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Finding elements of proteins that in°uence ligand binding speci¯city is an essential aspect of
research in many ¯elds. To assist in this e®ort, this paper presents two statistical models, based

on the same theoretical foundation, for evaluating structural similarity among binding cavities.

The ¯rst model specializes in the \uni¯ed" comparison of whole cavities, enabling the selection

of cavities that are too dissimilar to have similar binding speci¯city. The second model enables a
\regionalized" comparison of cavities within a user-de¯ned region, enabling the selection of

cavities that are too dissimilar to bind the same molecular fragments in the given region. We

applied these models to analyze the ligand binding cavities of the serine protease and enolase
superfamilies. Next, we observed that our uni¯ed model correctly separated sets of cavities with

identical binding preferences from other sets with varying binding preferences, and that our

regionalized model correctly distinguished cavity regions that are too dissimilar to bind similar

molecular fragments in the user-de¯ned region. These observations point to applications of
statistical modeling that can be used to examine and, more importantly, identify in°uential

structural similarities within binding site structure in order to better detect in°uences on

protein�ligand binding speci¯city.

Keywords: Protein structure comparison; structural bioinformatics; statistical models; stat-

istical shape analysis.

1. Introduction

Discovering in°uences on protein�ligand binding speci¯city is a crucial aspect of

research in molecular biology, bioengineering, drug design, and other ¯elds. In such
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settings, painstaking visual examination of protein structures can provide expla-

nations for biochemical observations made in the past, while informing the design of

future experiments along basic biophysical principles. As identi¯ed by visual

examination, regional similarities between binding cavities may bind the same mo-

lecular fragment, while regional variations elsewhere may create di®erences in

speci¯city. Similarities and variations of this nature are potential in°uences on

speci¯city and, once identi¯ed, they point to experiments that examine the extent of

their in°uence.

But visual examination requires expertise in structural biology, and the con-

sideration of many structures is ultimately constrained by human limitations and

error. To guide and accelerate these e®orts, computational methods can identify

potential in°uences on speci¯city.1�3 One approach has been to identify similarities

and variations in binding cavity shape. Boolean set operations can be used to detect

overlapping and non-overlapping regions in solid representations of binding cavities

(Fig. 1). Cavities with large overlapping regions may have similar binding pre-

ferences, while cavities with large non-overlapping regions may accommodate

di®erent ligands.1 Such methods can thus assist human e®orts because they can

automatically separate cavities likely to have similar binding preferences from those

likely to be di®erent.4,5

This \uni¯ed" approach to the comparison of cavities, common among most

binding site comparison algorithms (e.g. Refs. 6 and 7), evaluates similarity between

entire cavities. But binding cavities can have similarities in some regions and

di®erences in others, causing some regions to have very di®erent impacts on

speci¯city. Uni¯ed methods have no means to assess the importance of a user-

de¯ned region on speci¯city. To address this problem, this paper proposes a

\regionalized" comparison of protein cavities that detects when two or more

cavities are similar enough within a user-de¯ned region to accommodate similar

molecular fragments in that region. The position of the regions detected can indicate

to a human user that an area contained in detected regions may be responsible for

similar speci¯city.

Boolean set operations o®er a unique opportunity to regionalize the com-

parison of protein�ligand binding cavities because comparative analysis can be

focused on any region with Boolean intersections. As we will show in this

paper, regionalization enables the construction of statistical models that are

trained on the degree of structural variation inside individual regions: Similarity

is signi¯cant in regions where no pockets are similar, while the same degree

of similarity may not be signi¯cant in regions where pockets are very similar.

Because our regionalized model can be independently trained on di®erent cavity

regions, their prediction thresholds are customized to account for di®erences in

structural variability and conservation. In comparison to earlier uni¯ed methods,

paraphrased here for comparison, regionalized methods add the additional capa-

bility of automatically isolating regions within protein cavities that in°uence

speci¯city.
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2. Related Work

The methods described in this paper build on a new approach to protein structure

comparison based on volumetric similarities and di®erences in ligand binding

cavities.1 This approach varies considerably from most existing methods, which

represent protein structures using points (point-based representations) and

surfaces (surface-based representations) in three dimensions. For both point- and

surface-based methods, statistical models have been developed for estimating the

signi¯cance of geometric similarity for di®ering applications. In contrast, our

earlier work described statistical models for volume-based comparison methods,

including the ¯rst statistical models of di®erential volume4 and overlapping

volume.5

Point-based representations have notable strengths in comparison e±ciency. The

least-squares alignment of points in space8 enables structure comparison software

to rapidly consider thousands of atomic superpositions in a database search for the

alignment of two or more protein structures with greatest geometric similarity.9�13

