
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

February 13, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Outline

Recap
The lexical-analyzer generator Lex

Implementing lexical-analyzer
generators
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Overview of Flex

Flex is a scanner generator
Input is description of patterns and actions
Output is a C program which contains a
function yylex() which when called
matches patterns and performs actions per
input

Execute the unix command “man flex”
for full information

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Overview of Flex
Compile using Flex tool

Results in C code

Compile using C compiler
Link to the flex library (-lfl)

Run the executable and recognize tokens

Lex compilerLex source
program: lex.l lex.yy.c

C compilerlex.yy.c a.out

a.outInput stream sequence
of tokens

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Flex Source Program Format

%{
declarations
%}
regular definitions
%%
translation rules
%%
auxiliary procedures/functions

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Commands

flex <prog_name>.l
On CSE Department Suns, flex is in
/usr/sfw/bin/flex

gcc –o sample lex.yy.c -lfl
sample < input.text

flex generates a main routine that is not
needed when parsing with Yacc-generated
parser

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Some Functions and Variables
yylex()

The primary function generated
input()

Returns the next char from the input
unput(int c)

Returns char c to input
yylval // Used to pass values to parser
yytext // String with token from input
yyleng // Length of string
yyin // File handle

yyin = fopen(args[0], “r”)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Regular Expressions For Tokens

ws → (blank|tab|newline)+

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Example Lex Source Programs
%{ /* definitions of constants

LT , LE , EQ , NE , GT ,
GE , IF , THEN , ELSE ,
ID , NUMBER , RELOP */

%}

delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number
{digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%
{ws} {/* no action */}
if {return("IF");}
then {return("THEN");}
else {return("ELSE");}
{id} {return("ID”);}
{number} {return(“NUMBER”);}
"<" {return("RELOP");}
"<=" {return("RELOP");}
"=" {return("RELOP");}
"<>" {return("RELOP");}
">" {return("RELOP");}
">=" {return("RELOP");}
%%

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Conflict Resolution in Lex
When several prefixes of the input match
one or more patterns

Always prefer a longer prefix to a shorter
prefix
If the longest possible prefix matches two or
more patterns, prefer the pattern listed first in
the Lex source program

if i>0 then i=1 else i=0

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Outline

Recap
The lexical-analyzer generator Lex

Implementing lexical-analyzer
generators
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Implementing Lexical-Analyzer
Generators

Regular expressions →
Nondeterministic finite automata
Nondeterministic finite automata →
Deterministic finite automata
Deterministic finite automata → A lexer

Regular expressions → Deterministic
finite automata
Deterministic finite automata → A lexer

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Deterministic Finite Automata →
A Lexer

A transition table based approach
s = 1;
while(s!=acceptState and s!=errorState) {
c = next input character;
s = T[s,c];

}

States representing
transitions T(s,c)

States
s

Characters in the alphabet c

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Deterministic Finite Automata
A finite set of states S.
A set of input symbols or characters Σ as the
input alphabet.

The empty string ε is not a member of Σ
A transition function T: S×Σ→S that gives a
next state for each state and each
symbol/character
A state s0 from S as the initial state.
A set of states F that is a subset of S as the
final/accepting states.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

DFA/NFA Accepting Regular
Expressions

The language or regular expression
accepted by a DFA or NFA D, written as
L(D)

The set of strings of symbols c1c2…cn with
each ci such as there exist states
s1=T(s0,c1), …, sn=T(sn-1,cn), with sn an
accepting/final state

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Nondeterministic Finite Automata
A finite set of states S.
A set of input symbols or characters Σ as the
input alphabet.

The empty string ε is not a member of Σ
A transition function T: S×Σ→S that gives a
set of next states for each state and each
symbol/character in Σ∪{ε}
A state s0 from S as the initial state.
A set of states F that is a subset of S as the
final/accepting states.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Implementing Lexical-Analyzer
Generators

Regular expressions →
Nondeterministic finite automata
Nondeterministic finite automata →
Deterministic finite automata
Deterministic finite automata → A lexer

Regular expressions → Deterministic
finite automata
Deterministic finite automata → A lexer

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

MYT Algorithm
Constructing an NFA from a regular
expression r by McNaughton-Yamada-
Thompson algorithm

Organizing r into its constituent sub-expressions
Sub-expressions with no operators
Operators

Using basic rules to construct NFA for Sub-
expressions with no operators
Using inductive rules to construct larger NFA
based on the constructed NFA for operations of
sub-expressions

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Basic Rules to Construct NFA
For expression ε

For any subexpression a, i.e. {a}

start
i f

ε

start
i f

a

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Inductive Rules to Construct
Larger NFA For Operations

Assume N(s) and N(t) are NFA for
regular expressions s and t,
respectively

Parenthesis operation r=(s)
Use the NFA N(s) as N(r)

Union operation r=s|t
Concatenation operation r=st
Repetition operation r=s*

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Examples

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Implementing Lexical-Analyzer
Generators

Regular expressions →
Nondeterministic finite automata
Nondeterministic finite automata →
Deterministic finite automata
Deterministic finite automata → A lexer

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Conversion of NFA to DFA
Subset construction algorithm

Input: An NFA N
Output: A DFA D accepting the same language as N
Algorithm: construct a transition table Dtran corresponding to D

Initially, ε-closure(s0) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {

mark T;
for (each input symbol a) {

U = ε-closure(move(T,a));
if (U is not in Dstates) add U as an unmarked state to Dstates;
Dtran[T,a] = U;

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

ε-closure(s) and ε-closure(T)
ε-closure(s): a set of NFA states reachable from NFA
state s on ε-transitions alone
ε-closure(T): a set of NFA states reachable from
some NFA state s in the set T on ε-transitions alone

∪ s in T ε-closure(s)

push all states of T onto stack;
initialize ε-closure(T) to T;
while (stack is not empty) {

pop t, the top element, off stack;
for (each state u with an edge from t to u labeled ε)

if (u is not in ε-closure(T)) {
add u to ε-closure(T); push u onto stack;

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

move(T,a)

A set of NFA states to which there is a
transition on input symbol a from some
state s in T

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Examples

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Outline

Recap
The lexical-analyzer generator Lex

Implementing lexical-analyzer
generators
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/13/07

Homework (Due on 02/19 at
11:55 PM)

5.1. (10 points). Using flex and based on the
Example 3.8 (pages 128-129 in the textbook),
generate a lexer that scans the following
input stream and outputs the following output
stream.

Input stream: if i>0 then i=1 else i=0
Output stream: IF ID:i RELOP:GT NUMBER:0
THEN ID:i RELOP:EQ NUMBER:1 ELSE ID:i
RELOP:EQ NUMBER:0
Please provide a readme file explaining how you
generate and test your lexer.

5.2. Conversion of a NFA to a DFA will be
posted at the Blackboard.

