + (ay − py)2 + (az − pz)2 < l2 (3)
mxvx +myvy +mzvz√

m2
x +m2

y +m2
z

√
v2x + v2y + v2z

= cos(α) (4)

System II: Intersection on Spherical Surface

(ax − px)2 + (ay − py)2 + (az − pz)2 = l2 (5)
mxvx +myvy +mzvz√

m2
x +m2

y +m2
z

√
v2x + v2y + v2z

> cos(α) (6)

In the system I, equation 3 restricts the point p to being
within the sphere of proper radius by using the euclidean
distance, and equation 4 restricts the point p to being at the
surface of the cone by using the dot product. In the system
II, equation 5 restricts the point p to being at the surface of
the sphere by using the euclidean distance, and equation 6
restricts the point p to being within the proper angle by using
the dot product. In these equations, we substitute mx,my,mz

with px−ax, py−ay, pz−az . Again, we substitute px, py, pz
with sx +dxt, sy +dyt, sz +dzt. The equation in each system
is reduced to a quadratic equation in term of t. The inequality
in each system is used to verify solutions.

There are three possible cases of the number of solutions:
(1) If the systems has two solutions, it concludes that S
intersects the spherical cone normally (Fig. 8,9).
(2) If the systems has one solution, it concludes that S is
too short or S is tangent to the spherical cone’s surface (Fig.
10,11).
(3) If the system has no solution, it means there is no
intersection of S and the spherical cone.

F. findStartingCubes()
There are two significant cubes to be chosen as starting

cubes containing (1) the top of the cone which is a cube
containing an apex of the cone, and (2) the bottom of the
cone which is a cube containing an intersection point of the
perpendicular vector and the spherical surface. Since we know
the coordinate of the apex, then the cube containing the apex
is defined. To find the intersection of the perpendicular vector
and the spherical surface, given −áap = mx ı̂+my ̂+mz k̂, then
we need to find a point p = (px, py, pz) and such that

(ax − px)2 + (ay − py)2 + (az − pz)2 = l2 (7)
mxvx +myvy +mzvz√

m2
x +m2

y +m2
z

√
v2x + v2y + v2z

= 1 (8)

The cube containing the intersection of the perpendicular
vector and the spherical cone is a cube containing p.

Equation 7 restricts the point p to being at the surface of
the sphere by using the euclidean distance, and equation 8
restricts the point p to being on the perpendicular vector by
using the dot product.

Fig. 8. Fig. 9.

Fig. 10. s is too short Fig. 11. s is tangent

G. GetInternalBoundingBoxVertices()

Define the bounding box B = (lx, ly, lz, hx, hy, hz) as the
region within the interval [lx, hx] on the x-axis, within the
interval [ly, hy] on the y-axis, and within the interval [lz, hz]
on the z-axis.

Since a spherical cone is a subset of a sphere, B can
be roughly approximated as the bounding box of the sphere
which is (ax − r, ay − r, az − r, ax + r, ay + r, az + r) when
r is the radius of the sphere. Unfortunately, this inefficient
approximation will dramatically increase the running time of
the marching cube algorithm, especially when the angle of the
spherical cone is small. However, if we move a plane along
its axis, we will see that the highest point and the lowest
point at which the plane intersects the spherical cone are the
tangent points of the plane and the spherical cone. Thus, if
we determine these tangential points, we will produce a more
exact bounding box.

Fig. 12. tangent at apex and sphere Fig. 13. tangent at apex and base

There are five possible tangent points: (1) the apex (Fig.
12,13), (2) the highest point of the base (Fig. 13), (3) the
lowest point of the base, (4) the highest point of the sphere,
(5) the lowest point of the sphere (Fig. 12). The highest point
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and the lowest point of these points to the associated axis will
be used to define the bounding box. The apex, the highest
point and the lowest point of the sphere are known, but the
highest point and the lowest point of the sphere will be not
considered if it is not in the spherical cone. Next we have to
find the highest point and the lowest point of the base. Since
p = (px, py, pz) is on the circumference of the base if the angle
between −áap and −áv is equal α and the euclidean distance from
a to p is equal l. Suppose −áap = mx ı̂+my ̂+mz k̂. Thus, p is
on the circumference of the base if p satisfies two equations.

