
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

February 15, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Outline

Recap
The lexical-analyzer generator Lex

Implementing lexical-analyzer
generators
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Implementing Lexical-Analyzer
Generators

Regular expressions →
Nondeterministic finite automata
Nondeterministic finite automata →
Deterministic finite automata
Deterministic finite automata → A lexer

Regular expressions → Deterministic
finite automata
Deterministic finite automata → A lexer

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

MYT Algorithm
Constructing an NFA from a regular
expression r by McNaughton-Yamada-
Thompson algorithm

Organizing r into its constituent sub-
expressions (parse tree)

Sub-expressions with no operators
Operators

Using basic rules to construct NFA for sub-
expressions with no operators
Using inductive rules to construct larger NFA
based on the constructed NFA for operations of
sub-expressions

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

An Example: (a|b)*abb

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Another Example

Form the NFA for the regular expression
letter(letter|digit)*

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Implementing Lexical-Analyzer
Generators

Regular expressions →
Nondeterministic finite automata
Nondeterministic finite automata →
Deterministic finite automata
Deterministic finite automata → A lexer

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Conversion of NFA to DFA
Subset construction algorithm

Input: An NFA N
Output: A DFA D accepting the same language as N
Algorithm: construct a transition table Dtran corresponding to D

Initially, ε-closure(s0) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {

mark T;
for (each input symbol a) {

U = ε-closure(move(T,a));
if (U is not in Dstates) add U as an unmarked state to Dstates;
Dtran[T,a] = U;

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

ε-closure(s) and ε-closure(T)
ε-closure(s): a set of NFA states reachable from NFA
state s on ε-transitions alone
ε-closure(T): a set of NFA states reachable from
some NFA state s in the set T on ε-transitions alone

∪ s in T ε-closure(s)

push all states of T onto stack;
initialize ε-closure(T) to T;
while (stack is not empty) {

pop t, the top element, off stack;
for (each state u with an edge from t to u labeled ε)

if (u is not in ε-closure(T)) {
add u to ε-closure(T); push u onto stack;

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

move(T,a)

A set of NFA states to which there is a
transition on input symbol a from some
state s in T

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Conversion of An NFA Accepting
(a|b)*abb to A DFA

Draw the state transition diagram

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Another Example

Convert the NFA for the regular
expression letter(letter|digit)* to a
DFA

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Simulation of An NFA
An input string x terminated by eof. An NFA
N with a start state s0, accepting states F,
and ε-closure() and move() functions.

S = ε-closure(s0);
c = nextChar();
while (c! = eof) {

S=ε-closure(move(S,c)); c=nextChar();
}
if (S ∩ F != ∅) return “yes”;
else return “no”;

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Outline

Recap
Implementing lexical-analyzer
generators
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Flex

Fast lexical analyzer generator

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Conversion of NFA to DFA
Subset construction algorithm

Input: An NFA N
Output: A DFA D accepting the same language as N
Algorithm: construct a transition table Dtran corresponding to D

Initially, ε-closure(s0) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {

mark T;
for (each input symbol a) {

U = ε-closure(move(T,a));
if (U is not in Dstates) add U as an unmarked state to Dstates;
Dtran[T,a] = U;

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Reading Assignment

For today’s class
Sections 3.7 and 3.8

For next Tuesday’s class
Chapter 4

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/15/07

Homework (Due on 02/19 at
11:55 PM)

5.1. (10 points). Using flex and based on the
Example 3.8 (pages 128-129 in the textbook),
generate a lexer that scans the following
input stream and outputs the following output
stream.

Input stream: if i>0 then i=1 else i=0
Output stream: IF ID:i RELOP:GT NUMBER:0
THEN ID:i RELOP:EQ NUMBER:1 ELSE ID:i
RELOP:EQ NUMBER:0
Please provide a readme file explainig how you
generate and test your lexer.

5.2. (10 points) Convert the NFA for the
regular expression letter(letter|digit)* to a
DFA.

