
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

February 20, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Outline

Recap
Implementing lexical-analyzer generators
(Sections 3.6, 3.7, and 3.8)

Syntax analysis (Chapter 4)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Three Types Of Parsers

Universal
Cocke-Younger-Kasami algorithm and
Earley’s algorithm

Top-down
From the root to leaves

Bottom-up
From leaves to the root

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Input And Output Of Parsers

A stream of tokens coming from lexer
Generate some representation of the
parse tree

Collecting information about tokens into
the symbol table
Type checking and static semantic analysis
Error handling

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Error Handling: Error Types
Common types of errors

Lexical errors
Misspelling, missing quotes around string texts

Syntactic errors
Misplaced semicolons
Extra or missing braces
Missing matching keywords

Static semantic errors
Type mismatches
Return values for void return method

Logical errors
= vs. ==

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Error Handling: Error Recovery
Print the offending line with a pointer to the error
position
Panic-mode recovery

Discard input symbols one at a time until one of a
designated set of synchronizing tokens is found

Delimiters
Phrase-level recovery

Replace a prefix of the remaining input by some string
that allows the parser to continue

, → ; delete an extraneous ; insert a missing ;
Global correction

A minimal sequence of changes to obtain a globally
least-cost correction

Error productions
Add error productions in the grammar

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Context-free Grammar
stmt → if (expr) stmt else stmt
Terminals

Token names

Nonterminals
A start symbol
Productions

Head or left side
→ or ::=
Body or right side

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Notations for Context-free
Grammar

stmt → if (expr) stmt else stmt
Terminals

Lowercase letters early in the alphabet (a,b,c)
Operator symbols
Punctuation symbols
The digits 0,1,…,9
Boldface strings

Nonterminals
Uppercase letters early in the alphabet (A,B,C,D,E,F) & T

E: expressions; T: terms; F: factors

Letter S or the head of the 1st production: start symbol
Lowercase, italic names

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

More Notations for Context-free
Grammar

Uppercase letter late in the alphabet (X,Y,Z)
represent grammar symbols

Either nonterminals or terminals

Lowercase Greek letters (α,β,γ,…) represent
strings of grammar symbols

A → α

Lowercase letter late in the alphabet (u,v,w,x,y,z)
represent strings of terminals
A set of productions A → α1, A → α2, … , A → αk ,
with a common head A, may be written as

A → α1 | α2 | … | αk

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Derivations
Leftmost

The top-down construction of the parse trees

Rightmost
The bottom-up construction of the parse trees

*
The symbol ⇒ means “derives in zero or more steps”

*
program ⇒ a = b + const

+
The symbol ⇒ means “derives in one or more steps”

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Sentential Form and A
Language

*
S ⇒ α and S is the start symbol of a grammar G

α is a sentential form of G

A sentence of G is a sentential form without nonterminals

The language L(G) generated by G is its set of
sentences

*
S ⇒ α then α is a left-sentential form of a grammar

lm

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

More Terminologies
*

If S ⇒ means “derives in zero or more steps”
*

program ⇒ a = b + const

+
The symbol ⇒ means “derives in one or more steps”

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Derivations and Parse Trees

The leaves of a parse tree are labeled
by nonterminals and terminals, which
constitute a sentential form

The yield or frontier of the parse tree

α1 ⇒ α2 ⇒ … ⇒ αn where α1 is A
For each sentential form αi, we can
construct a parse tree whose yield is αi

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Ambiguity

A grammar that produces more than
one parse tree for some sentence is
ambiguous

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Verifying Language Generated

A proof that a grammar G generates
language L has two parts

Every string generated by G is in L
Every string in L can be generated by G

S → (S) S | ε

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

BNF vs. Regular Expressions

Every construct that can be described
by a regular expression can be
described by a BNF grammar

Convert a NFA to BNF
For each state i of NFA, create a nonterminal Ai

If state i has a transition to state j on a
Ai → aAj ; if a is ε, add Ai → Aj

If i is an accepting state
Ai → ε

If i is the start state, make Ai the start symbol

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

BNF vs. Regular Expressions

A regular expression may not be able to
define a language that can be defined
by a BNF.

L = {anbn | n≥1}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/20/07

Outline

Recap
Syntax analysis (Chapter 4)
Summary and homework

