
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

March 20, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Outline

Recap
LR(0) parsing and SLR(1) parsing

General/Canonical LR(1) parsing
Lookahead LR(1) / LALR(1) parsing
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

LR Parsing: A Schematic View
Bottom-up parsing

Rightmost derivations and right-sentential forms

Parsing stack Input buffer Actions

$ InputString$ lookahead
zero or
one token,
decide S/R

... ... …
$StartSymbol $ accept

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Finite Automata for Both LR(0)
and SLR(1) Parsing

Finite automata of parsing states
LR(0) items are used to identify the parsing
states

A → α
A → .α is an item (initial item)

We may about to recognize A by A → α
A → α. is also an item (complete item)

α may be a handle for reduction
A → βγ

A → β.γ, A → .βγ, and A → βγ. are LR(0) items

NFA construction
Subset construction for NFA to DFA

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

LR(0) Parser NFA Construction
X

A → α.Xβ ⎯→ A → αX.β

Shift action if X is a terminal

ε
A → α.Xβ ⎯→ X →.γ

Reduction action if X is a non-terminal

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

The LR(0) and SLR(1) Parsing
Algorithms

LR(0) parsing
If state s contains A → α.Xβ where X is a terminal,
then shift and the state changes to s’ containing A →
αX.β
If state s contains A → γ., then reduce by A → γ (stack
ops) and the state changes to s’ containing B → λA.η

SLR(1) parsing
If state s contains A → α.Xβ where X is a terminal, and
the lookahead token is X, then shift and the state
changes to s’ containing A → αX.β
If state s contains A → γ., and the lookahead token is
in FOLLOW(A), then reduce by A → γ (stack ops) and
the state changes to s’ containing B → λA.η

Examples
S → (S)S | ε Input: ()
A → (A) | a Input: ((a))

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Limits of LR(0) and SLR(1)
Parsing

LR(0) parsing cannot handle a grammar
that in its DFA there is a state s

s contains a shift item A → α.Xβ and a
complete item B → δ.
s contains two complete items A → γ. and B
→ δ.

SLR(1) parsing cannot handle a grammar
that in its DFA there is a state s

s contains a shift item A → α.Xβ with X a
terminal and a complete item B → δ. with X in
Follow(B)
s contains two complete items A → γ. and B
→ δ. with a nonempty Follow(A)∩ Follow(B)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Observations

SLR(1) parsing is more powerful
than LR(0) parsing due to its
consideration of lookaheads in the
parsing process

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Another Example
Another example

stmt → call-stmt | assign-stmt
call-stmt → identifier
assign-stmt → var=expr
var → identifier
expr → var | number

Is this an SLR(1) grammar?
An equivalent grammar

S → id | V=E
V → id
E → V | n

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Observations

SLR(1) parsing is more powerful
than LR(0) parsing due to its
consideration of lookaheads in the
parsing process

However, the lookaheads are not used
in the finite automata construction

The limit of SLR(1) parsing can be
improved if its NFA/DFA construction
does not ignore lookaheads

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Outline

Recap
LR(0) parsing and SLR(1) parsing

General/Canonical LR(1) parsing
Lookahead LR(1) / LALR(1) parsing
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Finite Automata of Parsing States
Finite automata for LR(1) parsers

LR(1) items are used to identify the parsing states
An LR(1) item is a pair consisting of an LR(0) item and a
lookahead token

[A → α.β, a]

NFA construction: transitions between LR(1) items
Non-ε transitions

Given an LR(1) item [A → α.Xβ, a], where X is any symbol,
there is a transition on X to the item [A → αX.β, a]

ε-transitions
Given an LR(1) item [A → α.Bγ, a], where B is a
nonterminal, there are ε-transitions to items [B → .β, b] for
every production B → β and for every token b in First(γa)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

LR(1) NFA/DFA and Parsing Table
Construction Examples

Grammar
S’ → S
S → id | V=E
V → id
E → V | n

NFA construction: transitions between LR(1) items
Non-ε transitions

Given an LR(1) item [A → α.Xβ, a], where X is any symbol,
there is a transition on X to the item [A → αX.β, a]

ε-transitions
Given an LR(1) item [A → α.Bγ, a], where B is a nonterminal,
there are ε-transitions to items [B → .β, b] for every production
B → β and for every token b in First(γa)

Input: id=n

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

LR(1) Parsing Algorithm
LR(1) parsing

If state s contains [A → α.Xβ,a] where X is a terminal, and the
lookahead token is X, then shift and the state changes to s’
containing [A → αX.β,a]
If state s contains [A → γ.,a], and the lookahead token is a, then
reduce by A → γ (stack ops) and the state changes to s’ containing
[B → λA.η,b]

LR(0) parsing
If state s contains A → α.Xβ where X is a terminal, then shift and
the state changes to s’ containing A → αX.β
If state s contains A → γ., then reduce by A → γ (stack ops) and
the state changes to s’ containing B → λA.η

SLR(1) parsing
If state s contains A → α.Xβ where X is a terminal, and the
lookahead token is X, then shift and the state changes to s’
containing A → αX.β
If state s contains A → γ., and the lookahead token is in
FOLLOW(A), then reduce by A → γ (stack ops) and the state
changes to s’ containing B → λA.η

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Another LR(1) DFA and Parsing
Table Construction Examples

Grammar
A’ → A
A → (A)
A → a

NFA construction: transitions between LR(1) items
Non-ε transitions

Given an LR(1) item [A → α.Xβ, a], where X is any symbol,
there is a transition on X to the item [A → αX.β, a]

ε-transitions
Given an LR(1) item [A → α.Bγ, a], where B is a nonterminal,
there are ε-transitions to items [B → .β, b] for every production
B → β and for every token b in First(γa)

Compare the LR(1) DFA with the LR(0) DFA

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Outline

Recap
LR(0) parsing and SLR(1) parsing

General/Canonical LR(1) parsing
Lookahead LR(1) / LALR(1) parsing
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Two Principles of LALR(1) Parsing
The core of a state in LR(1) DFA is a state in
the LR(0) DFA.
Given two states s1 and s2 in the LR(1) DFA
that have the same core. Suppose there is a
transition on X from s1 to a state t1. Then
there is also a transition on X from s2 to a
state t2, and t1 and t2 have the same core.
Therefore based on LR(1) DFA, we can
transform it to a DFA that is identical to the
LR(0) DFA, except that each state consists of
items with sets of lookaheads.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Constructing LALR(1) DFA

Identifying all states that have the
same core and forming the union of the
lookaheads for each LR(0) item
Linking the new states based on the
links in the LR(1) DFA
An example

A’ → A
A → (A)
A → a

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Outline

Recap
Bottom-up parsing (Section 4.5)
Summary and homework