Other approaches to point-based structure alignment, which employ distance

matrices14 and geometric graphs15,16 are also extremely e±cient. These alignment

methods inspired the design of newer algorithms for the °exible alignment of protein

(a)

(b) (c) (d) (e) (f)

Fig. 1. A diagram of Boolean set operations (a). Aligned proteins with distinctive cavities (b), (d).

Overlapping cavities (c). The Boolean intersection (e) and union (f) of the cavities, which is used to

compute volumetric similarity.
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structures,17�19 and fuel the ongoing exploration of the space of protein folds.20 As

more protein structures become available, the topology of this space, mapped with

structure comparison algorithms, appears to be evolving from earlier fold-based

clusterings21 to a more continuous space of variations.16,22,23

A second class of point-based methods search for functionally related binding

sites. Methods of this type encode only the atoms of the binding site itself,24�26

sometimes referred to as a motif, in order to identify similar functional sites

independent of protein fold. One of the major challenges in this sub¯eld has

been the design of e®ective motifs that sensitively align with all functionally

related binding sites, while speci¯cally avoiding functionally unrelated sites. To

design more e®ective motifs, supporting algorithms can select atoms that yield

more accurate alignments,26�28 to integrate geometric data from multiple

structures,29�31 and the integration of empty spaces inside binding sites.32,33 As a

result of these developments, motif comparison algorithms can be extremely

accurate point-based methods for identifying proteins that catalyze the same

reaction.30

Surface-based methods use surfaces or surface patches to represent solvent-

accessible shapes.34,35 The surface itself is often described with triangular meshes,36,37

three-dimensional grids,38 alpha shapes,39�41 or spherical harmonics.42�44 Surface

representations have been applied to the comparison of protein structures36,37 and

electrostatic potentials,45 as well as hybrid representations that combine point-based

and surface-based information,32 but they can also be used to predict the location of

binding sites39,46�48 and hot spots.49

Statistical modeling is a critical aspect of both point- and surface-based

methods, because it enables an automated and quantitative separation between

similar and varying binding sites: Empirical,40 parametric,25,50 and nonpara-

metric51 models can identify pairs of binding sites that are too similar to have

occurred by random chance. Parametric models can also identify variations in

protein�ligand binding cavities that are large enough to in°uence speci¯city.4 In

contrast to these existing models, the methods described here model the volume of

volumetric overlaps between cavities with identical binding preferences, and

extend them to independently model regions inside protein cavities. The result is

the ¯rst automated method for automatically isolating regions that in°uence

speci¯city.

3. Methods

In earlier work,5 we presented a prototype statistical model for identifying statisti-

cally signi¯cant intersections of protein�ligand binding cavities. Using this model we

observed that groups of cavities with di®erent binding preferences exhibit volumetric

similarity [Eq. (1)] that is low and statistically signi¯cant (i.e. unusual) relative to

the higher degree of volumetric similarity found among cavities with similar binding

preferences. We ¯rst summarize methods related to this model.
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We extended our earlier work by showing that we can model volumetric similarity

within a user-de¯ned subregion of a set of binding cavities. This regionalized

approach enables the statistical signi¯cance of an overlapping pair of cavities to be

independently evaluated within a speci¯c region, rather than within whole cavities.

Depending on the user-de¯ned subregion, the regionalized approach can ignore

highly variable regions, while scoring more stringently in conserved regions.

dðCÞ ¼
v
Tk
i¼1

ci

 !

v
Sk
i¼1

ci

 ! ð1Þ

3.1. Computing volumetric similarity

Given a set of k aligned binding cavities C ¼ c1; c2; . . . ; ck, we de¯ne the volumetric

similarity of these cavities, dðCÞ, using Eq. (1). When evaluating dðCÞ, we ¯rst gen-

erate intersection (\) and union ([) regions with Boolean set operations [Fig. 1(a)]

developed in earlier work.1 We then measure the volume, vðÞ, of these regions using
the Surveyor's Formula.52 The geometric interpretation of a set of aligned cavities

with high volumetric similarity (e.g. close to 1.0) is that they overlap closely, and

thus have very similar shape. Cavities with low volumetric similarity (close to 0.0)

overlap poorly.

