CSE302;
Compiler Design

N

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science

Lehigh University

January 23, 2007

i Today’s Outline

= Recap
= Introduction (Section 2.1)
= Syntax definition (Section 2.2)
= Parsing (Section 2.4)

= A simple syntax-directed translator (Chapter
2)
= Parsing (Section 2.4.5)
= Syntax directed translation (Section 2.3)
= A translator for simple expressions (Section 2.5)

= Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

BNF Grammar and o

Grammar & Derivation

i Parse Trees f o

<program> — <stmts>
<stmts> — <stmt> | <stmt> ; <stmts>

<stmt> - <var> = <expr> <program>
<var>—>al|b]jc]|d |
<expr> —» <term> + <term> | <term> - <term> <stmts>
<term> — <var> | const |
<program> <stmt>
=> <stmts> I
=> <stmt> <:> var> = <expr>
=> <var> = <expr> | g
=> a = <expr> a <term> + <term>
=> a =<term>+ <term> | |
=>a=<var> + <term> <var> const

=>a = b + <term> |
=>a = b + const b
Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

BNF Functionality
Describing Lists
Grammar & Derivation

i Grammar Ambiguity ;=

= A grammar Is ambiguous Iff it generates
a sentential form that has two or more
distinct parse trees

= Use BNF to specify operator precedence
and associativity

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Language Design

= Design a BNF grammar for a language
that could express a one-digit number,
an addition of two one-digit numbers,
or a subtraction of two one-digit
numbers
n <expr=> - <term> + <term> | <term> -

<term> | <term>

s <term>—->0|1[2]...]9

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

Language Implementation

= A recursive-descent parser

= Language implementation directly following the BNF grammar
s <expr=> - <term> + <term> | <term> - <term> | <term>

s <term>—>0|1]2]...|9
= Pseudo code
void expr() {
term();
If(token==plus_op
or token==minus_op) {
match(token);
term();

}

else error();

void term() {
match(int_literal);

}

void match(expectedToken) {
If(token==expectedToken)
getNextToken();
else error();

}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

translator

n (Section 2.3)

A pressions (Section
2.5)
= Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Remove Left Recursion

= What are the languages defined by the
following two BNF grammars?

A—>Aaol|p

Instructor: Dr. Liang Cheng

A—BR
R—>aR|e¢

CSE302: Compiler Design 01/23/07

i Remove Left Recursion

m BNF: <expr>— <expr> + <term>
= Left-recursion to right-recursion

A—>Aa]p A—>BR

R—>aR|e¢
= <expr> — <term> rest
= rest > + <term> rest | - <term> rest | ¢

m EBNF: <expr>— <term> { + <term>}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

| translator

)n (Section 2.3)

s nle expressions (Section
2.5)
= Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i What Can Be Done So Far?

= Define language syntax using BNF
grammar

= Parsing to detect syntax errors
= Syntax analysis

= How about translation?

= Syntax-directed translation

= Attaching rules or program fragments to
productions in a grammar

= An example of translating infix notation to
postfix notation

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Postfix Notation

= Inductive definition

= If E IS a variable or constant, then the
postfix notation for E is E itself

« If E Is an expression of the form E1 op EZ2,
then the postfix notation for E i1s E1' E2’ op

« If E Is of the form (E1), then the postfix
notation is E1’

= Examples
= The postfix notation (9-5)+2 is 95-2+

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Syntax-Directed Definition

= For a BNF grammar

= Associate each grammar symbol (terminals and
non-terminals) with a set of attribute
=« Type information for type checking/conversion
= Notation representation for notation translation

= Attach a semantic rule or program fragment to
each production in a grammar

=« Computing the values of the attributes associated with
the symbols in the production

= The BNF grammar becomes an attribute
grammar

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

Definition of Attribute Grammar

= An attribute grammar is a BNF grammar with
additions:
= For each grammar symbol x: a set A(x) of attribute values

= Each production in the grammar has a set of semantic rules
that define or compute certain attributes of the nonterminals
In the production

= Each production in the grammar has a (possibly empty) set of
predicates to check for attribute consistency

= A sentence derivation
Based on BNF Based on an attribute grammar

A parse tree A fully attributed parse tree

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

A Type Checking Example Using
Syntax-Directed Definition

= A BNF grammar
= <assign> — <var> = <expr>
. <expr= — <var= + <var=
= <var>—->A|B|C
= An attribute grammar
1. Syntax production: <assign> — <var> = <expr>
= Semantic rule: <expr>.expected_type <« <var>.actual_type
2. Syntax production: <expr> — <var> + <var>
= Semantic rule: <expr>.actual type <«
if(<var>[2].actual type==int) and
(<var>[3].actual_type==int)
then int
else real
endif
= Predicate: <expr>.actual _type == <expr>.expected_type
3. Syntax production: <var> > A | B | C
= Semantic rule: <var>.actual_type < lookup(<var=>.string)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Computing Attribute Values

