CSE302: Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science
Lehigh University

March 22, 2007
Outline

- Recap
 - LR(0) parsing and SLR(1) parsing
 - General/Canonical LR(1) parsing
 - Lookahead LR(1) / LALR(1) parsing
- Summary and homework
The LR(0) and SLR(1) Parsing Algorithms

- **LR(0) parsing**
 - If state \(s \) contains \(A \rightarrow \alpha . X \beta \) where \(X \) is a terminal, then shift and the state changes to \(s' \) containing \(A \rightarrow \alpha X \beta \)
 - If state \(s \) contains \(A \rightarrow \gamma . \), then reduce by \(A \rightarrow \gamma \) (stack ops) and the state changes to \(s' \) containing \(B \rightarrow \lambda A \eta \)

- **SLR(1) parsing**
 - If state \(s \) contains \(A \rightarrow \alpha . X \beta \) where \(X \) is a terminal, and the lookahead token is \(X \), then shift and the state changes to \(s' \) containing \(A \rightarrow \alpha X \beta \)
 - If state \(s \) contains \(A \rightarrow \gamma . \), and the lookahead token is in \(\text{FOLLOW}(A) \), then reduce by \(A \rightarrow \gamma \) (stack ops) and the state changes to \(s' \) containing \(B \rightarrow \lambda A \eta \)
Another Example

Another example

- stmt → call-stmt | assign-stmt
- call-stmt → identifier
- assign-stmt → var=expr
- var → identifier
- expr → var | number

Is this an SLR(1) grammar?
Observations

- SLR(1) parsing is more powerful than LR(0) parsing due to its consideration of lookaheads in the parsing process.
 - However, the lookaheads are not used in the finite automata construction.
- The limit of SLR(1) parsing can be improved if its NFA/DFA construction does not ignore lookaheads.
Outline

- Recap
 - LR(0) parsing and SLR(1) parsing
- General/Canonical LR(1) parsing
- Lookahead LR(1) / LALR(1) parsing
- Summary and homework
Finite Automata of Parsing States

- Finite automata for LR(1) parsers
 - LR(1) items are used to identify the parsing states
 - An LR(1) item is a pair consisting of an LR(0) item and a lookahead token
 - \([A \rightarrow \alpha.\beta, a]\)

- NFA construction: transitions b/w LR(1) items
 - Non-\(\varepsilon\) transitions
 - Given an LR(1) item \([A \rightarrow \alpha.X\beta, a]\), where \(X\) is any symbol, there is a transition on \(X\) to the item \([A \rightarrow \alpha.X\beta, a]\)
 - \(\varepsilon\)-transitions
 - Given an LR(1) item \([A \rightarrow \alpha.B\gamma, a]\), where \(B\) is a nonterminal, there are \(\varepsilon\)-transitions to items \([B \rightarrow \cdot\beta, b]\) for every production \(B \rightarrow \cdot\beta\) and for every token \(b\) in \(\text{First}(\gamma a)\)
LR(1) NFA/DFA and Parsing Table Construction Examples

Grammar
- $S' \rightarrow S$
- $S \rightarrow \text{id} \mid V=E$
- $V \rightarrow \text{id}$
- $E \rightarrow V \mid n$

NFA construction: transitions between LR(1) items
- Non-ε transitions
 - Given an LR(1) item $[A \rightarrow \alpha \cdot X \beta, a]$, where X is any symbol, there is a transition on X to the item $[A \rightarrow \alpha X \beta, a]$
- ε-transitions
 - Given an LR(1) item $[A \rightarrow \alpha \cdot B \gamma, a]$, where B is a nonterminal, there are ε-transitions to items $[B \rightarrow \cdot \beta, b]$ for every production $B \rightarrow \beta$ and for every token b in First(γa)

Input: $\text{id}=n$
LR(1) Parsing Algorithm

- **LR(1) parsing**
 - If state s contains $[A \rightarrow \alpha \cdot X \beta, a]$ where X is a terminal, and the lookahead token is X, then shift and the state changes to s' containing $[A \rightarrow \alpha X \beta, a]$
 - If state s contains $[A \rightarrow \gamma, a]$, and the lookahead token is a, then reduce by $A \rightarrow \gamma$ (stack ops) and the state changes to s' containing $[B \rightarrow \lambda A \eta, b]$

- **LR(0) parsing**
 - If state s contains $A \rightarrow \alpha \cdot X \beta$ where X is a terminal, then shift and the state changes to s' containing $A \rightarrow \alpha X \beta$
 - If state s contains $A \rightarrow \gamma, \eta$, then reduce by $A \rightarrow \gamma$ (stack ops) and the state changes to s' containing $B \rightarrow \lambda A \eta$

- **SLR(1) parsing**
 - If state s contains $A \rightarrow \alpha \cdot X \beta$ where X is a terminal, and the lookahead token is X, then shift and the state changes to s' containing $A \rightarrow \alpha X \beta$
 - If state s contains $A \rightarrow \gamma, \eta$, and the lookahead token is in FOLLOW(A), then reduce by $A \rightarrow \gamma$ (stack ops) and the state changes to s' containing $B \rightarrow \lambda A \eta$
Another LR(1) DFA and Parsing Table Construction Examples

- **Grammar**
 - $A' \rightarrow A$
 - $A \rightarrow (A)$
 - $A \rightarrow a$

- **NFA construction: transitions between LR(1) items**
 - Non-ϵ transitions
 - Given an LR(1) item $[A \rightarrow \alpha \cdot X \beta, a]$, where X is any symbol, there is a transition on X to the item $[A \rightarrow \alpha X \beta, a]$
 - ϵ-transitions
 - Given an LR(1) item $[A \rightarrow \alpha \cdot B \gamma, a]$, where B is a nonterminal, there are ϵ-transitions to items $[B \rightarrow \cdot \beta, b]$ for every production $B \rightarrow \beta$ and for every token b in $\text{First}(\gamma a)$

- **Compare the LR(1) DFA with the LR(0) DFA**
Outline

- Recap
 - LR(0) parsing and SLR(1) parsing
 - General/Canonical LR(1) parsing
 - Lookahead LR(1) / LALR(1) parsing
- Summary and homework
Two Principles of LALR(1) Parsing

- The **core** of a state in LR(1) DFA is a state in the LR(0) DFA.
- Given two states s1 and s2 in the LR(1) DFA that have the same core. Suppose there is a transition on X from s1 to a state t1. Then there is also a transition on X from s2 to a state t2, and t1 and t2 have the same core.
- Therefore based on LR(1) DFA, we can transform it to a DFA that is identical to the LR(0) DFA, except that each state consists of items with sets of lookaheads.
Constructing LALR(1) DFA and Parsing Table

- Identifying all states that have the same core and forming the union of the lookaheads for each LR(0) item
- Linking the new states based on the links in the LR(1) DFA
- An example
 - $A' \rightarrow A$
 - $A \rightarrow (A)$
 - $A \rightarrow a$
Outline

- Recap
 - LR(0) parsing and SLR(1) parsing
 - General/Canonical LR(1) parsing
 - Lookahead LR(1) / LALR(1) parsing
- Summary and homework
Homework #9 (Due on 03/26)

- Homework #9 assignment has been posted at the Blackboard System.