3.2. A uni¯ed statistical model of volumetric similarity

Our uni¯ed statistical model employs a hypothesis testing framework. Underlying

this framework is the assumption that aligned cavities with identical binding pre-

ferences will exhibit a large degree of volumetric similarity. Conversely, we assume

that aligned cavities with di®ering binding preferences exhibit an unusually small

degree of volumetric similarity, relative to cavities with identical binding preferences.

Beginning with these assumptions, and an input set of k aligned cavities C, our null

hypothesis is that dðCÞ is large. The alternative hypothesis is that dðCÞ is unusually
small. Because the null hypothesis and the alternative hypothesis are logical comp-

lements, only one of these assumptions can hold.

We test the null hypothesis by ¯rst assuming that it holds for C, and then

estimating the probability p of randomly observing another set of k cavities C 0 with
dðC 0Þ � dðCÞ. If the probability of observing another set of aligned cavities with less

volumetric similarity is improbably low (typically 0.05) then it is hard to reasonably

continue assuming that the null hypothesis likely holds. Under these circumstances,

we reject the null hypothesis in favor of the alternative hypothesis, that dðCÞ is low
because the cavities in C have di®erent binding preferences. We can interpret this

decision biologically from our underlying assumptions: If the degree of volumetric

similarity between the k input cavities is unusually low relative to the degree of

volumetric similarity typically observed between cavities with identical binding
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preferences, then we take this as evidence that the input cavities are unlikely to have

identical binding preferences. Rather than being a statement of fact, the rejection of

the null hypothesis represents a prediction based on quanti¯ed evidence gathered

during the training phase.

To perform this prediction, we must estimate the probability p, which requires us

to train the statistical model. Our training set, T , consists of n > k aligned cavities

from proteins known to exhibit identical binding preferences. For each of the n
k

� �
combinations t, composed of k cavities selected from T , we compute the volumetric

distance dðtÞ. These combinations yield n
k

� �
volumetric distances to train the model,

which is intended to represent the range of volumetric distances to be expected in any

set of k binding cavities with preferences identical to those in T . While the scarcity of

protein structure data enabled us to train our models using all combinations, larger

training sets can be used without all combinations. These data are represented in a

frequency distribution D [see Fig. 3(a)].

It happens that the shape of D tightly ¯ts a log-normal distribution, as

demonstrated in Sec. 3. The log-normal distribution represents an estimate of the

distribution, of volumetric distances we might expect if our training data was in¯-

nite. Here, we can use it to estimate the probability p of observing a set of k cavities

called C 0, where dðC 0Þ is less than that of our input set, dðCÞ, and speci¯city identical

to cavities in T .

We can estimate p by approximating the essential parameters of the log-normal

distribution: � and �, which are the mean and standard deviation for the log-

transformed distribution, respectively. We approximate � and � with the mean (x)

and standard deviation (s) of the log-transformed sample data, as shown in Eq. (2),

where � is the cumulative distribution function of the standard normal distribution;

p is the proportion of the volume under the log-normal curve to the left of dðCÞ,
relative to the total volume under the curve (x � 0).

pðdðC 0Þ � dðCÞÞ ¼ �
log dðCÞ � �

�

� �
� �

log dðCÞ � x

s

� �
: ð2Þ

We ¯t the log-normal distribution to D so that p can be smoothly estimated

without discretizing e®ects from samples in the training data (e.g. individual t,

described above). Also, if we assume that the ¯tted log-normal distribution accu-

rately estimates the underlying probability p, then we can use the log-normal dis-

tribution to extrapolate p-values beyond that of the smallest dðtÞ observed on our

training set. This kind of extrapolation is impossible on nonparametric models, which

have ¯nite support. Our results illustrate the accuracy of this extrapolation.

