
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

January 25, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Outline
Recap

Introduction (Section 2.1)
Syntax definition (Section 2.2)
Parsing (Section 2.4)
Syntax directed translation (Section 2.3)

A simple syntax-directed translator (Chapter
2)

A translator for simple expressions (Section 2.5)
Lexical analysis (Section 2.6)

Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Translation Schemes
We used semantic rules as a translation
scheme
Now we use semantic actions as a translation
scheme to get the same translation result

Syntax-directed definition for a BNF grammar
Associate each grammar symbol (terminals and non-terminals) with
a set of attribute

Type information for type checking/conversion
Notation representation for notation translation

Attach a semantic rule or add program fragment to each
production in a grammar

Computing the values of the attributes associated with the symbols in
the production

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

New BNF Productions and Parse
Trees Using Semantic Actions

Actions are added in the productions

When drawing a parse tree
Indicate an action by constructing an extra child for it, connected
by a dashed line to the node that corresponds to the head of the
production

Draw a new parse tree for 9-5+2 with the semantic actions

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Actions Translating 9-5+2 into
95-2+

Perform a postorder depth-first
traversal of the parse tree

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Outline
Recap
A simple syntax-directed translator
(Chapter 2)

Syntax directed translation (Section 2.3)
A translator for simple expressions (Section
2.5)
Lexical analysis (Section 2.6)

Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

What Can Be Done Now?

Define language syntax using BNF
grammar
Parsing to detect syntax errors

Syntax analysis

Syntax-directed translation
How about we integrate them together?

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Integrate What We Have Learned

Design a BNF grammar for a language
that could express a one-digit number,
additions and/or subtractions of
multiple one-digit numbers in an infix
form
Implement a compiler translating the
expression in the above-language to a
postfix form

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Demo

Figure 2.27

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

You should now be able to …

Define language syntax using BNF
grammar
Parse sentences and detect syntax
errors
Use syntax-directed definition to
perform language translation

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Outline

Recap
A simple syntax-directed translator
(Chapter 2)

Syntax directed translation (Section 2.3)
A translator for simple expressions (Section
2.5)
Lexical analysis (Section 2.6)

Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Lexical Analyzer
Read input characters and group them into
tokens

A token object carries attribute values
A sequence of input characters that comprises a
single token is called a lexeme

Study the lexical analysis by examples
Remove white space
Handle constants
Recognize keywords and identifiers
A lexical analyzer (Appendix A)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Remove White Space
for (; ; peek=next input character) {

if (peek is a blank or a tab) do nothing;
else if (peek is a newline) line=line+1;
else break;

}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Handle Constants
Tokens represent constants as <num, num.value>
if (peek holds a digit) {

value = 0;
do {

value = value * 10 + integer value of digit peek;
peek = next input character;

} while (peek holds a digit);
return token <num,value>;

}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Recognize Keywords and
Identifiers

Study the case that keywords are reserved
Solution: using a table to hold character strings

Achieve single representation for ids and keywords
Differentiate keywords from ids

For example, seeds a hashtable with keywords
Hashtable words = new Hashtable();
…
if (peek holds a letter) {

collect letter and/or digits into a buffer b;
s = string formed from the characters in b;
w = token returned by words.get(s);
if (w != null) return w;
else {

enter the key-value pair (s, <id,s>) into words;
return token <id,s>;

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Lexical Analyzer (Appendix A)
Data structure of tokens

Tag.java: constants for tokens
Token.java: tokens’ data structure
Num.java: tokens of integer numbers
Real.java: tokens of floating-point numbers
Word.java: tokens of reserved words, ids, and composite
tokens like &&, ||, ==, etc.
Lexer.java: method scan() removes white space and
recognizes numbers, ids, and reserved words

int tag
class Token

float value
class Real

String lexeme
class Word

int value
class Num

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Outline

Recap
A simple syntax-directed translator
(Chapter 2)

Syntax directed translation (Section 2.3)
A translator for simple expressions (Section
2.5)
Lexical analysis (Section 2.6)

Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

You should now be able to …

Implement a simple language
Understand lexical analysis
implementation

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Implement A Simple Language

Define language syntax using BNF
grammar
Parse sentences and detect syntax
errors
Use syntax-directed definition to
perform language translation

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

You should now be able to …
Implement a simple language
Understand lexical analysis implementation

Remove white space
Handle constants
Recognize keywords and identifiers
Understand the lexer package in Appendix A

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Homework (Due on 01/29 at
11:55 PM)

2.3. (20 points)
(a) Define a BNF grammar for a language that
could express a one-digit number, additions
and/or subtractions of multiple one-digit numbers
in a prefix notation (e.g., -xy is the prefix notation
for x-y and the prefix notation of an infix notation
4+5-2+6 is +-+4526); (5 pts)
(b) Construct a syntax-directed translation scheme
that translates the above-defined one-digit
arithmetic expressions from prefix notation into
infix notation; (5 pts)
(c) Implement an executable and correct program
to perform the above-mentioned translation. (10
pts)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Homework (Due on 01/29 at
11:55 PM)

2.1. (10 points) Rewrite the following BNF to give +
precedence over * and force + to be right
associative.

<assign> → <id> = <expr>
<id> → A | B | C
<expr> → <expr> + <term> | <term>
<term> → <term> * <factor> | <factor>
<factor> → (<expr>) | <id>

2.2. (10 points) Implement a correct and executable
recursive-descent parser based on the pseudo code
illustrated in 01/23 lecture:

<expr> → <term> <rest>
<rest> → + <term> <rest> | - <term> <rest> | ε
<term> → 0 | 1 | 2 | … | 9

Instructor: Dr. Liang Cheng CSE302: Compiler Design 01/25/07

Reading Assignment

Sections 2.3, 2.5 and 2.6
For next Tuesday class

Sections 2.7 and 2.8

