CSE302;
Compiler Design

N

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science

Lehigh University

April 3, 2007

= Syntax-directed translation (Chapter 5)
= Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

i SDD’s

= For synthesized attributes

= Perform bottom-up tree traversal for attribute
evaluation

= An SDD is S-attributed If every attribute is
synthesized
= For SDD’s with both inherited and synthesized
attributes
= Dependency graphs

= An SDD is L-attributed if in all of its dependency
graphs the edges only go from left to right but not

from right to left
Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Syntax-directed Translation
Schemes

= Note that SDD is used for specifications
= SDD = SDT
= SDT’s are implemented during parsing
without building a parse tree
= S-attributed SDD based on LR-parsable grammar
= L-attributed SDD based on LL-parsable grammar

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

S-attributed SDD’s Based on LR-
parsable Grammars

= SDD = SDT

= Construct an SDT where actions are placed at the end of the
productions corresponding to semantic rules

s Postfix SDT'’s

= SDD Production Semantic rules
To>T,*F T.val = T,.val * F.val
T—o>F T.val = F.val
F — digit F.val = digit.lexval

= SDT
T—>T,*F { T.val = T,.val * F.val; }
T—>F { T.val = F.val; }
F — digit { F.val = digit.lexval; }

= An action is executed along with the reduction of the
body to the head of the associated production

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Parser-Stack Implementation of
Postfix SDT's

= [he attribute(s) of each grammar symbol
can be put on the stack along with the

symbol
= T>T,*F
T * F
T.val F.val

= When reduction
« Stack[top-2].val =

stack[top].val * T
stack[top-2].val;
= top = top — 2; T.val

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

i Another SDD to SDT Example

= SDD of while to generate 3-address code
« S—>while (C)S
= while(i<a) i=i*2;
1=
= label L5: if i<a goto L6

goto L7
label L6: i=i*2

goto L5
label L7: j=j*i

= S>while(C)S Ll=new(); L2=new();
S1.next=L1;
C.true=L2; C.false=S.next;

S.code= label || L1 || C.code || label || L2 || S1.code
Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

i Another SDD to SDT Example

= For synthesized attribute computations
= End of the production body

= For computing inherited attributes of a
nonterminal

= Immediately before the nonterminal occurrence

S — while ({ L1=new(); L2=new();
C.true=L2; C.false=S.next;

ks
C) S1.next=L1;

S1 { S.code= label || L1 || C.code || label || L2 || S1.code; }

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDT's With Actions Inside
i Productions

s L-attributed SDD’s = SDT’s with actions
Inside productions

= When remove left-recursions in an S-
attributed SDD for LL parsing = SDT’s with
actions inside production

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Define A Language and Syntax-
Directed Translation (1/23)

expr — expr + term | expr - term | term
term > 0|1]...]9

Syntax-directed translation based on semantic
actions

expr » expr + term { print(‘+’) }
| expr - term { print(*-) }
| term

term—> 0 { print(‘0’) }

1 {print(‘l) }

9 { print(‘9’) }

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDT's With Actions Inside

i Productions

A—>Aaolp A—BR
Ro>aR|e

= Left recursion removal for top-down parsing
= expr — term rest
= rest » + term { print(‘+’) } rest
| - term { print(*-") } rest
| €
= term —> 0 { print(‘0’) }
1 { print(‘1l) }

9 { print('9") }

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDT's With Actions Inside

i Productions

= Any SDT can be implemented as follows

= Ignore the actions, parse the input and produce a
parse tree

= Add actions into the parser tree corresponding to
the SDT

= Perform a preorder traversal of the tree

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDT's With Actions Inside

i Productions

= Use a recursive-descent parser with one
function for each nonterminal

= Generate code on the fly using a recursive-
descent parser

= Implement an SDT Iin conjunction with an LL-
parser

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Recursive-descent Parser: One

i Function For Each Nonterminal

= Function arguments: inherited attributes
= Function return: synthesized attributes
= The while example

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Generate Code on the Fly Using a
Recursive-descent Parser

= Incrementally generate pieces of the code
Into an array or output file
= Avoid copying or moving long strings

= The while example

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Implement An SDT In
Conjunction with An LL-parse

s If L-attributed SDD is based on an LL-
grammar

= Extend the parser stack to hold actions and items
for attribute evaluations

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Non-recursive Predictive Parsing
(2/27)

= A stack storing symbols, initialized with $S al+|bl|$ Input
= An input buffer with an input pointer /jp %
= A parsing table M for grammar G

Stack

Predictive Parsing
Program

Output

Point /p to the 1st input symbol
Set A to the top stack symbol
while(4=9) {
iIf (Ais a) pop stack; advance /p
else if (A is a terminal) error();
else if (M[A,4] is an error entry) error();
else if (M[A4,a]l = A—-> X X%..X) {
output the production or other actions;
pop the stack;
push X, ... ,X,, X; onto the stack with X; on top;

ABE

Parsing Table
MI[A,a]

¥
Set A to the top stack symbol;

} Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Implement An SDT In
Conjunction with An LL-parse

s If L-attributed SDD is based on an LL-
grammar

= Extend the parser stack to hold actions and items
for attribute evaluations

= Action record for inherited attribute computation
What should be in the record?
Placed above or below the nonterminal?
The SDD for while to generate code on the Fly

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Implement An SDT In
Conjunction with An LL-parse

= If L-attributed SDD is based on an LL-
grammar
= Extend the parser stack to hold actions and items
for attribute evaluations

= Action record for inherited attribute computation

= Synthesize record for synthesized attribute computation
Placed above or below the nonterminal?

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

i Final Exam Reminder

= THURSDAY, MAY 03, 2007/,
08:00-11:00AM

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

i Homework (Due on 04/02)

= 10.1. (a) Exercise 5.2.4 (page 317);
(b) Exercise 5.2.5 (Page 317).

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