Given a trained statistical model and an estimated p-value, we hypothesize that

input sets of cavities exhibiting a high p-value will contain cavities with identical

binding preferences, while input sets of cavities exhibiting an unusually small p-value

will contain cavities with di®erent binding preferences. We test this hypothesis in

Secs. 4.1 and 4.2.
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3.3. A regionalized statistical model

The purpose of our regionalized statistical model is to estimate the probability p that

two cavities are similar enough within a user-de¯ned region g to bind similar

molecule fragments in that region. Any closed region g can be used. To achieve such a

model, we ¯rst de¯ne a regionalized measure of volumetric similarity, dgðCÞ for a set

of aligned cavities C ¼ c1; c2; . . . ; ck. [Eq. (3)].

dgðCÞ ¼
v
Tk
i¼1

ðci \ gÞ
 !

v
Sk
i¼1

ðci \ gÞ
 ! ð3Þ

Three special cases involving regional volumetric similarity can arise. First, dgðCÞ
can be unde¯ned, because the Boolean union of C inside g may have zero volume. In

this case, cavities in C are considered categorically dissimilar. Second, dgðCÞ may be

zero, in which case the cavities are again categorically dissimilar. Third, dgðCÞ may

be one, in which case the cavities are considered categorically similar. These special

cases are not used for training the model, because they lead to pre-de¯ned con-

clusions, and if asked to evaluate the p value of a special case, the result is always 0.0

(case 1 or 2) or 1.0 (case 3).

Given our regionalized measure of volumetric similarity, we can build our regio-

nalized statistical model in a manner similar to our uni¯ed model: Using dgðCÞ, we
build a regionalized hypothesis testing framework: We assume that regions within

aligned cavities that bind similar molecular fragments will exhibit a large degree of

regional volumetric similarity, and that regions within aligned cavities that bind

di®erent molecular fragments will exhibit an unusually small degree of regional

volumetric similarity.

We test the null hypothesis by ¯rst assuming that it holds for C, and then

estimating the probability p of randomly observing another set of k cavities C 0 with
dgðC 0Þ � dgðCÞ. If p is improbably low (typically� 0.05) then we reject the null

hypothesis because it seems more probable that dgðCÞ is low because the cavities of C

bind di®erent molecular fragments in g. To test the null hypothesis, we estimate the

probability p based on a training set, T , consisting of n > k aligned cavities from

proteins known to bind the same molecular fragments in g. For each of the n
k

� �
combinations of members of T , called t, we compute dgðtÞ, and represent them in a

frequency distribution D, which ¯ts tightly with the log-normal distribution. We

estimate p as the proportion of the volume under the log-normal curve to the left of

dðCÞ, relative to the total volume under the curve.

3.4. Dataset construction and experimental setup

Protein Families. The serine protease and enolase superfamilies were selected on

the criteria that each superfamily exhibit three subfamilies with distinct binding

A Regionalizable Statistical Model of Intersecting Regions in Protein�Ligand Binding Cavities

1242004-7



preferences, and that variations in speci¯city are caused by well-known structural

mechanisms.

Serine proteases hydrolyze peptide bonds through the recognition of adjacent

amino acids with speci¯city subsites numbered S4, S3, . . . , S1, S1 0, S2 0, . . . , S4 0.
Each subsite preferentially binds one amino acid before or after the hydrolyzed bond

between S1 and S1 0. Cavities in our dataset are derived from the S1 subsite, which

binds aromatics in chymotrypsins,53 positively charged amino acids in trypsins,54

and small hydrophobics in elastases.55

Proteins in the enolase superfamily catalyze a reaction that abstracts a proton

from carbons adjacent to a carboxylic acid.56 Opposite an N-terminal \capping

domain",57 the C-terminal domain forms a TIM-barrel, which provides a stable

sca®old for amino acids that act as acid/base catalysts for several di®erent reac-

tions.56 Cavities in our dataset, on these amino acids, were classi¯ed into three

subfamilies that facilitate the dehydration of 2-phospho-D-glycerate to phosphoe-

nolpyruvate, in enolase,58 convert (R)-mandelate to and from (S)-mandelate,59 in

mandelate racemase, and reciprocally cycloisomerize cis,cis-muconate to and from

muconolactone, in muconate-lactonizing enzyme.56 Since members of the Enolase

family can exhibit open and closed conformations, only structures with the open

conformation were used, for consistency.

Selection. The Protein DataBank (PDB ��� 6.21.2011)60 contains 676 Serine pro-

teases from chymotrypsin, trypsin, and elastase subfamilies and 66 enolase super-

family structures from enolase, mandelate racemase, and muconate cycloisomerase

subfamilies. From each set, we removed mutant and partially ordered structures.