(ax − px)2 + (ay − py)2 + (az − pz)2 = l2 (9)

mxvx +myvy +mzvz√
m2

x +m2
y +m2

z

√
v2x + v2y + v2z

= cos(α) (10)

Equation 9 restricts the point p to being at the surface of
the sphere by using the euclidean distance, and equation 10
restricts the point p to being at the surface of the cone by using
the dot product. In these equations, we substitute mx,my,mz

with px−ax, py−ay, pz−az . To find the highest point and the
lowest point of x-axis, we have to modify these equations into
two quadratic equations in term of px. Since the highest point
and the lowest point of the base are the tangential points of
the associated axis to the base, then each quadratic equation in
term of px is supposed to have exactly one solution or repeated
roots. Thus, the discriminant of both quadratic equations are
zero and then we will get another two quadratic equations in
term of py, pz . We solve py, pz and then plug them back to
equation 9 or equation 10 to find the value of px. To find the
highest point and the lowest point of y, z-axis, we repeat the
same idea.

For each axis, there are two possible cases of the number
of solutions.
(1) If the system has two solutions, it concludes that the plane
is tangent to the base at two points. The greater solution refers
to the highest point of the base, and the smaller solution refers
to the lowest point of the base (Fig. 14).
(2) If the system has one solution, it concludes that the base
is parallel to the plane. The highest point and the lowest point
are the same (Fig. 15).

Fig. 14. system has two solutions Fig. 15. system has one solution

H. Dataset Construction

We tested our method on two well studied protein-protein
interfaces. These were the barnase-barstar complex (pdb: 1brs,
chains A,D) and the RAP-RAF complex (pdb: 1c1y, chains
A,B). We selected these complexes because extensive mu-
tational studies reveal the effect of mutation on bonds and
affinity on these complexes.

To prepare these structures, we first removed all atoms
unrelated to the chains in our datasets. Next, we removed
all hydrogens, and then replaced the hydrogens using the
reduce module from MolProbity [6], with the -build option
turned on. Intermolecular hydrogen bond donors and acceptors
were then identified using distance and angle thresholds from
HBPlus [15]. Spherical cones were then generated with apexes
centered on donor atoms and acceptor antecedant atoms, with
perpendicular vectors oriented towards the donor hydrogen and
the acceptor atom, respectively.

I. Implementation Details

CSG operations were performed on Sol, a 34 node com-
puting cluster with 780 2.3Ghz intel processor cores and an
average of 5.5 GB of system memory per core. pClay is
implemented in C++ and parallelized using Intel Threading
Building Blocks. The average runtime for determining and
computing CSG intersections (using the bounding box) be-
tween all 30,000 possible pairwise intersections of spherical
cones with angle 90, slant height 23, resolution 0.25 was 341
seconds.

Intersection volumes of CSG intersections were computed
using the Surveyor’s Formula, which we described earlier [5].
This method accurately measures the volume inside a closed
triangular mesh, which is the output of all CSG operations
described here.

The defined ranges make it impossible for an atom to
interfere with the hydrogen bond, so it is not necessary to
check for interfering atoms within the intersection of the two
cones.

III. RESULTS

To evaluate how accurately the intersection of spherical
cones can predict the presence of hydrogen bonds and their
impact on binding, we computed the intersection of cone pairs
generated from complementing donors and acceptors in each
complex in the dataset. First, we evaluated how accurately a
range of cone parameters could predict intermolecular hydro-
gen bond formation. Second, we measured the relationship
between cone intersection volume and contribution to binding
affinity.

