CSE302: Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science
Lehigh University

February 27, 2007
Outline

- Recap
 - Writing a grammar (Section 4.3)
- Top-down parsing (Section 4.4)
- Summary and homework
Writing A Grammar

- Eliminating ambiguity
- Elimination of left recursion
 - For top-down parsing
- Left factoring
 - For top-down parsing
Outline

- Recap
- Top-down parsing (Section 4.4)
- Summary and homework
Top-Down Parsing

- At each step the key problem is determining the production to be applied for a nonterminal, say A
 - Recursive-descent parsing
 - May require backtracking to find the correct A-production
 - Predictive parsing
 - No backtracking is required
 - Look ahead at the input a fixed number (k) of symbols
 - $LL(k)$ class grammars
Recursive-Descent Parsing

- void $A()$ {
 Choose an A-production, $A \rightarrow X_1 X_2 \ldots X_n$
 for ($i=1$ to n) {
 if (X_i is a nonterminal) call $X_i()$;
 else if (X_i equals the current input a) advance the input to the next symbol;
 else /* an error occurred, backtrack */
 }
}
Predictive Parsers

- Recursive-descent parsers with one input symbol lookahead that requires no backtracking
 - No backtracking: being deterministic in choosing a production
 - Can be constructed for a class of grammars called LL(1)
 - 1st L: scanning the input from left to right
 - 2nd L: producing a leftmost derivation
FIRST Function and Set

- During top-down parsing, FIRST and FOLLOW allow us to choose which production to apply
 - FIRST(α) is the set of terminals that begin strings derived from α
 - If α ⇒ ε, then ε is also in FIRST(α)
 - Compute the FIRST set of a symbol X
 - If X is a terminal, then FIRST(X)={X}
 - If X is a nonterminal and X → Y₁ Y₂...Yₖ
 - If X → ε is a production, then add ε to FIRST(X)
 - Place a in FIRST(X) if for some i, a is in FIRST(Yᵢ) and ε is in all of FIRST(Y₁), ..., FIRST(Yᵢ⁻¹)
 - If ε is in all of FIRST(Y₁), ..., FIRST(Yₖ), then add ε to FIRST(X)
Compute $\text{FIRST}(X)$

- $X \rightarrow Y_1 Y_2 \ldots Y_k$
 - Everything in $\text{FIRST}(Y_1)$ is in $\text{FIRST}(X)$
 - If Y_1 does not derive ε, then stop
 - If Y_1 does derive ε, then add $\text{FIRST}(Y_2)$ to $\text{FIRST}(X)$
 - If Y_2 does not derive ε, then stop
 - If Y_2 does derive ε, then add $\text{FIRST}(Y_3)$ to $\text{FIRST}(X)$
 - ...

- Examples
Compute FIRST(α)

- α is a string of symbols $X_1X_2…X_n$
 - All non-ε symbols in FIRST(X_1) are in FIRST(α)
 - If ε is not in FIRST(X_1), then stop
 - If ε is in FIRST(X_1), then add FIRST(X_2) to FIRST(α)
 - If ε is not in FIRST(X_2), then stop
 - If ε is in FIRST(X_2), then add FIRST(X_3) to FIRST(α)
 - ...
 - If ε is in all FIRST(X_i), then add ε in FIRST(α)

- Examples
Usefulness of FIRST Sets

- In top-down parsing
 - At each step the key problem is determining the production to be applied for a nonterminal, say A

 - $S \Rightarrow \gamma A \lambda$
 - I_m

 - $A \rightarrow \alpha$ and $A \rightarrow \beta$
 - FIRST(α) and FIRST(β) are disjoint sets
 - If a is in FIRST(α) then choose $A \rightarrow \alpha$
 - If a is in FIRST(β) then choose $A \rightarrow \beta$
 - How about a is neither in FIRST(α) nor in FIRST(β)?
FOLLOW Function and Set

- FOLLOW(\(A\)) for nonterminal \(A\) is the set of terminals \(a\) that can appear immediately to the right of \(A\) in some sentential form
 - The set of terminals \(a\) such that there exists a derivation of the form
 \[S \Rightarrow \alpha A a \beta \]
 - If \(A\) can be the rightmost symbol in some sentential form, then $ is in \text{FOLLOW}(A)$
 - $ is the input right endmarker and it is NOT a symbol of any grammar
Compute FOLLOW Sets For ALL Nonterminals A

