
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

April 3, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Outline

Recap
Syntax-directed translation (Chapter 5)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDD’s
For synthesized attributes

Perform bottom-up tree traversal for attribute
evaluation
An SDD is S-attributed if every attribute is
synthesized

For SDD’s with both inherited and synthesized
attributes

Dependency graphs
An SDD is L-attributed if in all of its dependency
graphs the edges only go from left to right but not
from right to left

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Syntax-directed Translation
Schemes

Note that SDD is used for specifications
SDD ⇒ SDT

SDT’s are implemented during parsing
without building a parse tree

S-attributed SDD based on LR-parsable grammar
L-attributed SDD based on LL-parsable grammar

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

S-attributed SDD’s Based on LR-
parsable Grammars

SDD ⇒ SDT
Construct an SDT where actions are placed at the end of the
productions corresponding to semantic rules

Postfix SDT’s
SDD Production Semantic rules
T → T1 * F T.val = T1.val * F.val
T → F T.val = F.val
F → digit F.val = digit.lexval
SDT
T → T1 * F { T.val = T1.val * F.val; }
T → F { T.val = F.val; }
F → digit { F.val = digit.lexval; }

An action is executed along with the reduction of the
body to the head of the associated production

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Parser-Stack Implementation of
Postfix SDT’s

The attribute(s) of each grammar symbol
can be put on the stack along with the
symbol

T → T1 * F

When reduction
stack[top-2].val =

stack[top].val *
stack[top-2].val;

top = top – 2;

…F.valT.val
…F*T

…T.val
…T

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Another SDD to SDT Example
SDD of while to generate 3-address code

S → while (C) S
while(i<a) i=i*2;
j=j*i;

label L5: if i<a goto L6
goto L7

label L6: i=i*2
goto L5

label L7: j=j*i

S → while (C) S L1=new(); L2=new();
S1.next=L1;
C.true=L2; C.false=S.next;

S.code= label || L1 || C.code || label || L2 || S1.code

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Another SDD to SDT Example
For synthesized attribute computations

End of the production body

For computing inherited attributes of a
nonterminal

Immediately before the nonterminal occurrence

S → while ({ L1=new(); L2=new();
C.true=L2; C.false=S.next;

}
C) S1.next=L1;
S1 { S.code= label || L1 || C.code || label || L2 || S1.code; }

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDT’s With Actions Inside
Productions

L-attributed SDD’s ⇒ SDT’s with actions
inside productions
When remove left-recursions in an S-
attributed SDD for LL parsing ⇒ SDT’s with
actions inside production

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Define A Language and Syntax-
Directed Translation (1/23)

expr → expr + term | expr - term | term
term → 0 | 1 | … | 9
Syntax-directed translation based on semantic
actions
expr → expr + term { print(‘+’) }

| expr - term { print(‘-’) }
| term

term → 0 { print(‘0’) }
| 1 { print(‘1’) }
| …
| 9 { print(‘9’) }

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDT’s With Actions Inside
Productions

A → A α | β A → β R
R → α R | ε

Left recursion removal for top-down parsing
expr → term rest
rest → + term { print(‘+’) } rest

| - term { print(‘-’) } rest
| ε

term → 0 { print(‘0’) }
| 1 { print(‘1’) }
| …
| 9 { print(‘9’) }

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDT’s With Actions Inside
Productions

Any SDT can be implemented as follows
Ignore the actions, parse the input and produce a
parse tree
Add actions into the parser tree corresponding to
the SDT
Perform a preorder traversal of the tree

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

SDT’s With Actions Inside
Productions

Use a recursive-descent parser with one
function for each nonterminal
Generate code on the fly using a recursive-
descent parser
Implement an SDT in conjunction with an LL-
parser
Implement an SDT in conjunction with an LR-
parser (in April 19th’s lecture)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Recursive-descent Parser: One
Function For Each Nonterminal

Function arguments: inherited attributes
Function return: synthesized attributes
The while example

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Generate Code on the Fly Using a
Recursive-descent Parser

Incrementally generate pieces of the code
into an array or output file

Avoid copying or moving long strings

The while example

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Implement An SDT in
Conjunction with An LL-parse

If L-attributed SDD is based on an LL-
grammar

Extend the parser stack to hold actions and items
for attribute evaluations

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Non-recursive Predictive Parsing
(2/27)

A stack storing symbols, initialized with $S
An input buffer with an input pointer ip
A parsing table M for grammar G

a + b $

Y

X

$

Z

Input

Predictive Parsing
Program

Stack Output

Parsing Table
M[A,a]

Point ip to the 1st input symbol
Set A to the top stack symbol
while(A≠$) {

if (A is a) pop stack; advance ip
else if (A is a terminal) error();
else if (M[A,a] is an error entry) error();
else if (M[A,a] = A → X1X2…Xk) {

output the production or other actions;
pop the stack;
push Xk , … ,X2 , X1 onto the stack with X1 on top;

}
Set A to the top stack symbol;

}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Implement An SDT in
Conjunction with An LL-parse

If L-attributed SDD is based on an LL-
grammar

Extend the parser stack to hold actions and items
for attribute evaluations

Action record for inherited attribute computation
What should be in the record?
Placed above or below the nonterminal?
The SDD for while to generate code on the Fly

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Implement An SDT in
Conjunction with An LL-parse

If L-attributed SDD is based on an LL-
grammar

Extend the parser stack to hold actions and items
for attribute evaluations

Action record for inherited attribute computation
Synthesize record for synthesized attribute computation

Placed above or below the nonterminal?

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Outline

Recap
Syntax-directed translation
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Final Exam Reminder

THURSDAY, MAY 03, 2007,
08:00-11:00AM

Instructor: Dr. Liang Cheng CSE302: Compiler Design 04/03/07

Homework (Due on 04/02)

10.1. (a) Exercise 5.2.4 (page 317);
(b) Exercise 5.2.5 (Page 317).