Because enolases have open and closed conformations, all closed or partially closed

structures were removed. Next, structures with greater than 90% sequence identity

were removed, with preference for structures associated with publications, resulting

in 14 serine protease and 10 enolase structures (Fig. 2). Within these structures, ions,

waters, and other nonprotein atoms were removed. Since hydrogens were unavailable

in all structures, all hydrogens were removed for uniformity. Atypical amino acids

(e.g. selenomethionines) were not removed.

Fig. 2. PDB codes of structures used.
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Alignment. Using Ska,13 an algorithm for aligning protein structures, all serine

protease structures were aligned to bovine gamma-chymotrypsin (pdb code: 8gch),

and all enolase superfamily structures to mandelate racemase from pseudomonas

putida (pdb code: 1mdr). Both superfamilies exhibit identical folds, leading to nearly

perfect alignment of all structures. These alignments are so close that, in earlier

work,1 we observed that alignments to other structures in our dataets generated

identical results. Following structural alignment, solid representations of binding

cavities were generated using a method described earlier.1

Performance. Opteron 6128 processors with 32GB of random access memory

(RAM) were used for all experimentation. Our software is single threaded and

requires less than 1GB of RAM. Computing volumetric similarity between a pair of

cavities required an average of 0.57 sec. Training and testing on cross-fold validation

models required runtimes proportional to the number of combinations considered in

each dataset. Leave-2-out tests, for example, required 0:52 sec for enolases, and 1:44

for serine proteases (min:sec), total.

4. Experimental Results

In previous work, we demonstrated that log-normal distributions are an accurate

model of the volume of cavity intersections, and that the log-normal model can

identify cavities with identical speci¯city, based on statistically signi¯cant volumes

of intersection.5 In this section, we summarize these earlier results and describe

related experiments not found in earlier work. We then extend these results to

demonstrate that a log-normal distribution can also be applied in a regional context,

despite the presence of other categories of data, and ¯nally show that regions with

statistically signi¯cant overlaps isolate regions of protein cavities with an exper-

imentally established in°uence on speci¯city.

4.1. Validating the log-normal model

We considered multiple parametric models that would represent the degree of

volumetric similarity between binding cavities with identical binding preferences.

Testing these models on the trypsin and enolase subfamilies of the serine proteases

and the enolase superfamily, respectively, we observed that the log-normal and

gamma distributions most closely re°ected the volumetric similarity measurements

observed.

Figure 3 illustrates this point on the volumetric similarity between pairs of

serine protease cavities as an example: In Fig. 3(b), the log transformed volume-

tric similarity sample data visibly follows a normal distribution. Furthermore,

inspecting the quantile�quantile plots relating the data in Fig. 3(b) to gamma,

Weibull, Pareto, Generalized Extreme Value (GEV), and Log-Normal distributions

(Figs. 3(c)�3(f)), it is clear that the log-normal and gamma plots are more linear

than the others.
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Similar observations were made when modeling the distribution of volumetric

similarity between pairs of enolase cavities, as well as triplets and quadruplets of

serine protease cavities, though in general, it appears that log-normal distributions

followed the data more closely than the gamma distribution. Based on these obser-

vations, we use the log-normal distribution to estimate p-values.

4.2. Classifying cavity similarity

Multifold cross-validation was used to fully test the predictive accuracy of our uni¯ed

model. First, we computed the statistical signi¯cance of volumetric similarity among

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 3. Volumetric similarity between pairs of trypsin cavities (a), log transformed (b). Quantile-Quantile

plots of the gamma (c), weibull (d), Pareto (e), GEV (f), Log-Normal (g) models against the log trans-

formed sample.
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cavities having binding preferences identical to the training set. For both trypsins

and enolases, we left out two cavities, while training our uni¯ed model on the

volumetric similarity of pairs of cavities from the remaining cavities. This is illus-

trated in the case of enolase, at the bottom of Fig. 4(a). We then evaluated the

statistical signi¯cance of the volumetric similarity of the left out pair. This process

was repeated until every pair of cavities had been left out once. Based on the con-

ventional standard of signi¯cance, 0.05, 42 out of 45 trypsin validation runs and 13

out of 15 enolase validation runs had statistically insigni¯cant volumetric similarity.

Cavities with identical speci¯city in our dataset were so consistently similar that

no pair exhibited volumetric similarity that was statistically signi¯cant relative to

the others.

