
CSE302:
Compiler Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

March 29, 2007

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Outline

Recap
Yacc

Syntax-directed translation (Chapter 5)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Yacc

Take a specification file (grammar) and
produce an output file for the parser

Input: <filename>.y
{definitions}
%%
{productions/rules}
%%
{auxiliary routines}

Output: y.tab.c
LALR parser

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Outline

Recap
Syntax-directed translation (Chapter 5)
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Syntax-Directed Techniques
Syntax-directed definition

Attach a semantic rule to each production

Syntax-directed translation
Add program fragment(s) to some production(s)

Applications of SDT
Compute the values of the attributes associated
with the symbols in the productions

Type checking

Generate side effects
Code generation, print results, modify symbol table, …

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Inherited & Synthesized Attribute

Let X0 → X1 ... Xn be a production
If the computing rule of X0’s attribute is of the
form A(X0) = f(A(X1), ... , A(Xn))

Synthesized attribute

If the computing rule of Xj’s attribute is of the
form A(Xj) = f(A(X0), ..., A(Xi), …)

Inherited attribute

Terminals have intrinsic attributes
Lexical values supplied by the lexical analyzer

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Definition of Attribute Grammar
(1/23)

An attribute grammar is a BNF grammar with
additions:

For any grammar symbol X: a set A(X) of attribute values
Each production in the grammar has a set of semantic rules
that define or compute certain attributes of the nonterminals
in the production
Each production in the grammar has a (possibly empty) set of
predicates to check for attribute consistency

A sentence derivation
Based on BNF Based on an attribute grammar

A parse tree A fully attributed parse tree
or an annotated parse tree

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Tree Traversals
For synthesized attributes

Perform bottom-up tree traversal for attribute
evaluation
An SDD is S-attributed if every attribute is
synthesized

For SDD’s with both inherited and synthesized
attributes

Dependency graphs
No guarantee that there is even one order

Circular dependency
Production Semantic rules
A → B A.s = B.i

B.i = A.s + 1

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Dependency Graphs

Determine how attributes can be
evaluated in parse trees

For each symbol X, the dependency graph
has a node for each attribute associated
with X
An edge from node A to node B means
that the attribute of A is needed to
compute the attribute of B

How to diff syn. attributes from inh. attributes

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

A Type Checking Example Using
Syntax-Directed Definition (1/23)

A BNF grammar
<assign> → <var> = <expr>
<expr> → <var> + <var>
<var> → A | B | C

An attribute grammar
1. Syntax production: <assign> → <var> = <expr>

Semantic rule: <expr>.expected_type ← <var>.actual_type
2. Syntax production: <expr> → <var> + <var>

Semantic rule: <expr>.actual_type ←
if(<var>[2].actual_type==int) and
(<var>[3].actual_type==int)

then int
else real

endif
Predicate: <expr>.actual_type == <expr>.expected_type

3. Syntax production: <var> → A | B | C
Semantic rule: <var>.actual_type ← lookup(<var>.string)

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

L-Attributed SDD’s

An SDD is L-attributed if in all of its
dependency graphs the edges only go
from left to right but not from right to
left

No circular dependency
Guarantee that there is an evaluation order

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Computing Attribute Value (1/23)

Let X0 → X1 ... Xn be a production
If the computing rule of X0’s attribute is of the
form A(X0) = f(A(X1), ... , A(Xn))

Synthesized attribute

If the computing rule of Xj’s attribute is of the
form A(Xj) = f(A(X0), ..., A(Xi), ..., A(Xj-1)), for i
<= j <= n

Inherited attribute
Or A(Xj) = f(A(X0), ..., A(Xi), ..., A(Xj-1), A(Xj))

Inherited or synthesized attributes associated with Xj itself
can be but without cycles in the dependency graphs

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

SDD Examples
Production Semantic rules
A → B C A.i = B.l

B.m = F(C.x, A.j)

Is this an S-Attributed or L-Attributed SDD?
Another SDD example
More SDD examples

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Semantic Rules with Side Effects
Note that SDD is used for specifications

Semantic rules can contain actions that generate
side effects
Production Semantic rules
D → T L L.inh = T.type
T → int T.type = int
T → float T.type = float
L → L1, id L1.inh = L.inh

addType(id.entry, L.inh)
L → id addType(id.entry, L.inh)

More SDD’s with side effects

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Outline

Recap
Syntax-directed translation
Summary and homework

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Final Exam Reminder

THURSDAY, MAY 03, 2007,
08:00-11:00AM

Instructor: Dr. Liang Cheng CSE302: Compiler Design 03/29/07

Homework (Due on 04/02)

10.1. (a) Exercise 5.2.4 (page 317);
(b) Exercise 5.2.5 (Page 317).

