CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

Outline

Recap

- SystemC
- APP500: classification & state engine blocks
- Traffic manager
- Summary and homework

Recap

- Traffic manager
 - Buffer management, traffic shaping, stream editing
- Summary and homework

Instructor: Dr. Liang Cheng

APP550 Overview

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

04/20/05

Primary Functions

- Buffer management
- Completion of flow policing and packet discard
- Traffic shaping
- Bandwidth allocation
- Packet modification

Instructor: Dr. Liang Cheng

Buffer Management

- A packet remains in a buffer from ingress to egress
- Extra packets coming?
 - Tail drop
 - Random early detection

Random Early Detection

- Deciding the dropping probability
- Two thresholds
 - S_{min} to start RED
 - S_{max} to make RED non-random
 - $P=(Q_{avg}-S_{min})/(S_{max}-S_{min})$
 - Why Q_{avg}; not Q_{current}?
 - $Q_{avg} = aQ + (1-a)Q_{avg}$

Instructor: Dr. Liang Cheng

Completion of Flow Policing

Three steps in flow policing or traffic policing

- Binding a packet to a flow
- Policing engine invoked
- Traffic manager acts based on the policing results
 - Flow profile: a set of statistical bounds of a flow
 - An out-of-profile packet is a candidate for discard
 - Different out-of-profile levels?
 - Non-preemptive discard

Traffic Profile

- Use a VBR as an example
 - Sustained bit rate (SBR)
 - Peak bit rate (PBR)
 - Sustained burst size (SBS)
 - Peak burst size (PBS)

Color	Meaning
Red	Flow exceeds the peak profile
Yellow	Flow exceeds the sustained profile, but does not exceed the peak profile
Green	Flow is below the sustained profile

Instructor: Dr. Liang Cheng

- Weighted RED
 - Policer marks packets with colors
 - WRED computes the dropping probabilities

Parameter	Meaning
T_{min}^{red}	Minimum threshold for a red packet
T_{max}^{red}	Maximum threshold for a red packet
T_{\min}^{yellow}	Minimum threshold for a yellow packet
$T_{\max}^{ ext{ yellow }}$	Maximum threshold for a yellow packet
T_{\min}^{green}	Minimum threshold for a green packet
T_{\max}^{green}	Maximum threshold for a green packet

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

04/20/05

Implementation of WRED

Computing the dropping probability
 Floating point computation is costy

- Choose a to be an inverse of a power of two
- P=(Q_{avg}-S_{min})/(S_{max}-S_{min})
 Stair-wise approximation

Stair-wise Approximation

Instructor: Dr. Liang Cheng

Scheduler for Traffic Shaping

- APP550 allows a programmer to create a set of scripts (a program) written in C-NP to select a packet to be transmitted from a set of queues
 - The scheduler selects the packet that will be transmitted on the next invocation
 - CBR, VBR: circular time slot table

Instructor: Dr. Liang Cheng

Circular Time Slot Table

- Each entry identifies one of the queues the scheduler serves
- A global pointer indicating the next slot in the table to use
- CBR shaping
 - A scheduler sends output to an OC-12 interface
 - 6 entries in the table
 - If queue 1's CBR flow has been assigned a rate of OC-4
 - Then queue 1 should appear ? times in the table

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

04/20/05

Bandwidth Allocation

- Divide bandwidth into separate channels
- Fixed bandwidth allocation
 - Isolated channels
 - Maximum per channel is set and cannot encroach other channels even there is an idle channel
 - E.g.: TDM
- Proportional bandwidth allocation
 - Controlled sharing among channels
 - A fixed allocation scheme + excess bandwidth is divided proportionally
 - Weighted round-robin algorithm

Traffic Management Hierarchy

Level Mechanism

- 1 Port manager
- 2 Logical port
- 3 Scheduler
- 4 QoS queue
- 5 CoS queue

Number

- 256 total
 - 1024 total
 - 4 per logical port
 - 64K per scheduler
 - 16 per QoS queue

Stream Editor Engine

- Two SED engines are last step before output.
- Except for header-trailer stripping in FPL's fQueue and fTransmit, SED is the only stage for PDU modification.
- Arguments come from DID parameter memory, fTransmit info bits, and Buffer Management & Traffic Shaper Engines.
- Output is modification of outgoing PDU.
- SED maintains no state.

Instructor: Dr. Liang Cheng

Traffic Manager Data Flow

- DID selects SED script ID, parameters, queue.
- Scheduler selects Buffer Manager and Traffic Shaper scripts.
- Queue selects Buffer Manager and Traffic Shaper parameters.

Recap

- Traffic manager
- Summary and homework

Instructor: Dr. Liang Cheng

Reading Materials

 Examine FPL and C-NP policing code (*.asl files) in problems/learnbridge on CD.

