Outline

- Recap
 - The lexical-analyzer generator Lex
- Implementing lexical-analyzer generators
- Summary and homework
Implementing Lexical-Analyzer Generators

- Regular expressions \rightarrow Nondeterministic finite automata
- Nondeterministic finite automata \rightarrow Deterministic finite automata
- Deterministic finite automata \rightarrow A lexer

- Regular expressions \rightarrow Deterministic finite automata
- Deterministic finite automata \rightarrow A lexer
MYT Algorithm

- Constructing an NFA from a regular expression r by McNaughton-Yamada-Thompson algorithm
 - Organizing r into its constituent sub-expressions (parse tree)
 - Sub-expressions with no operators
 - Operators
 - Using basic rules to construct NFA for sub-expressions with no operators
 - Using inductive rules to construct larger NFA based on the constructed NFA for operations of sub-expressions
An Example: $(a|b)^*abb$
Another Example

- Form the NFA for the regular expression

 \textit{letter}(\textit{letter}|\textit{digit})^{*}
Implementing Lexical-Analyzer Generators

- Regular expressions \rightarrow Nondeterministic finite automata
- Nondeterministic finite automata \rightarrow Deterministic finite automata
- Deterministic finite automata \rightarrow A lexer
Conversion of NFA to DFA

- Subset construction algorithm
 - Input: An NFA \(\mathcal{N} \)
 - Output: A DFA \(\mathcal{D} \) accepting the same language as \(\mathcal{N} \)
 - Algorithm: construct a transition table \(\mathcal{D}_{\text{tran}} \) corresponding to \(\mathcal{D} \)

Initially, \(\varepsilon\)-closure(\(s_0 \)) is the only state in \(\mathcal{D}_{\text{states}} \), and it is unmarked; while (there is an unmarked state \(T \) in \(\mathcal{D}_{\text{states}} \)) {
 mark \(T \);
 for (each input symbol \(a \)) {
 \(U = \varepsilon\text{-closure}(\text{move}(T, a)) \);
 if (\(U \) is not in \(\mathcal{D}_{\text{states}} \)) add \(U \) as an unmarked state to \(\mathcal{D}_{\text{states}} \);
 \(\mathcal{D}_{\text{tran}}[T, a] = U \);
 }
}
\(\varepsilon \)-closure\((s) \) and \(\varepsilon \)-closure\((T) \)

- \(\varepsilon \)-closure\((s) \): a set of NFA states reachable from NFA state \(s \) on \(\varepsilon \)-transitions alone
- \(\varepsilon \)-closure\((T) \): a set of NFA states reachable from some NFA state \(s \) in the set \(T \) on \(\varepsilon \)-transitions alone
 - \(\bigcup_{s \in T} \varepsilon \)-closure\((s) \)

push all states of \(T \) onto stack;
initialize \(\varepsilon \)-closure\((T) \) to \(T \);
while (stack is not empty) {
 pop \(t \), the top element, off stack;
 for (each state \(u \) with an edge from \(t \) to \(u \) labeled \(\varepsilon \))
 if (\(u \) is not in \(\varepsilon \)-closure\((T) \)) {
 add \(u \) to \(\varepsilon \)-closure\((T) \); push \(u \) onto stack;
 }
}
move(T, a)

- A set of NFA states to which there is a transition on input symbol a from some state s in T
Conversion of An NFA Accepting \((a|b)^*abb\) to A DFA

- Draw the state transition diagram
Another Example

- Convert the NFA for the regular expression \textit{letter(letter|digit)}^* to a DFA
Simulation of An NFA

An input string x terminated by \texttt{eof}. An NFA N with a start state s_0, accepting states F, and ε-closure() and move() functions.

\[
S = \varepsilon\text{-closure}(s_0);
\]
\[
c = \text{nextChar}();
\]
\[
\textbf{while} \ (\ c \neq \texttt{eof}) \ \{ \quad S = \varepsilon\text{-closure}(\text{move}(S, c)); \ c = \text{nextChar}();
\}
\]
\[
\textbf{if} \ (\ S \cap F \neq \emptyset) \ \textbf{return} \ \text{“yes”};
\]
\[
\textbf{else} \ \text{return} \ \text{“no”};
\]
Outline

- Recap
- Implementing lexical-analyzer generators
- Summary and homework
Flex

- Fast lexical analyzer generator
Conversion of NFA to DFA

- Subset construction algorithm
 - Input: An NFA N
 - Output: A DFA D accepting the same language as N
 - Algorithm: construct a transition table D_{tran} corresponding to D

Initially, ϵ-closure(s_0) is the only state in D_{states}, and it is unmarked;
while (there is an unmarked state T in D_{states}) {
 mark T;
 for (each input symbol a) {
 $U = \epsilon$-closure(move(T, a));
 if (U is not in D_{states}) add U as an unmarked state to D_{states};
 $D_{tran}[T, a] = U$;
 }
}
Reading Assignment

- For today’s class
 - Sections 3.7 and 3.8
- For next Tuesday’s class
 - Chapter 4
Homework (Due on 02/19 at 11:55 PM)

5.1. (10 points). Using flex and based on the Example 3.8 (pages 128-129 in the textbook), generate a lexer that scans the following input stream and outputs the following output stream.

- Input stream: if i>0 then i=1 else i=0

Please provide a readme file explaining how you generate and test your lexer.

5.2. (10 points) Convert the NFA for the regular expression \texttt{letter}\texttt{(letter|digit)}* to a DFA.