CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

Outline

- Recap
 - Computer hardware architecture
 - Fetch and store
- Packet processing algorithms (Chapter 5)
- Summary and homework

NIC Functionality

Onboard address recognition and filtering

- Onboard packet buffering
- Direct memory access (DMA)
- Data chaining and operation chaining

Onboard Address Recognition And Filtering

NIC given set of addresses to accept

- Station's unicast address
- Network broadcast address
- Zero or more multicast addresses (<=32 or 64)
 CPU must be prepared to handle a false acceptance
- When packet arrives, NIC checks destination address
 - Accept packet if address on list
 - Discard others

Instructor: Dr. Liang Cheng

Onboard Packet Buffering

NIC given high-speed local memory

- Incoming packet placed in NIC's memory
 - Allows computer's memory/bus to operate slower than network
 - Handles small packet bursts

Instructor: Dr. Liang Cheng

Direct Memory Access (DMA)

CPU

- Allocates packet buffer in memory
- Passes buffer address to NIC
- Goes on with other computation

NIC

- Accepts incoming packet from network
- Copies packet over bus to buffer in memory
- Informs CPU that packet has arrived

Instructor: Dr. Liang Cheng

Buffer/Data Chaining

- CPU
 - Allocates multiple buffers
 - Passes linked list to NIC
- NIC
 - Receives next packet
 - Divides into one or more buffers
- Advantage: a buffer can be smaller than packet

Instructor: Dr. Liang Cheng

Operation/Command Chaining

CPU

- Allocates multiple buffers
- Builds linked list of operations
- Passes list to NIC
- NIC
 - Follows list and performs instructions
 - Interrupts CPU after each operation
- Advantage: multiple operations proceed without CPU intervention

02/07/05

Instructor: Dr. Liang Cheng

Data Flow Diagram

- Depicts flow of data through hardware units
- Used throughout the course and text

Instructor: Dr. Liang Cheng

Outline

- Today's class ends at 1:55 PM
- Recap
- Packet processing algorithms (Chapter 5)
 - Data storage and representation
 - Algorithms
- Summary and homework

Instructor: Dr. Liang Cheng

Why Study Packet Processing on Conventional Hardware?

Past

- Employed in early IP routers
- Many algorithms developed / optimized for conventional hardware
- Present
 - Used in low-speed network systems
 - Easiest to create / modify
 - Costs less than special-purpose hardware
- Future
 - Processors continue to increase in speed
 - Some conventional hardware present in all systems

Instructor: Dr. Liang Cheng

Copying and Buffering

- Used when packet moved from one memory location to another
 - Expensive
- Must be avoided whenever possible
 - Leave packet in buffer
 - Pass buffer address among threads/layers
- Buffer allocation
 - Large, fixed buffers
 - Variable-size buffers
 - Linked list of fixed-size blocks

Instructor: Dr. Liang Cheng

Integer Representation

- Little endian (least-significant byte at lowest address): Intel 80x86
- Big endian (most-significant byte at lowest address): Motorola 680x0
- Integer conversion
 - Needed when heterogeneous computers communicate
 - Protocols define network byte order: big-endian
 - Computers convert to network byte order

Function	data size	Translation
ntohs	16 bits	Network byte order to host's byte order
htons	16 bits	Host's byte order to network byte order
ntohl	32 bits	Network byte order to host's byte order
htonl	32 bits	Host's byte order to network byte order

Instructor: Dr. Liang Cheng

Algorithm Examples

- Layer 2
 - Ethernet bridge
- Layer 3
 - IP forwarding
 - IP fragmentation and reassembly
- Layer 4
 - TCP connection recognition and splicing
- Other
 - Hash table lookup

Instructor: Dr. Liang Cheng

Ethernet Bridge

- Used between a pair of Ethernets
- Provides transparent connection
- Listens in promiscuous mode
- Forwards frames in both directions
- Uses source address in frames to identify computers on each network
- Uses addresses to filter
 - Uses destination address to decide whether to forward frame

Instructor: Dr. Liang Cheng

Learning Bridge Algorithm

- Recap
- Packet processing algorithms
- Summary and homework

Instructor: Dr. Liang Cheng

Homework (due on 02/14)

- 5.1. Give the big-endian and little-endian representations of the integer 34677374.
- 5.2. Problem 2 of Chapter 5 (Page 63).

Instructor: Dr. Liang Cheng