A. Intersections between Spherical Cones

To assess the accuracy of spherical cone intersections for
predicting the presence of intermolecular hydrogen bonds,
we generated all donor and acceptor cones in our dataset
at a range of parameters. Since hydrogen bonds have been
found to exist between 2.3 Å and approximately 4.5 Å , we
generated all cones with slant height ranging from 2.3 Å to
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1.1 Å in increments of .3 Å. This range fully encompasses
the range of expected intermolecular bonds, because, at the
longest slant heights, hydrogen bonds that occur between the
most distant donors and acceptors can be detected, and at the
shortest slant heights, only the closest hydrogen bonds will be
detected. We also generated all cones with a range of angle
parameters. Since hydrogen bonds have been found to exist
with bond angles approaching 90 degrees between the donor-
donor hydrogen vector and the acceptor-acceptor antecedent
vector, we generated cones with angles from 22.5◦ to 90◦, in
increments of 22.5. We then computed the CSG intersection
between all intermolecular donor-acceptor cone pairs with
the same radius and angle measurements, and measured the
volume of the resulting region.

TABLE I
AVERAGE INTERSECTION VOLUME OF SPHERICAL CONES AND NUMBER
OF INTERSECTING SPHERICAL CONES FOUND AT A RANGE OF VOLUMES.

Cones with Angle 90, slant height 2.3Å 1brs 1c1y
average cone volume (Å3) 4.66 4.83
cones with volume >10.0 11 7

5 <volume <= 10.0 3 8
0 <volume <= 5 29 24

Fig. 16. number of cone pairs, generated with angle 90◦ and slant height
2.3Å, grouped by volume

Table I illustrates that cones generated at the largest vol-
umes, with angle 90 and slant height 2.3, produced cone
intersection volumes averaged between 3.53 and 4.66 Å3.
However, substantial and non-monomodal variations could
be observed in cone intersection volumes. 53 out of 82
intersecting pairs had intersection volumes less than 5 Å3, but
18 had intersection volumes above 10.0 Å3 (Fig. 16). While
our selection of volume thresholds is arbitrary, it demonstrates
that, at least on this small dataset, there is a considerable subset
of cone intersections with large volumes relative to the other
intersections.

B. Predicting Hydrogen Bonds

We hypothesized that intersecting pairs of donor and accep-
tor cones generated at 90 degrees, with slant height 2.3Å and
intersection volume greater than 10.0 Å3 would correspond to
actual hydrogen bonds. We identified the atoms and amino
acids that supply the hydrogen bond donor and acceptor

barnase-barstar (1brs)
slant height 90◦ 67.5◦ 45◦ 22.5◦

2.3Å 10 10 10 9
2.0Å 10 10 10 9
1.7Å 10 10 10 6
1.4Å 10 10 10 3
1.1Å 6 6 5 0

rap-raf (1c1y)
slant height 90◦ 67.5◦ 45◦ 22.5◦

2.3Å 7 7 7 6
2.0Å 7 7 7 5
1.7Å 7 7 7 3
1.4Å 7 7 7 1
1.1Å 4 4 3 0

TABLE II
PREDICTED HYDROGEN BONDS THAT ARE VERIFIED IN THE LITERATURE,

PREDICTED WITH A RANGE OF CONE PARAMETERS.

and verified whether these bonds are known to exist in
the structural literature. 11 cone pairs in the barnase-barstar
complex and 7 cone pairs in the rap-raf complex fulfilled these
properties.

All 18 cone pairs, except one in the barnase-barstar com-
plex, correctly identified hydrogen bonds established in the
literature, demonstrating a positive predictive value (PPV) of
94.4% (true positives / positive predictions). Unfortunately, if
the literature does not mention a hydrogen bond, this does not
mean that a hydrogen bond does not exist, so false positives
and true negatives cannot be assessed. Due to the large number
of intersections with volumes less then 10.0 Å3, we did not
count false negatives, where small intersections nonetheless
correspond to a bond in the literature.

We also considered whether the same bonds were predicted
by intersecting cones with more limited parameters, expanding
our study to cones with angle from 90 to 22.5 degrees and
slant height from 2.3 Å to 1.1 Å. When cones were generated
with smaller angles and/or smaller slant heights, the number
of hydrogen bonds that were correctly predicted dropped only
subtly, except at the smallest cone angles, the smallest slant
heights, or combinations of both (Table II).