Since the trypsin set was larger than the enolase set, we also performed leave-3-

out and leave-4-out cross validation in the same manner (leave-4-out cross validation

is diagrammed in the top of Fig. 4(a)). In leave-3-out, 106 out of 120 triplets had

statistically insigni¯cant volumetric similarity, and in leave-4-out, 170 out of 210

quadruplets had statistically insigni¯cant volumetric similarity. The volumetric

similarities of pairs, triplets and quadruplets of cavities were evenly distributed

throughout the [0, 1] range, and generally statistically insigni¯cant.

Next, we examined the ability of our uni¯ed model to measure the statistical

signi¯cance of volumetric similarity among cavities having binding preferences

distinct from the training set. For both trypsins and enolases, we left out one

cavity, and trained our uni¯ed model on the volumetric similarity of the remaining

pairs of trypsin or enolase cavities. Then, for the remaining trypsin or enolase

(a)

(b)

Fig. 4. Multifold cross-validation experimental setup. In serine proteases, circles represent trypsin

(green), elastase (red), chymotrypsin (blue) cavities. Among the enolase superfamily, circles represent
enolases (green), mandelate racemases (red), and Muconate Cycloisomerase (blue). Cavities were allocated

either to the test set or the training set, demonstrating one fold of a leave-4-out (a, top) and one fold of a

leave-2-out (a, bottom) comparison of cavities with identical speci¯cities. B demonstrates one fold of a
leave-4-out (b, top) and one fold of a leave-2-out (b, bottom) comparison of cavities with di®ering

speci¯city.
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cavity, we combined it in a testing set with the other members of our dataset having

di®erent binding preferences. This con¯guration is illustrated, using enolases as

an example, at the bottom of Fig. 4(b). Pairs of cavities with di®erent binding

preferences were dissimilar enough that volumetric similarity between them

was statistically signi¯cant in 91 out of 100 serine protease pairs and 59 out of

60 enolase pairs.

Again, because of the larger size of the trypsin set, we performed leave-2-out and

leave-3-out cross validation by training our uni¯ed model on all but 2 and 3 trypsins,

respectively. The remaining 2 (resp. 3) trypsins were combined with the other 4 non-

trypsin serine proteases, enabling the generation of multiple sets of cavities with

di®ering binding preferences. In leave-2-out validation we tested triplets of serine

protease cavities and in leave-4-out validation we tested quadruplets, in order to

ensure that no test triplet or quadruplet exhibited cavities with the same binding

preferences. This con¯guration is illustrated at the top of Fig. 4(b). In leave-2-out

cross validation, only 6 out of 900 sets with di®ering binding preferences were

statistically insigni¯cant, and in leave-3-out, only 9 out of 4200 were statistically

insigni¯cant. Pairs, triplets, and quadruplets of cavities with heterogeneous binding

preferences were almost always statistically signi¯cant.

In general, almost all sets of cavities with identical binding preferences exhibited

measures of volumetric similarity that did not di®er signi¯cantly from all other sets

of cavities with identical binding preferences. In contrast, all sets of cavities with

di®ering binding preferences exhibited measures of volumetric similarity that were

signi¯cantly less than other sets of cavities with identical binding preferences. These

results held regardless of the number of cavities in the set considered and for both

serine proteases and enolase superfamily cavities.

4.3. Validating the regional model

While our regional model is designed to represent the same kind of data as our uni¯ed

model, it is conceivable that the most appropriate model for this data may not be the

log-normal distribution, as observed in Sec. 4.1. As before, we considered the gamma,

Weibull, Pareto, GEV, and Log-Normal distributions, and we added the Gaussian

and T distributions as possible models for representing the degree of volumetric

similarity between binding cavities with identical binding preferences inside a given

region g, which was taken to be a cube of sidelength 5.0Å.
This experiment was repeated for four di®erent g regions from each of the enolase

and trypsin training sets, where the number of special cases (as de¯ned in Sec. 3.3)

varied from zero to most of set. The GEV and Pareto distributions could not be

suitably ¯t to the data, because estimates of their distribution parameters must be

calculated using iterative approaches. These approaches did not stabilize for the two

cases where special cases a®ected a majority of the set, forcing the GEV and Pareto

distributions to be eliminated from consideration. In the remaining cases, based

again on the comparison of quantile�quantile plots, the log-normal distribution
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¯t better than the others, except the Gaussian distribution, which performed com-

parably on this dataset. Given the success of the log-normal distribution on the

uni¯ed case, and the technical similarity of the uni¯ed and regional models, we

selected the log-normal distribution for consistency.

