
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

February 22, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Outline

Recap
Syntax analysis basics (Sections 4.1 & 4.2)

Writing a grammar (Section 4.3)
Top-down parsing (Section 4.4)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Input And Output Of Parsers

A stream of tokens coming from lexer
Generate some representation of the
parse tree

Collecting information about tokens into
the symbol table
Type checking and static semantic analysis
Error handling

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Notations for Context-free
Grammar

stmt → if (expr) stmt else stmt
Terminals

Lowercase letters early in the alphabet (a,b,c)
Operator symbols
Punctuation symbols
The digits 0,1,…,9
Boldface strings

Nonterminals
Uppercase letters early in the alphabet (A,B,C,D,E,F) & T

E: expressions; T: terms; F: factors

Letter S or the head of the 1st production: start symbol
Lowercase, italic names

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

More Notations for Context-free
Grammar

Uppercase letters late in the alphabet (X,Y,Z)
represent grammar symbols

Either nonterminals or terminals

Lowercase Greek letters (α,β,γ,…) represent
strings of grammar symbols

A → α

Lowercase letter late in the alphabet (u,v,w,x,y,z)
represent strings of terminals
A set of productions A → α1, A → α2, … , A → αk ,
with a common head A, may be written as

A → α1 | α2 | … | αk

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Some Terminologies
*

If S ⇒ means “derives in zero or more steps”
*

program ⇒ a = b + const

+
The symbol ⇒ means “derives in one or more steps”

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

BNF vs. Regular Expressions

Every construct that can be described
by a regular expression can be
described by a BNF grammar
A regular expression may not be able to
define a language that can be defined
by a BNF

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Outline

Recap
Syntax analysis basics (Sections 4.1 & 4.2)

Writing a grammar (Section 4.3)
Top-down parsing (Section 4.4)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Writing A Grammar

Eliminating ambiguity
Elimination of left recursion

For top-down parsing

Left factoring
For top-down parsing

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Eliminating Ambiguity

Ambiguity associated with operator
precedence
Ambiguity associated with operator
associativity
Dangling-else ambiguity

stmt → if expr then stmt
| if expr then stmt else stmt
| other

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Eliminating Ambiguity

Ambiguity associated with operator
precedence
Ambiguity associated with operator
associativity
Dangling-else ambiguity

Add a disambiguity rule
Match each else with the closest unmatched
then

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Remove Left Recursion (01/25)

A → Aα | Aβ | γ

A → γR
R → αR | βR | ε

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Eliminating Left Recursion
A → Aα1 | Aα2 | … | Aαm | β1 | β2 | …| βn

A → β1A’ | β2A’ | …| βnA’
A’ → α1A’ | α2A’ | … | αmA’ | ε

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Eliminating Left Recursion
Immediately left recursive

A → Aα1 | Aα2 | … | Aαm | β1 | β2 | …| βn
↔

A → β1A’ | β2A’ | …| βnA’
A’ → α1A’ | α2A’ | … | αmA’ | ε

How about non-immediately left
recursive productions?

+
A ⇒ Aα

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Eliminating Left Recursion
Grammar G with no cycles or ε-productions

Arrange the nonterminals in order A1, A2, … , An
for (each i from 1 to n) {

for (each j from 1 to i-1) {
replace Ai→Ajα by Ai→β1α|β2α|…|βkα using

existing Aj-productions of Aj→ β1|β2|…|βk
}

eliminate the immediate left recursions among
the Ai-productions

}
S → Aa | b
A → Ac | Sd | ε

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Left Factoring

When the choices between two
alternative A-production is not clear

Rewrite the productions to defer the
decision until enough of the input has been
seen

stmt → if expr then stmt
| if expr then stmt else stmt
| other

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Left Factoring

For each nonterminal A, find the longest
prefix a common to two or more of its
alternatives

A → αβ1 | αβ2 | … | αβn | γ

Replace the above A-productions as
A → αA’ | γ
A’ → β1 | β2 | … | βn

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Outline

Recap
Syntax analysis basics (Sections 4.1 & 4.2)

Writing a grammar (Section 4.3)
Top-down parsing (Section 4.4)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Top-Down Parsing
Creating the parse-tree nodes in
preorder (depth-first)

Finding a leftmost derivation for an input
string

E → E + T | T
T → T * F | F
F → (E) | id
Draw the parse tree for the input
id+id*id

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Top-Down Parsing
At each step the key problem is
determining the production to be
applied for a nonterminal, say A

Recursive-descent parsing
May require backtracking to find the correct A-
production

Predictive parsing
No backtracking is required

Look ahead at the input a fixed number (k) of
symbols
LL(k) class grammars

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Recursive-Descent Parsing
void A() {

Choose an A-production, A → X1X2 … Xn
for (i=1 to n) {

if (Xi is a nonterminal) call Xi();
else if (Xi equals the current input a)

advance the input to the next symbol;
else /* an error occurred */

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

An Backtrack Example

Grammar
S → cAd
A → ab | a

Input string
cad

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Predictive Parsers

Recursive-descent parsers with one
input symbol lookahead that requires
no backtracking

Can be constructed for a class of
grammars called LL(1)
1st L: scanning the input from left to right
2nd L: producing a leftmost derivation

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

LL(1) Grammars
Whenever A → α and A → β are two distinct
A-productions of G, the following conditions
hold

For no terminal a do both α and β derive strings
beginning with a
At most one of α and β can derive the empty
string

*
If β ⇒ ε, then α does not derive any string
beginning with a terminal in FOLLOW(A)

*
If α ⇒ ε, then β does not derive any string
beginning with a terminal in FOLLOW(A)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

FIRST Function and Set
During top-down parsing, FIRST and
FOLLOW allow us to choose which
production to apply

FIRST(α) is the set of terminals that begin
strings derived from α

*
If α ⇒ ε, then ε is also in FIRST(α)

A → α and A → β
FIRST(α) and FIRST(β) are disjoint sets
If a is in FIRST(α) then choose A → α

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Compute FIRST Set
If X is a terminal, then FIRST(X)={X}
If X is a nonterminal and X → Y1Y2…Yk

If X → ε is a production, then add ε to FIRST(X)
Place a in FIRST(X) if for some i, a is in FIRST(Yi) and ε is in all of
FIRST(Y1), … , FIRST(Yi-1)
If ε is in all of FIRST(Y1), … , FIRST(Yk), then add ε to FIRST(X)

Everything in FIRST(Y1) is in FIRST(X)
If Y1 does not derive ε, then stop
If Y1 does derive ε, then add FIRST(Y2) to FIRST(X)
If Y2 does not derive ε, then stop
If Y2 does derive ε, then add FIRST(Y3) to FIRST(X)
…

Examples

Instructor: Dr. Liang Cheng CSE302: Compiler Design 02/22/07

Outline

Recap
Syntax analysis basics (Sections 4.1 & 4.2)

Writing a grammar (Section 4.3)
Top-down parsing (Section 4.4)
Summary and homework