= Let X, > X; ... X, be a production

« If the computing rule of X,'s attribute is of the
form A(Xp) = f(A(X)), --. , A(X))
= Synthesized attribute

= If the computing rule of XI's attribute is of the
form A(X)) = f(A(Xo), -y ACX), -, A(Xi.p)), for i
<=]<=n
» Inherited attribute
= Intrinsic attributes are synthesized attributes
of leaf nodes whose values are determined

outside the parse tree

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

A Notation Translation Example
Using Syntax-Directed Definition

m <expr=> —» <expr=> + <term> | <expr>
- <term> | <term>

s <term>—->0]|1|2]|...]|9

PRODUCTION SEMANTIC RULES

expr — erpr; + term | exprit = expry.t || term.t || '+
expr — expr; — term | exprit = expr,.t || term.t || '~
expr — term expr.t = term.i

term — 0 term.t = 0

term — 1 term.t = '1'

term — 9 | termt = '9'

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Tree Traversals

= Perform depth-first traversal of the
parse tree to generate a fully attributed
parse tree
procedure visif{node N) {
for (each child C of N, from left to right) {
VIsit(C);

¥

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Translation Schemes

s We used semantic rules as a translation
scheme

= Now we use semantic actions as a translation
scheme to get the same translation result

= Syntax-directed definition for a BNF grammar

= Associate each grammar symbol (terminals and non-terminals) with
a set of attribute

= Type information for type checking/conversion
= Notation representation for notation translation

= Attach a semantic rule or program fragment to each production in
a grammar

= Computing the values of the attributes associated with the symbols in
the production

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

New BNF Productions and Parse
Trees Using Semantic Actions

= Actions are added in the productions

expr — ezpr; + term {print('+')}
expr — expr; — term {print('~")}
exrpr — term

term — 0 {print('0’) }
term — 1 {print('1")}
term — 9 {print('9') }

= When drawing a parse tree

= Indicate an action by constructing an extra child for it, connected
by a dashed line to the node that corresponds to the head of the
production

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

-5+2 Into

ersal of the

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

translator

n (Section 2.3)

: pressions (Section
2.5)
= Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i What Can Be Done Now?

= Define language syntax using BNF
grammar

= Parsing to detect syntax errors
= Syntax analysis

= Syntax-directed translation

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

Define A Language and Syntax-
Directed Translation

expr — expr + term | expr - term | term
term > 0|1]...]9

Syntax-directed translation based on semantic
actions

expr » expr + term { print(‘+’) }
| expr - term { print(*-) }
| term

term—> 0 { print(‘0’) }

1 {print(‘l) }

9 { print(‘9’) }

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Top-Down Parsing

A—>Aaolp A—BR
Ro>aR|e

= Left recursion removal for top-down parsing
= expr - term rest
= rest » + term { print(‘+’) } rest
| - term { print(*-") } rest
| €
= term —> 0 { print(‘0’) }
1 { print(‘1l) }

9 { print('9") }

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

and

void expr() {
term(): rest():
}

void rest() {
if (lookahead == "+) {
match('+'); term(); print('+'); rest();
}

else if (lookahead =="-") {
match("-"): term(); print('-"); rest():
}

else { } /= do nothing with the input =/ :

prin }

1 1 print('l) } void term() {

if (lookahead is a digit) { _

9 { print(‘9) 3} } t = lookahead; match(lookahead); print(t):

else report(”syntax error”):

}
Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

ranslator

(Section 2.3)
ressions (Section

2.5)
= Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

able to ...

n BNF:
] definition and

juage.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

IoNn

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i You should now be able to ...

= Describe syntax-directed definition and
attribute grammatr;

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Syntax-Directed Definition

= For a BNF grammar

= Associate each grammar symbol (terminals and
non-terminals) with a set of attribute
=« Type information for type checking/conversion
= Notation representation for notation translation

= Attach a semantic rule or program fragment to
each production in a grammar

=« Computing the values of the attributes associated with
the symbols in the production

= The BNF grammar becomes an attribute
grammar

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

able to ...

n BNF;
] definition and

juage.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

i Implement A Simple Language

= Define language syntax using BNF
grammar

= Parse sentences and detect syntax
errors

= Use syntax-directed definition to
perform language translation

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

Homework (Due on 01/29 at
11:55 PM)

= 2.1. (20 points)

= (a) Define a BNF grammar for a language that
could express a one-digit number, additions
and/or subtractions of multiple one-digit numbers
In a prefix notation (e.g., -xy Is the prefix notation
for x-y and the prefix notation of an infix notation
4+5-2+6 IS +-+4526); (5 pts)

= (b) Construct a syntax-directed translation scheme
that translates the above-defined one-digit
arithmetic expressions from prefix notation into
Infix notation; (5 pts)

= (¢) Implement an executable and correct program
to perform the above-mentioned translation. (10

pts)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/23/07