4.4. Testing the regional model

We tested our regional statistical model by assembling a training set of all enolase

and trypsin cavities. From each training set, we excluded one cavity for testing.

Among enolases, this was the binding cavity of Enolase 1 from Toxoplasma gondii

(3otr), and among serine proteases, this was human trypsin 4 (1h4w). Rather

than select an arbitrary user-de¯ned region for analysis, we fully surrounded each

training set of aligned cavities with a lattice of cubes having sidelengths of 5.0Å.
Each of the 125 cubes around the enolase training set, and the 252 cubes around the

serine proteases was treated individually as a user-de¯ned region for statistical

analysis.

Thus, each cube formed the basis for an individually trained regionalized stat-

istical model, as described in Sec. 3.3. The majority of models regionalized in this

manner were trivial because the cube where the model was trained intersected with

no training set cavities. Most trivial models were created because a generous margin

of cubes were generated surrounding the aligned cavities: 65 cubes around the eno-

lase set and 144 cubes around the trypsin set were trivial in this manner.

At every cube, p-values were computed for the regional volumetric similarity

between the excluded cavity and the dataset cavities with non-enolase or non-trypsin

speci¯city. Since there were four non-enolases and four nontrypsins in our dataset,

four p-values were generated for every cube. Most cubes with nontrivial models

exhibited 1 or zero statistically signi¯cant p-values, based on our 0.05 signi¯cance

threshold. These cubes were situated in regions of the cavity alignments where the

non-enolase cavities and non-trypsin cavities were essentially identical to enolase and

trypsin cavities. That this occurs so frequently is unsurprising because the cavities in

both families are strongly de¯ned by the family's overall fold: the TIM-barrel fold in

enolases is totally conserved among the entire enolase superfamily, as is the serine

protease fold.

Where the cavities do vary, however, many statistically and categorically sig-

ni¯cant p-values were observed. Seven cubes among the enolase models exhibited

four statistically signi¯cant p-values, and six cubes among the serine protease models

exhibited four statistically signi¯cant p-values. A selection of these cubes found on

the serine proteases can be seen in Fig. 5. In every case, these cubes corresponded to

cavity regions that do not bind the same molecular fragment, as established exper-

imentally by other authors. For example, the four models with the most statistically

signi¯cant p-values among the serine proteases (Figs. 5A2 B2) correspond to cavity

regions essential for accommodating the large hydrophobic sidechains that bind to

chymotrypsins.53
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5. Conclusions

We have presented a new regionalized statistical model that expanded on a

uni¯ed statistical model described earlier.5 To our knowledge, the approach described

here is the ¯rst method for automatically decomposing multiple structural alignments

of protein�ligand binding cavities and evaluating the statistical signi¯cance of volu-

metric similarities within user-de¯ned cavity regions. We demonstrated an application

of this regionalized model that is not possible with existing methods: We divided

multiple structural alignments of serine protease and enolase cavities into a lattice of

cubes and analyzed regionalized volumetric similarity in each cube.

In developing this new statistical model, we observed that the log-normal distri-

bution performed at least as well or better at representing volumetric similarity data in

comparison to multiple parametric distributions. In testing the regionalized model, we

observed that agglomerations of cubes with statistically signi¯cant p-values could

identify experimentally established structural in°uences on ligand binding preferences.

Regionalized statistical models have useful applications where existing models

have not been applied, such as in the regionalized analysis of protein�ligand

binding cavities for inhibitor design. By identifying regions with a statistically

signi¯cant lack of similarity among proteins expected to have similar binding

preferences, users may be able to identify variations that can be exploited for

selective inhibitors. In combination with other sources of biophysical data,

regionalized statistical models may thus provide new insights and methods in

molecular design and analysis.

A1 B1

A2
B2

Fig. 5. The structurally aligned S1 cavity of human trypsin 4 (teal) and the S1 cavity of cow chymo-
trypsin (transparent yellow with black outline), with six regionalization cubes, shown in two orientations.

The orientation on the right is that of the left rotated about a near-vertical axis approximately 180�. A1,

B1 represent two cubes that generate models with statistically signi¯cant p-values. A2,B2 represent four

cubes that generate the most statistically signi¯cant p-values; these cubes coincide with regions of the
chymotrypsin S1 cavity that are essential for accommodating larger and more hydrophobic amino acids

that the shorter trypsin cavities cannot accommodate.
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