
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

March 15, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

Outline

Recap
Top-down parsing (Section 4.4)

Bottom-up parsing (Section 4.5)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

Top-Down Parsing

Finding a leftmost derivation for an
input string

Recursive-descent parsing
Predictive parsing for LL(1) grammars

Non-recursive version

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

LL(1) Parsing: A Schematic View
Top-down parsing

Leftmost derivations and left-sentential forms

Parsing stack Input buffer Actions

$StartSymbol InputString$ lookahead
one token,
decide A-
production

... ... …
$ $ accept

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

LR Parsing: A Schematic View
Bottom-up parsing

Rightmost derivations and right-sentential forms

Parsing stack Input buffer Actions

$ InputString$ lookahead
zero or
one token,
decide S/R

... ... …
$StartSymbol $ accept

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

An Example
Balanced parentheses

S → (S) S | ε
Input string: ()
Parsing stack Input buffer Action
… … …

This process reflects the rightmost derivation
but in a reverse order

Right-sentential forms
Grammars are always augmented with a new
start symbol

When to shift and when to reduce depend
on the parsing states

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

Another Example
Expressions of numeric additions

E’ → E
E → E + n | n
Input string: n + n
Parsing stack Input buffer Action
… … …

This process reflects the rightmost derivation but
in a reverse order

Right-sentential forms
When to shift and when to reduce: parsing states

Shift until it is possible for reduction
Reduce when the strong of symbols on the top of the
stack matches a production body & the reduced result is
a next right-sentential form

Handle of a right-sentential form

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

Finite Automata of Parsing States
Finite automata for LR(0) parsers

LR(0) items are used to identify the parsing
states

A → α
A → .α is an item (initial item)

We may about to recognize A by A → α
A → α. is also an item (complete item)

α may be a handle for reduction
A → βγ

A → β.γ, A → .βγ, and A → βγ. are LR(0) items
Examples

NFA construction
?

Parsing based on item1 ⎯→ parsing based on item2

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

LR(0) Parser NFA Construction
X

A → α.Xβ ⎯→ A → αX.β

Shift action if X is a terminal

ε
A → α.Xβ ⎯→ X →.γ

Reduction action if X is a non-terminal

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

NFA Construction Examples

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

Conversion of NFA to DFA (2/15)
Subset construction algorithm

Input: An NFA N
Output: A DFA D accepting the same language as N
Algorithm: construct a transition table Dtran corresponding to D

Initially, ε-closure(s0) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {

mark T;
for (each input symbol a) {

U = ε-closure(move(T,a));
if (U is not in Dstates) add U as an unmarked state to Dstates;
Dtran[T,a] = U;

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

ε-closure(s) and ε-closure(T)
ε-closure(s): a set of NFA states reachable from NFA
state s on ε-transitions alone
ε-closure(T): a set of NFA states reachable from
some NFA state s in the set T on ε-transitions alone

∪ s in T ε-closure(s)

push all states of T onto stack;
initialize ε-closure(T) to T;
while (stack is not empty) {

pop t, the top element, off stack;
for (each state u with an edge from t to u labeled ε)

if (u is not in ε-closure(T)) {
add u to ε-closure(T); push u onto stack;

}
}

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

move(T,a)

A set of NFA states to which there is a
transition on input symbol a from some
state s in T

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

Converting NFA Examples to DFA

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

The LR(0) Parsing Algorithm

LR(0) parsing
If state s contains A → α.Xβ where X is
a terminal, then shift and the state
changes to s’ containing A → αX.β
If state s contains A → γ., then reduce
by A → γ (stack ops) and the state
changes to s’ containing B → λA.η

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

The LR(0) Parsing Algorithm

LR(0) parsing cannot handle a
grammar that in its DFA there is a
state s

s contains a shift item A → α.Xβ and a
complete item B → δ.
s contains two complete items A → γ.
and B → δ.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

Another Example
A → (A) | a
LR(0) items, NFA, and DFA
Schematic view for parsing ((a))

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/15/07

Outline

Recap
Bottom-up parsing (Section 4.5)
Summary and homework

Homework posted at the Blackboard

