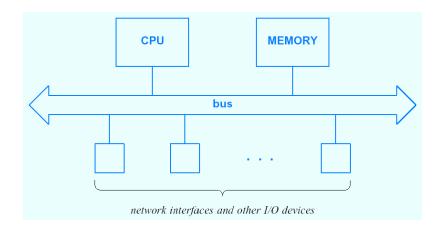

CSE398: Network Systems Design

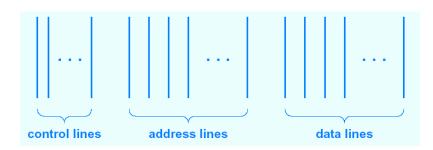
Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

- Recap
 - TCP, UDP, application layer protocols
- Computer hardware architecture
- Summary and homework

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design




Software-based Network System

- Uses conventional hardware (e.g., PC)
 - CPU, memory, bus, I/O devices
- Software
 - Runs the entire system
 - Allocates memory
 - Controls I/O devices
 - Performs all protocol processing

- Bus: b/w I/O and CPU & Memory
 - All components contend for use
- Parallel wires (K+N+C total)
 - An address of K bits
 - A data value of N bits (width of the bus)
 - Control information of C bits
- Wider bus
 - Transfers more data per unit time
 - Costs more
 - Requires more physical space
 - Compromise: multiplex

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

Fetch and Store

- Fundamental paradigm
 - Used throughout hardware (network processor)
- Fetch operation
 - Place address of a device on address lines
 - Issue fetch on control lines
 - Wait for device that owns the address to respond
 - If successful, extract value (response) from data lines
- Store operation
 - Place address of a device on address lines
 - Place value on data lines
 - Issue store on control lines
 - Wait for device that owns the address to respond
 - If unsuccessful, report error

Bus Address Space

- Arbitrary hardware can be attached to bus
- K address lines result in 2^k possible bus addresses
- Address can refer to
 - Memory (e.g., RAM or ROM)
 - I/O device
- Arbitrary devices can be placed at arbitrary addresses
- Address space can contain "holes"
- Device on bus known as memory mapped I/O
- Locations that correspond to nontransfer operations known as Control and Status Registers (CSRs)

Network I/O on Conventional Hardware

- Network Interface Card (NIC)
 - Attaches between bus and network
 - Operates like other I/O devices
 - Handles electrical/optical details of network
 - Handles electrical details of bus
 - Communicates over bus with CPU or other devices

NIC Functionality

- Onboard address recognition and filtering
- Onboard packet buffering
- Direct memory access (DMA)
- Data chaining and operation chaining

- Recap
- Computer hardware architecture
- Summary and homework

Homework (due on 02/07)

- 4.1. Describe (a) what is an IP multicast address? (b) what is a MAC multicast address? (c) and how an IP multicast address be mapped to a corresponding MAC address. Hint: read related info at http://netweb.usc.edu/multicast/ and search WWW for the sub-question (c).
- Questions NOT for hand-in: Read Chapter 1 to Chapter 5, especially algorithms in Chapter 5.