
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

January 16, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Classroom Interactions

I encourage you to raise questions
anytime
I raise questions
Major purposes

Group-based discussion
More efficient in-class learning: learning
pattern

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Office Hours

I encourage you to see me if you have
any questions

Office hours: Fridays from 1 PM to 4 PM
(PL326), or by appointment via email
chengATcseDOTlehighDOTedu

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Today’s Outline

Course information
Introduction (Chapter 1)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Objectives
Be able to

describe the theory and practice of
compilation, in particular

Lexical analysis
Parsing,
Code generation and optimization

design a compiler for a concise
programming language

Prerequisites
CSE 109: Systems Software
CSE318: Automata and Formal Grammars.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Textbook and Languages

Textbook
Compilers: Principles, Techniques, and
Tools (2nd Edition) by Alfred V. Aho,
Monica S. Lam, Ravi Sethi, and Jeffrey D.
Ullman. Addison Wesley, Boston, MA,
2006. ISBN 0321486811

Languages
C, C++, Java

Attendance at lecture is required

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Grading
Homework: 20%

Due Monday 11:55 PM. No late hand-in
homework will be accepted.
Submit your work through the Blackboard
course website.

Programming projects: 30%
Midterm exam: 20%
Final exam: 30%

All exams are open-book ones.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Project Overview

Individual projects
Multi-stage compiler design projects
Academic integrity

All graded work should be your own!

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Other Homework and Exam
Related Issues

If you’d like to request homework and
exam date changes due to some
reasons

Email me a request at least two weeks
ahead of the scheduled deadline

Accommodations for students with
disabilities

Contact both me and the Office of
Academic Support Services, University
Center 212 (610-758-4152)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Course Information
Course website

http://www.cse.lehigh.edu/~cheng
Course syllabus

http://www.cse.lehigh.edu/~cheng/Teaching/CSE302-
07/syllabus.html
Including the course schedule

www.cse.lehigh.edu/~cheng/Teaching/CSE302-
07/schedule.html

For each lecture’s slides
A preparation version will be uploaded to the course
schedule webpage about 10 hours before the lecture
A after-class version will be uploaded to the Blackboard
System after each lecture

Based on materials covered in the class

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Outline

Course information
Introduction (Chapter 1)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Three Questions about Compilers
What is a compiler?

A language processor: source lang -> target lang
Is it important for people to study compiler
design issues?

Software running now was compiled by some
compilers

Is it useful for me to learn compiler design
techniques?

Touch upon programming languages, computer
architecture, language theory, algorithms, and
software engineering
Applicable to many domains

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Language Processors
Language translation

Report errors detected
Compiler vs. interpreter
Java language processor

A hybrid processor
Language processing systems

Preprocessor, compiler, assembler,
linker/loader

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

A Quick Question

What are the specific things that need
to be processed by the language
processing system?

What is the definition of a language?

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Introduction to Language
Definition

Language definition or language
specifications

What does it looks like?
http://java.sun.com/docs/books/jls/

Who must use language definitions?
Language designers
Implementors
Programmers (the users of the language)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Syntax and Semantics
Syntax

The form or structure of the expressions,
statements, and program units

while (EXPRESSION) { STATEMENTS; }

Java syntax: the grammar for Java
http://java.sun.com/docs/books/jls/third_edition/html/sy
ntax.html

Semantics
The meaning of the expressions, statements, and
program units

http://java.sun.com/docs/books/jls/

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Terms for Describing Syntax
A language is a set of sentences
A sentence is a string of characters,
composed of lexemes, over some
alphabet
A lexeme is the lowest level syntactic
unit of a language described by a lexical
specification
A token is a category/abstraction of
lexemes

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Java Lexeme Examples
Java lexical specification

http://java.sun.com/docs/books/jls/third_edition/h
tml/lexical.html

Java identifier definition
“An identifier is an unlimited-length sequence of
Java letters and Java digits, the first of which
must be a Java letter.
An identifier cannot have the same spelling
(Unicode character sequence) as a keyword
(§3.9), Boolean literal (§3.10.3), or the null literal
(§3.10.7).”

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Phases of Compilation
Front end: analysis

Scanner
Parser
Semantic analyzer
Intermediate-code generator

Back end: synthesis
Code optimizer (optional)
Code generator

Symbol table

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

The Scanner
Also called the Lexer
How it works:

Reads characters from the source program.
Groups the characters into lexemes (sequences
of characters that "go together").
Each lexeme corresponds to a token;

the scanner returns the next token (plus maybe some
additional information) to the parser.

The scanner may also discover lexical errors (e.g.,
erroneous characters).

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

The Parser
Input: sequence of tokens from lexical
analysis
Output: parse tree of the program

Parse tree is generated if the input is a
legal program
If input is an illegal program, syntax errors
are issued
Instead of parse tree, some parsers
produce directly: abstract syntax tree
(AST) + symbol table, or intermediate code

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Parser vs. Scanner

Parse tree,
AST, int. code

String of
tokens

Parser

String of
tokens

String of
characters

Scanner

OutputInputPhase

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

The Semantic Analyzer
Checks for "static semantic" errors, e.g., type errors
Annotates and/or changes the abstract syntax tree based on the
attribute grammar

Annotate a node that represents an expression with its type.
Example with before and after:

=

+

*
<id,1>

<id,2>
<id,3> 60

=

+

*
<id,1>

<id,2>

<id,3>

60

(float)

(float)

(float)
(float)

(float)

(float) int-
to-float()

(float)

(int)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Intermediate Code Generator
Translates from abstract-syntax tree to
intermediate code

One possibility is 3-address code.
Here's an example of 3-address code for
the abstract-syntax tree shown previously:

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

The Code Generator

Generates object code from (optimized)
intermediate code

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Compiler Construction Tools
Scanner generators
Parser generators
Syntax-directed translation engines
Code-generator generators
Data-flow analysis engines
Compiler-construction toolkits

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Reading Assignments
Section 1.3

The evolution of programming languages
Section 1.4

The science of building a compiler
Section 1.5

Application of compiler technology
Implementation of high-level programming languages
Optimization/design for existing/new computer architecture
Program translations
Building software productivity tools

Section 1.6
Programming language basics

Static/dynamic scoping, parameter passing, etc.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Outline

Course information
Introduction (Chapter 1)
Summary and homework