- Place $ in FOLLOW(S), where S is the start symbol, and $ is the input right endmarker
 - $ is not a symbol of any grammar
- If there is a production $A \rightarrow \alpha B\beta$, then everything in FIRST(\beta) except \epsilon is in FOLLOW(B)
- If there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B\beta$, where FIRST(\beta) contains \epsilon (i.e. $\beta \Rightarrow \epsilon$), then everything in FOLLOW(A) is in FOLLOW(B)
 - Whatever followed A must follow B, since we can see from the production rule that nothing may follow B
Examples

- $E \rightarrow TE$
- $E \rightarrow + TE \mid \epsilon$
- $T \rightarrow FT$
- $T' \rightarrow * FT' \mid \epsilon$
- $F \rightarrow (E) \mid \text{id}$
Predictive Parsers

- Recursive-descent parsers with one input symbol lookahead that requires no backtracking
 - No backtracking: being deterministic in choosing a production
 - Can be constructed for a class of grammars called LL(1)
 - 1st L: scanning the input from left to right
 - 2nd L: producing a leftmost derivation
LL(1) Grammars

- Whenever $A \rightarrow \alpha$ and $A \rightarrow \beta$ are two distinct A-productions of G, the following conditions hold:
 - For no terminal a do both α and β derive strings beginning with a.
 - At most one of α and β can derive the empty string *
 - If $\beta \Rightarrow \varepsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A) *
 - If $\alpha \Rightarrow \varepsilon$, then β does not derive any string beginning with a terminal in FOLLOW(A)
Why Such Conditions?

- In top-down parsing
 - At each step the key problem is determining the production to be applied for a nonterminal, say A

 \[S \Rightarrow^* \gamma A \lambda \]

 \[l_m \]

- $A \rightarrow \alpha$ and $A \rightarrow \beta$

 - FIRST(α) and FIRST(β) should be disjoint sets
 - If ϵ is in First(α), then FOLLOW(A) should be different from FIRST(β)
The production $A \rightarrow \alpha$ is chosen if:

- The next input symbol a is in $\text{FIRST}(\alpha)$
- The next input symbol a (or $\$$) is in $\text{FOLLOW}(A)$ and ε is in $\text{FIRST}(\alpha)$
 - The next symbol could be $\$$

Thus we should construct a parsing table M where $M[A, a] = A \rightarrow \alpha$

In function A if the input is a, then call functions and/or match terminals of α
Constructing A Predictive Parsing Table M For ANY Grammar G

- For each production $A \rightarrow \alpha$
 - For each terminal a in FIRST(A), add $A \rightarrow \alpha$ to $M[A, a]$
 - If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \rightarrow \alpha$ to $M[A, b]$
 - If ϵ is in FIRST(α) and if $\$$ is in FOLLOW(A), add $A \rightarrow \alpha$ to $M[A, \$$]
- If, after performing the above, there is no production at all in $M[A, a]$, then set $M[A, a]$ to error
Non-recursive Predictive Parsing

- A stack storing symbols
- A input pointer \(\text{ip} \)
- A parsing table \(M \) for grammar \(G \)

- Set \(\text{ip} \) to point to the 1st symbol of input
- Set \(X \) to the top stack symbol

\[
\text{while}(X \neq \$$) \{
 \text{if} \ (X \text{ is } a) \ \text{pop the stack and advance } \text{ip}
 \text{else if} \ (X \text{ is a terminal}) \ \text{error()};
 \text{else if} \ (M[X,a] \text{ is an error entry}) \ \text{error()};
 \text{else if} \ (M[X,a] = X \rightarrow Y_1 Y_2 \ldots Y_k) \{
 \text{output the production or other actions;}
 \text{pop the stack;}
 \text{push } Y_k, \ldots, Y_2, Y_1 \text{ onto the stack with } Y_1 \text{ on top;}
 \}
 \text{Set } X \text{ to the top stack symbol;}
\}
\]
Examples
Outline

- Recap
 - Syntax analysis basics (Sections 4.1 & 4.2)
- Top-down parsing (Section 4.4)
- Summary and homework