CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

Outline

Recap

- Examples of commercial network processors
- Design tradeoffs and consequences
- Overview of Agere's network processor
- Functional units on APP550
- Summary and homework

Outline

Recap

- Examples of commercial network processors
- Overview of Agere's network processor
- Functional units of APP550
- Summary and homework

Instructor: Dr. Liang Cheng

Agere PayloadPlus (APP)

- Architecture and technologies
 - Control plane and data plane processing
 - Defines:
 - Hardware, software, interconnection, and API
 - Does not specify an implementation
- APP refers to the 2nd generation chips
 - Number, type of functional units
 - Degree of processing parallelism
 - Internal data bandwidth

Instructor: Dr. Liang Cheng

Conceptual Pipeline

- Packet classification -> forwarding
 - Error checking
 - Classification

traffic management

- queueing
- Statis. to state engine fragmentation
- Results to forwarder header modification

Placed b/w a NIC and a switching fabric

First Generation

- Three separate chips
- FPP+RSP: fast path of data plane
- ASI: statistics, interface to a host microprocessor for system mgmt.

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 04/04/05

Second Generation

- A single IC but various models
 - APP550: four GigE ports with full capability
 - Classification: pattern processor
 - Forwarding: traffic manager and modifier
 - Statistics and host communication: state engine

04/04/05

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

04/04/05

External Connections

- Memory interface
 - Fast cycle random access memory (FCRAM)
 - Double data rate static random acess memory (DDR-SRAM)
- Media interface
 - ATM and GigE
 - Standard interface: GMII, PMII, SMII, ...
 - 64-byte blocks
- Switching fabric interface
 - Standard SPI-3 (System packet interface level 3)
- PCI bus interface
 - To GPP host processor
- Scheduling interface
- Coprocessor interface: SPI-3

Instructor: Dr. Liang Cheng

Internal Architecture

Engines

- Pattern processing engine: classification
- State engine: state info for scheduling and verifying flow is within bound
- Reorder buffer manager: ensure packet order
- PDU assembler: collect blocks of a frame
- Traffic manager: schedule packets and shape traffic flow
- Stream editor: modify outgoing packets

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 04/04/05

Engine Functionality

Engines

- Pattern processing engine
- State engine
- Reorder buffer manager
- PDU assembler
- Traffic manager
- Stream editor

- Schedule output queues based on time, congestion, priorities, flags
- Enqueue or discard an outgoing PDU
- Fragment and/or modify PDUs and update checksums before transmission

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 04/04/05

Pattern Processing Engine (1)

- Programmers specify a set of patterns
 - Programmable: FPL -> compilation -> PPE
 - Unconventional: pattern matching
 - Implicit parallelism
 - Automatic invocation
 - Transparent access to multiple memories
 - Classifier PDU buffer
 - Classifier program memory
 - Classifier control memory

Instructor: Dr. Liang Cheng

Pattern Processing Engine (2)

- Data flow through the classifier
 - Ingress storage
 - First pass of classification
 - Second pass of classification
 - Reassembly and handoff

Stream Editor

- Fast path
- Two identical copies
 - Create up to 127 bytes of frame header
 - Fragmentation
 - Create up to 20 bytes of cell header
 - Modification
 - Encapsulate the packet
 - Control CRC hardware and append results

- Pipeline architecture
 - Each stage must complete before the next packet arrives
 - Global pulse specifies the amount of time available to process a packet
 - For an OC-48 (2.5 Gbps) interface: 23 instructions
 - Programmer should guarantee that no engine runs for more than the global pulse

04/04/05

Other Functional Units

- Packet generation engine
 - ATM's operation, administration, and maintenance (OAM)
 - ICMP packets

Instructor: Dr. Liang Cheng

Outline

Recap

- Examples
- Design tradeoffs and consequences
- Summary and homework

Review Question

Page 266 Exercise 17.3: What is the advantage of separating classification from forwarding?

Homework (due 04/11)

 11.1. (a) Problem 1 of Chapter 17; (b) Problem 2 of Chapter 17. (Page 266)

Instructor: Dr. Liang Cheng