C. Predicting Hydrogen Bond Contributions to Affinity

We hypothesize that beyond simply detecting the pres-
ence of hydrogen bonds based on their angle and distance
constraints, that intersections between spherical cones could
estimate bond strength. Specifically, larger cone intersections
correspond to margins within bond angle and bond length
limits that might tolerate more motion in donor and acceptor
atoms than cone pairs that have smaller intersections. These
tolerances may of course be mitigated by other flexibilities in
sidechain and backbone conformation.

Using cones generated with angle 90 and slant height 2.3 Å,
we plotted the intersection volumes of all donor-acceptor pairs
with greater than 10Å3 against the experimentally reported
effect on binding affinity caused by mutating one or both
sides of the donor-acceptor pair. Affinity measurements from
mutants where both amino acids were changed to alanine
were preferred over other mutations, such as charge flipping
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mutations, and mutations of the amino acids supplying both
the donor and the acceptor were preferred over mutations of
only the donor or only the acceptor.

ΔΔG (kcal/mol)

Fig. 17. A plot of cone intersection volume versus the change in Gibbs
free energy (∆∆G, kcal/mol) induced by mutating one or both sides of a
hydrogen bond. Blue circles indicate a hydrogen bond donor-acceptor pair
that was mutated to remove one or both sides of the hydrogen bond.

Of the two complexes in our dataset, barnase-barstar was the
subject of a greater number of mutational studies. Every high
intersection cone pair in this complex, except one, had been
considered in mutational studies, four by mutating one side
and six by mutating both sides of the complex. All mutations
were to alanine, ensuring that no new hydrogen bond was
formed by the side chain of the same amino acid. The
relationship between cone intersection volume and mutational
effect on binding affinity, measured in ∆∆G, is shown in
Figure 17. On this complex, there is a limited relationship
between intersection volume and ∆∆G, suggesting that larger
intersection volumes are weakly related to stronger single-
bond contributions to affinity.

K
D

Fig. 18. A plot of cone intersection volume versus the dissociation constant
KD induced by mutation. Blue circles indicate a hydrogen bond donor-
acceptor pair that was mutated on the RAF side of the hydrogen bonds to
prevent hydrogen bond formation.

Studies of the RAP-RAF complex report binding affinities
from mutations that removed hydrogen bond donors and

acceptors from RAF, but not from RAP. Four of the mutations
performed were to alanine, and the remaining three were to
leucine, ensuring that the modified RAF sidechains did not
form a hydrogen bond. However, since RAP amino acids were
not modified, it may be the case that these amino acids form
alternative hydrogen bonds with other amino acids of RAF. In
these experiments, affinity was reported in terms of KD. Three
mutations involving R89L from RAF impaired binding so
much that it could not be measured. The other three mutations
showed a weakly negative relationship between increasing
cone intersection volume and KD (Fig. 18), suggesting that
larger intersection volumes are weakly related to decreases in
contributions to affinity.

IV. DISCUSSION

We have presented a novel solid geometric representation
of hydrogen bonds as spherical cones, inspired by the distance
and angle constraints on hydrogen bond formation. This rep-
resentation is the first to enable the comparison of hydrogen
bonding capabilities based on bond formation tolerances, even
if only one half of the bond is considered. CSG intersections
could observe, for example, that two aligned protein structures
reveal hydrogen bond donors in similar orientations, even if
a partner molecule is not present. These capabilities point to
the capacity to detect patterns of hydrogen bonding that are
conserved among proteins with different folds.

In this study, we first evaluated whether the spherical cone
representation would be effective for predicting the presence of
hydrogen bonds in protein-protein complexes. Using two com-
plexes that have been extensively examined in the structural
literature for the presence and function of hydrogen bonds, we
showed that 94.4% of spherical cones defined with large angle
and slant height parameters that also had large intersection
volumes corresponded to hydrogen bonds documented in the
structural literature. Indeed, spherical cones are quite sensitive
for this application, because even when they are generated
with lower angles and slant heights, the same bonds are still
identified.

