CSE302;
Compiler Design

N

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science

Lehigh University

March 20, 2007

= LR(O) parsing and SLR(1) parsing
= General/Canonical LR(1) parsing
= Lookahead LR(1) / LALR(1) parsing
= Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

i LR Parsing: A Schematic View

= Bottom-up parsing
= Rightmost derivations and right-sentential forms

Parsing stack Input buffer Actions

$ InputString$ lookahead
Zero or
one token,
decide S/R

$StartSymbol $ accept

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Finite Automata for Both LR(0)

i and SLR(1) Parsing

= Finite automata of parsing states

= LR(0) items are used to identify the parsing
states
= Ao«
A — .o is an item (initial item)
We may about to recognize Aby A — «a
A — a. is also an item (complete item)
o may be a handle for reduction

s A BY
A— B.y, A—> .Py, and A — By. are LR(0) items

= NFA construction
= Subset construction for NFA to DFA

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

LR(O) Parser NFA Construction

« Ao 0. Xp)—> Ao oXB

= Shift action If XiIs a terminal

¢ Ao 0. XB—> KXo

= Reduction action if Xis a non-terminal

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

The LR(0) and SLR(1) Parsing
Algorithms

= LR(0) parsing
= If state scontains A — a.Xp where Xis a terminal,

then shift and the state changes to s containing A —
aX.3

= |f state scontains A — y., then reduce by A — vy (stack
ops) and the state changes to s containing 8 — AA.Mm

= SLR(1) parsing

= If state scontains A — a.Xp where Xis a terminal, and
the lookahead token is X, then shift and the state
changes to s containing A —» aX.3

= If state scontains A — v., and the lookahead token is
In FOLLOW(A), then reduce by A — v (stack ops) and
the state changes to s containing 8 — AA.n

= Examples
= S5 (5)S |« Input: ()
= A>(A)] a Input: ((a))

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Limits of LR(0) and SLR(1)
Parsing

= LR(0) parsing cannot handle a grammar
that in its DFA there Is a state s

= Scontains a shift item A — o.XB and a
complete item B — 9.

= Scontains two complete items A — vy. and B
— 0.

= SLR(1) parsing cannot handle a grammar
that in its DFA there is a state s

= Scontains a shift item A — o.XB with Xa
terminal and a complete item £ — §. with Xin
Follow(5)

= Scontains two complete items A — vy. and B
— d. with a nonempty Follow(A)~ Follow(B)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

i Observations

= SLR(1) parsing is more powerful
than LR(0) parsing due to its
consideration of lookaheads in the
parsing process

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

i Another Example

= Another example
= Stmt — call-stmt | assign-stmt
= call-stmt — identifier
= assign-stmt — var=expr
= var — identifier
= expr — var | number

= Is this an SLR(1) grammar?

= An equivalent grammar
. Soid| =E
= V> id
s E—> V]n
Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

i Observations

= SLR(1) parsing is more powerful
than LR(0) parsing due to its
consideration of lookaheads in the
parsing process

= However, the lookaheads are not used
In the finite automata construction
= The limit of SLR(1) parsing can be
Improved if its NFA/DFA construction
does not ignore lookaheads

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Finite Automata of Parsing States

= Finite automata for LR(1) parsers

= LR(1) items are used to identify the parsing states

= An LR(1) item is a pair consisting of an LR(0) item and a
lookahead token

[A— o.B, a]
= NFA construction: transitions between LR(1) items

= Non-¢ transitions

Given an LR(1) item [A — a.XB, a], where Xis any symbol,
there is a transition on X to the item [A — a X3, @]

= ¢-transitions

Given an LR(1) item [A — a.By, a], where Bis a
nonterminal, there are e-transitions to items [B — .J3, b] for
every production 8 — 3 and for every token b in First(ya)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

LR(1) NFA/DFA and Parsing Table
Construction Examples

= Grammar
s S5 S
= Soid| \=E
= /= 1d
s £ V]n

= NFA construction: transitions between LR(1) items

= Non-¢ transitions

= Given an LR(1) item [A — a.XB, a], where Xis any symbol,
there is a transition on X to the item [A — o X.3, a]

= ¢-transitions

= Given an LR(1) item [A — a.By, a], where Bis a nonterminal,
there are e-transitions to items [B — .3, b] for every production
B — [and for every token b in First(ya)

= Input: iId=n

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

LR(1) Parsing Algorithm

= LR(1) parsing
= |f state scontains [A — a.XB,a] where Xis a terminal, and the

lookahead token is X, then shift and the state changes to s
containing [A — aX.3,a]

= If state scontains [A4 — v.,a], and the lookahead token is a, then
reduce by A — y (stack ops) and the state changes to s containing
[B— LAm,b]

= LR(0) parsing
= If state scontains A —> a.XB where Xis a terminal, then shift and
the state changes to s containing A —> aX.[3

= |f state scontains A — v., then reduce by A — vy (stack ops) and
the state changes to s containing B8 —> AAn

= SLR(1) parsing
= If state scontains A —> o.XB where Xis a terminal, and the

lookahead token is X, then shift and the state changes to s
containing A — a X8

= If state scontains A — v., and the lookahead token is in
FOLLOW(A), then reduce by A — vy (stack ops) and the state
changes to s containing 8 — AA.m
Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Another LR(1) DFA and Parsing
Table Construction Examples

= Grammar
= Ao A
= A—> (A)
= A—> a
= NFA construction: transitions between LR(1) items

= Non-¢ transitions

=« Given an LR(1) item [A — a.XB, a], where Xis any symbol,
there is a transition on X to the item [A — o X.3, a]

= ¢-transitions

= Given an LR(1) item [A — a.By, a], where Bis a nonterminal,
there are e-transitions to items [B — .3, b] for every production
B — B and for every token b in First(ya)

= Compare the LR(1) DFA with the LR(0) DFA

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

i Two Principles of LALR(1) Parsing

= [he core of a state in LR(1) DFA is a state In
the LR(0O) DFA.

= Given two states sl and s2 in the LR(1) DFA
that have the same core. Suppose there is a
transition on X from sl to a state t1. Then
there Is also a transition on X from s2 to a
state t2, and t1 and t2 have the same core.

= Therefore based on LR(1) DFA, we can
transform it to a DFA that is identical to the
LR(O) DFA, except that each state consists of
items with sets of lookaheads.

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

i Constructing LALR(1) DFA

= ldentifying all states that have the
same core and forming the union of the
ookaheads for each LR(0) item

= Linking the new states based on the
Inks in the LR(1) DFA

= An example
s A A

= A—> a
Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

4.5)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/20/07

