
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

February 01, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Outline

Recap
Intermediate code generation (Section 2.8)
Symbol tables (Section 2.7)

Lexical analysis (Chapter 3)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Two Kinds of Intermediate
Representation

Syntax tree representation
Expressions

E1 op E2

Statements
while (expr) stmt
do stmt while expr

Use a translation scheme
Semantic rules or semantic
actions

Three-address-code
representation

OP
E1 E2

while
expr stmt

do
stmt expr

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Symbol Tables

Hold info of source program constructs
Collected during analysis
Used for synthesis

Support multiple declarations of the
same identifier within a program

A separate symbol table for each scope
A program block
A class

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Outline

Recap
Lexical analysis in a nutshell

Overview
Regular expressions
Finite automata
Implementation of a scanner

Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Overview
Pattern matching between

Input: characters in a source file
Output: tokens

based on theories of regular expressions and
finite automata

lexical
analyzer parser

symbol
table

source
program

token

get next
token

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Tokens and Lexemes

A lexeme is the lowest level syntactic
unit of a language described by a lexical
specification
A token is a category/abstraction of
lexemes

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Tokens
Defined as an enumerated type

in C:
typedef enum

{IF, THEN, ELSE, EQ, GE, LE,NE, NUM, ID, …}
TokenType;
in Java:
Appendix A: Tag.java

Fall into several categories
Reserved words

The lexeme or string value of the token IF is if
Special symbols

The lexeme or string value of the token EQ is ==
Identifiers

Represent multiple lexemes
Literals or constants

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Overview
The scanner is operated under the
control of the parser

In Parser.java: move() {look=lex.scan();};
In Lexer.java: public Token scan() {…}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Outline

Recap
Lexical analysis in a nutshell

Overview
Regular expressions
Finite automata
Implementation of a scanner

Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Regular Expressions
Represent patterns of strings of characters
The set of strings generated by a regular
expression r is as L(r)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Basic Regular Expressions
Single characters from the alphabet

The set of legal symbols Σ
L(a) = {a}
L(ε) = {ε}
L(∅) = {}

Regular expression operations
Choice among alternatives: L(r|s) = L(r) ∪ L(s)
Concatenation: L(rs) = L(r)L(s)
Repetition (zero or more times): L(r*) = L(r)*
A regular expression for a sequence of one or more numeric
digits

(0|1|…|9)(0|1|…|9)*
digit digit* where digit = 0|1|…|9

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Extensions to Regular
Expressions

One or more repetitions
r+: digit+ where digit = 0|1|…|9

A range of characters in the alphabet
a|b|c: [abc]
a|b|…|z:[a-z]
0|1|…|9: [0-9]

Any character in the alphabet, any
character not in a given set …

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Regular Expressions for
Identifiers

An identifier starts with a letter,
followed by one or more letters or one
or more digits

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Outline

Recap
Lexical analysis in a nutshell

Overview
Regular expressions
Finite automata
Implementation of a scanner

Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

A Finite Automaton for Identifiers
There is an algorithm that constructs a finite
automaton below for the regular expression of
identifiers, e.g. Thompson’s construction

States in the pattern recognition process
State 1: start state
State 2: the state after a single letter has been matched

Accepting states drawn in double-line border

1 2
letter

letter

digit

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Outline

Recap
Lexical analysis in a nutshell

Overview
Regular expressions
Finite automata
Implementation of a scanner

Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Implementation of Finite
Automata and Demo

A transition table based approach
s = 1;
while(s!=acceptState and s!=errorState) {
c = next input character;
s = T[s,c];

}

States representing
transitions T(s,c)

States
s

Characters in the alphabet c

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/01/07

Outline

Recap
Lexical analysis (Chapter 3)
Summary and homework