We also evaluated whether or not the intersection volume
between a donor cone and an acceptor cone would reflect the
contribution of the cone to protein-protein binding affinity.
Since the cones themselves represent the angle and distance
range at which the hydrogen bond can form, the intersection is
in some ways related to the geometric limits that the bond can
be subjected to without breaking hydrogen bond limits. Citing
the extensive mutational studies performed on our dataset
proteins, we did not observe a strong relationship between
cone intersection volume and reductions in binding affinity
upon mutating the amino acids associated with the cones.

Overall, the spherical cone representation creates a new
capability to detect hydrogen bonds as well as similarities in
hydrogen bond compatibility. This capability points to new ap-
plications in predicting mutations that remove hydrogen bonds
and in identifying similarity in hydrogen bonding patterns even
when binding partners are unknown.
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[9] Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Ju-
lia Koehler Leman, Daniel Berenberg, Tommi Vatanen, Chris Chandler,
Bryn C Taylor, Ian M Fisk, Hera Vlamakis, Ramnik J. Xavier, Rob
Knight, Kyunghyun Cho, and Richard Bonneau. Structure-based pro-
tein function prediction using graph convolutional networks. Nature
communications, 12(1):1–14, 2021.

[10] Chittibabu Guda, Sifang Lu, Eric D Scheeff, Philip E Bourne, and
Ilya N Shindyalov. Ce-mc: a multiple protein structure alignment server.
Nucleic acids research, 32(suppl 2):W100–W103, 2004.

[11] Kengo Kinoshita and Haruki Nakamura. Identification of protein
biochemical functions by similarity search using the molecular surface
database ef-site. Protein Science, 12(8):1589–1595, 2003.

[12] S Sri Krishna and Nick V Grishin. Structural drift: a possible path to
protein fold change. Bioinformatics, 21(8):1308–1310, 2005.

[18] Maria Rosen, Shuo Liang Lin, Haim Wolfson, and Ruth Nussinov.
Molecular shape comparisons in searches for active sites and functional
similarity. Protein Engineering, 11(4):263–277, 1998.

[13] Daniel Kuhn, Nils Weskamp, Stefan Schmitt, Eyke Hüllermeier, and
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SUPPLEMENTARY MATERIALS

TABLE III
HYDROGEN BOND DONORS AND ACCEPTORS IDENTIFIED FROM THE
BARNASE-BARSTAR COMPLEX (PDB: 1BRS) WITH INTERSECTION

VOLUME GREATER THAN 10 Å3

Donor Atom Donor Res. Donor Res. # Donor Chain Accept. Atom Accept. Res. Accept. Res. # Accept. Chain Intersec. Vol.
NZ LYS 27 A OG1 THR 42 D 10.900755
N ARG 59 A OD1 ASP 35 D 13.41674

NH2 ARG 59 A OE1 GLU 76 D 14.56397
N LEU 34 D OE2 GLU 60 A 13.97747
N GLU 60 A OD2 ASP 35 D 11.309484

NH2 ARG 83 A OD1 ASP 33 D 14.559535
NH2 ARG 83 A O GLY 43 D 11.063205
NH2 ARG 87 A OD2 ASP 39 D 12.435039

N GLY 31 D ND1 HIS 102 A 12.344065
ND2 ASN 33 D O HIS 102 A 14.592471
NE2 HIS 102 A OD2 ASP 39 D 14.944932

TABLE IV
HYDROGEN BOND DONORS AND ACCEPTORS IDENTIFIED FROM THE

RAP.GMPPNP-CRAF1 COMPLEX (PDB: 1C1Y) WITH INTERSECTION
VOLUME GREATER THAN 10 Å3

Donor Atom Donor Res. Donor Res. # Donor Chain Accept. Atom Accept. Res. Accept. Res. # Accept. Chain Intersec. Vol.
NH1 ARG 59 B OE1 GLU 37 A 12.728163
NE ARG 59 B OE2 GLU 37 A 11.462316
N VAL 69 B O GLU 37 A 14.056369

NH2 ARG 89 B OD1 ASP 38 A 13.115738
N SER 39 A O ARG 67 B 16.388207

NE ARG 89 B O SER 39 A 12.217045
NH2 ARG 89 B O SER 39 A 13.24629
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