CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

Outline

Recap

- Reminder: homework due today
- Overview of Agere's network processor
- State engine and scripting language
- Summary

First Generation before Agere PayloadPlus (APP)

- Three separate chips
- FPP+RSP: fast path of data plane
- ASI: statistics, interface to a host microprocessor for system mgmt.

Instructor: Dr. Liang Cheng

Second Generation

- A single IC but various models
 - APP550: four GigE ports with full capability
 - Classification: pattern processor
 - Forwarding: traffic manager and modifier
 - Statistics and host communication: state engine

Instructor: Dr. Liang Cheng

State Engine (SE)

- Contains memory used to store statistics
 - Classifier invokes a SE function to store or increment a value in memory
- Performs computations needed for traffic policing
 - Only the 1st step ?
- Provides an interface to an external host processor
 - Configuring and initializing APP550 FCRAM
 - Slow path

Instructor: Dr. Liang Cheng

External Host Interface

PCI

- Peripheral component interconnect
- Synchronized with the clock speed of the microprocessor
- Transmits 32 bits at a time in a 124-pin connection and 64 bits in a 188-pin connection in an expanded implementation
- Sending the address on one clock cycle and data on the next
- Burst data: address on the first cycle and a sequence of data transmissions on a certain number of successive cycles

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

04/11/05

Control and Status Registers

CSRs

- Store-and-fetch
- To control a function unit, place a value in one of the registers
- To obtain status from a function unit, fetch the value from the register
 - State engine
 - Classifier
 - Traffic manager
 - Internal memory
 - MAC interfaces

Instructor: Dr. Liang Cheng

State Engine Memory

- Up to 32MB of external DDR-SRAM
- Up to 2.6MB of internal memory
- 4-byte units: registers
 - 135 registers for base addresses
 - Heads and tails of lists
 - Control and status functions
 - 1280 registers for storing policing scripts
 - Policing script memory (1024) + extended script memory (256)
 - Each instruction is 136 bit long: 128 + 8

Instructor: Dr. Liang Cheng

Instructor: Dr. Liang Cheng

Onboard Configuration Bus

- CBI (Configuration Bus Interconnect)
 - Connecting Classifier, Traffic manager, and State Engine
 - Control plane functions
 - Implements the address space containing CSRs and SE memory
- CBI State Engine PCI

Instructor: Dr. Liang Cheng

ASI Functions

- A FPL program uses ASI functions to invoke the SE
 - asiWrite(0x4:24,949:32)
 - Arithmetic and logical operations
 - Read
 - Increment/decrement

Instructor: Dr. Liang Cheng

Policing Engine and Scripts

- A flow in the profile?
 - A real-time clock
 - Policing database
 - Memory holding flow information
 - Indexed by flow ID
 - Up to 512K entries
 - Each entry is of 64 bytes
 - A scripting facility
 - Store and fetch flow statistics to the database
 - Up to 16 separate policing scripts to be invoked by an FPL program during packet classification
 - asiPolice3 or asiPoliceEOF3
 - Each script is compiled to .aso file and loaded to APP550

Instructor: Dr. Liang Cheng

Return Values from Policing

- asiPolice does not return a value
- asiPoliceEOF returns a value
 - asiPolice on early blocks, and asiPoliceEOF on the last block
 - For frame traffic, asiPoliceEOF is used in the 2nd pass of an FPL program
 - Minimizes calls to asiPoliceEOF

Binding a Script to its ID

- asiPolice3 or asiPoliceEOF3
 - Using SPA to change the configuration file
 - Edit the XML file
 - ASIScript file="myscript.aso" id="0" />

Script Protocol Declaration

- SETUP PROTO(asiPoliceEOF3, 24, 16, 24)
- Example on Page 321

```
#include ``np5.fpl"
#include ``mp5asi.fpl"
...
SETUP PROTO(asiPoliceEOF3, 24, 16, 24);
...
outcome = asiPoliceEOF3($FID:24,$currLength:16, 0:24);
... //place outcome in tm_flags
fTransmit(0:1,0:1,$DID:20,0:16,0:5,$tm_flags:10,$info:24);
```

Instructor: Dr. Liang Cheng

- @[x] type : reference the xth byte
- @[x:y] *type* : reference a string of bytes from byte x to byte y
- block entire_packet @[0:63];
- block ip_header packet_data[14:33];
- unsigned srcIP ip_header[12:15];
- unsigned dstIP ip_header[16:19];

C-NP (cont'd)

- Statements
 - Assignment
 - Condition: if (expression) statement
 - else statement
 - Selection: switch (expression)

case statements

Compound: { statement; ... statement; }

Scripting structure (an example on pp. 327)

optional preprocessor directives (e.g. #include, #ifdef, ...)

data declaration

script script_name {
 script body
}

Instructor: Dr. Liang Cheng

Outline

Recap

- Examples
- Design tradeoffs and consequences
- Summary and homework

Review Question

Page 266 Exercise 17.3: What is the advantage of separating classification from forwarding?

