CSE302;
Compiler Design

N

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science

Lehigh University

January 16, 2007

i Classroom Interactions

= | encourage you to raise guestions
anytime

= | raise questions

= Major purposes
= Group-based discussion

= More efficient in-class learning: learning
pattern

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Office Hours

= | encourage you to see me Iif you have
any guestions

= Office hours: Fridays from 1 PM to 4 PM
(PL326), or by appointment via email

= chengATcseDOTIlehighDOTedu

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Today’s Outline

= Course Iinformation
= Introduction (Chapter 1)
= Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design

01/16/07

i Objectives

s Be able to

= describe the theory and practice of
compilation, in particular
= Lexical analysis
= Parsing,
= Code generation and optimization

= design a compiler for a concise
programming language
= Prerequisites

= CSE 109: Systems Software

= CSE318: Automata and Formal Grammars.
Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Textbook and Languages

s [extbook

= Compilers: Principles, Technigues, and
Tools (2nd Edition) by Alfred V. Aho,
Monica S. Lam, Ravi Sethi, and Jeffrey D.
Ullman. Addison Wesley, Boston, MA,
2006. ISBN 0321486811

= Languages
» C, C++, Java
» Attendance at lecture Is required

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Grading

= Homework: 20%

= Due Monday 11:55 PM. No late hand-in
homework will be accepted.

= Submit your work through the Blackboard
course website.

= Programming projects: 30%
= Midterm exam: 20%

= Final exam: 30%
= All exams are open-book ones.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Project Overview

= Individual projects
= Multi-stage compiler design projects

= Academic integrity
= All graded work should be your own!

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Other Homework and Exam

i Related Issues

= If you'd like to request homework and
exam date changes due to some
reasons

= Email me a request at least two weeks
ahead of the scheduled deadline

s Accommodations for students with
disabilities
= Contact both me and the Office of

Academic Support Services, University
Center 212 (610-758-4152)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Course Information

= Course website
= http://www.cse.lehigh.edu/~cheng

= Course syllabus

= http://www.cse.lehigh.edu/~cheng/Teaching/CSE302-
07/syllabus.html

= Including the course schedule

= www.cse.lehigh.edu/~cheng/Teaching/CSE302-
07/schedule.html

s For each lecture’s slides

= A preparation version will be uploaded to the course
schedule webpage about 10 hours before the lecture

= A after-class version will be uploaded to the Blackboard
System after each lecture

= Based on materials covered in the class

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Three Questions about Compilers

= What is a compiler?
= A language processor: source lang -> target lang
= |Is it important for people to study compiler
design Issues?

= Software running now was compiled by some
compilers

= Is it useful for me to learn compiler design
techniques?

= Touch upon programming languages, computer
architecture, language theory, algorithms, and
software engineering

= Applicable to many domains

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Language Processors

= Language translation
= Report errors detected

= Compiler vs. interpreter
= Java language processor
= A hybrid processor

= Language processing systems

= Preprocessor, compiler, assembler,
linker/loader

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i A Quick Question

= What are the specific things that need
to be processed by the language
processing system?
= What is the definition of a language?

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Introduction to Language
Definition

= Language definition or language
specifications
= What does it looks like?

« http://java.sun.com/docs/books/jls/

= Who must use language definitions?
= Language designers

=« Implementors
= Programmers (the users of the language)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Syntax and Semantics

n Syntax

= The form or structure of the expressions,
statements, and program units
= while (EXPRESSION) { STATEMENTS; }

= Java syntax: the grammar for Java

= http://java.sun.com/docs/books/jls/third _edition/html/sy
ntax.html

m Semantics

= The meaning of the expressions, statements, and
program units
= http://java.sun.com/docs/books/jls/

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Terms for Describing Syntax

= A language Is a set of sentences

= A sentence Is a string of characters,
composed of lexemes, over some
alphabet

= A lexeme Is the lowest level syntactic
unit of a language described by a lexical
specification

= A token Is a category/abstraction of
lexemes

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Java Lexeme Examples

= Java lexical specification

= http:.//java.sun.com/docs/books/jls/third_edition/h
tml/lexical.html

= Java identifier definition

= “An identifier is an unlimited-length sequence of
Java letters and Java digits, the first of which
must be a Java letter.

= An identifier cannot have the same spelling
(Unicode character sequence) as a keyword
(83.9), Boolean literal (83.10.3), or the null literal
(83.10.7).”

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Phases of Compilation

= Front end: analysis

= Scanner

= Parser

= Semantic analyzer

= Intermediate-code generator
= Back end: synthesis

= Code optimizer (optional)

= Code generator
= Symbol table

Instructor: Dr. Liang Cheng CSE302: Compiler Design

01/16/07

The Scanner

s Also called the Lexer

= How it works:
= Reads characters from the source program.

= Groups the characters into lexemes (sequences
of characters that "go together").

= Each lexeme corresponds to a token;

= the scanner returns the next token (plus maybe some
additional information) to the parser.

= The scanner may also discover lexical errors (e.g.,
erroneous characters).

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i The Parser

= Input: sequence of tokens from lexical
analysis
= Output: parse tree of the program

= Parse tree Is generated if the input is a
legal program

« If Input Is an illegal program, syntax errors
are issued

= Instead of parse tree, some parsers
produce directly: abstract syntax tree
(AST) + symbol table, or intermediate code

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Parser vs. Scanner

Phase Input Output

Scanner String of String of
characters tokens

Parser String of Parse tree,
tokens AST, Int. code

Instructor: Dr. Liang Cheng

CSE302: Compiler Design

01/16/07

i The Semantic Analyzer

= Checks for "static semantic" errors, e.g., type errors

= Annotates and/or changes the abstract syntax tree based on the
attribute grammar

= Annotate a node that represents an expression with its type.
= Example with before and after:

@ﬂoat)
@ (float)

@ (float) <id,1> /
<id,1> / @(ﬂoat)

(float) <id,2>
<id,2>

o D
/ N\ (float) <id,3> (float)
<id,3> 60 t0)
%O(int)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Intermediate Code Generator

= [ranslates from abstract-syntax tree to
Intermediate code
= One possibility i1s 3-address code.

= Here's an example of 3-address code for
the abstract-syntax tree shown previously:

t1 = inttofloat(60)

t2 =1id3 * t1
t3 =1d2 + t2
id1 =13

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i The Code Generator

= Generates object code from (optimized)
Intermediate code

LDF R2, 1d3
MULF R2, R2, #60.0
LDF R1, 1d2
ADDF R1, R1, R2
STF id1, R1

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

i Compiler Construction Tools

= Scanner generators

= Parser generators

= Syntax-directed translation engines
= Code-generator generators

= Data-flow analysis engines

= Compiler-construction toolkits

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Reading Assignments

= Section 1.3
= The evolution of programming languages

= Section 1.4
= The science of building a compiler

= Section 1.5

= Application of compiler technology
= Implementation of high-level programming languages
= Optimization/design for existing/new computer architecture
= Program translations
« Building software productivity tools

= Section 1.6

= Programming language basics
» Static/dynamic scoping, parameter passing, etc.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/16/07

