
CSE398:
Network Systems Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering

P.C. Rossin College of Engineering & Applied Science
Lehigh University

February 23, 2005



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Outline

Recap
Packet processing functions

Protocol software
Summary and homework



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Outline

Recap
Protocol software on a conventional 
processor
Summary and homework



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Possible Implementations of
Protocol Software

In an application program
Easy to program
Runs as user-level process
No direct access to network devices
High cost to copy data from kernel address space
Cannot run at wire speed

In an embedded system
Special-purpose hardware device
Dedicated to specific task
Ideal for stand-alone system
Software has full control

In an operating system kernel
More difficult to program than application
Runs with kernel privilege
Direct access to network devices



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Processing Priorities

Determine which code 
CPU runs at any time

Hardware devices need 
highest priority
Protocol software has 
medium priority
Application programs 
have lowest priority

Queues provide 
buffering across 
priorities
Why hardware device-
related processing has 
higher priority?



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

OS Implementation of Priority (1)
Interrupt mechanism

Operates asynchronously
Saves current processing state
Changes processor status
Branches to specified location

Hardware interrupt
Caused by device and must be serviced quickly
Livelock

Software interrupt
Caused by executing program
Other OS code < Priority < hardware interrupt
Protocol stack operates as software interrupt

When packet arrives, hardware interrupts and device driver raises 
software interrupt
When device driver finishes, hardware interrupt clears and protocol 
code is invoked



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

OS Implementation of Priority (2)

Kernel threads
Finer-grain control than software interrupts
Can be assigned arbitrary range of 
priorities

Packet passes among multiple threads 
of control
A queue of packets between each pair 
of threads
Threads synchronize to access queues



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Possible Organization of Kernel 
Threads for Layered Protocols

One thread per layer
One thread per protocol
Multiple threads per protocol
Multiple threads per protocol plus timer 
management thread(s)
One thread per packet



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

One Thread per Layer

Easy for programmer 
to understand
Implementation 
matches concept
Allows priority to be 
assigned to each layer
A packet is enqueued
once per layer



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

One Thread per Protocol

Like one thread per 
layer

Implementation matches 
concept
A packet is enqueued
once per layer

Advantages over one 
thread per layer

Easier for programmer 
to understand
Finer-grain control
Allows priority to be 
assigned to each 
protocol

TCP and UDP reside at 
same layer
Separation allows 
different priorities



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Multiple Threads per Protocol

Further division of 
duties
Simplifies programming
More control than 
single thread
Typical division

Thread for incoming 
packets
Thread for outgoing 
packets
Thread for 
management/timing

Separate timer makes 
programming easier



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Is One Timer Thread Sufficient?

In theory
Yes

In practice
Large range of timeouts (microseconds to 
tens of seconds)
May want to give priority to some timeouts

Solution: two or more timer threads



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Timers and Protocols
TCP

Retransmission timeout
ARP

Cache entry timeout
IP

Reassembly timeout
Observations

Many protocols implement timeouts
Each timer thread incurs overhead
Consolidate timers for multiple protocols



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Multiple Timer Threads

Two threads usually suffice
Large-granularity timer

Values specified in seconds
Operates at lower priority

Small-granularity timer
Values specified in microseconds
Operates at higher priority



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Thread Synchronization
Thread for layer i

Needs to pass a packet to layer i+ 1
Enqueues the packet

Thread for layer i+ 1
Retrieves packet from the queue

Context switch required!
OS function
CPU passes from current thread to a waiting 
thread
High cost ⇒ Must be minimized



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

One Thread per Packet

Preallocate set of threads
Thread operation

Waits for packet to arrive
Moves through protocol stack
Returns to wait for next packet

Minimizes context switches



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Asynchronous & Synchronous 
Programming

Software interrupts and threads lead to 
different styles of programming

Interrupts => asynchronous 
Threads => synchronous 



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Asynchronous API

Asynchronous: event-driven
Programmer writes set of functions and 
specifies which function to invoke for each 
event type
Programmer has no control over function 
invocation
Functions keep state in shared memory
Difficult to program



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Synchronous API

Using blocking
Writes main flow-of-control
Explicitly invokes functions as needed
Built-in functions block until request 
satisfied
Easy to program



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Synchronous API Using Polling

Nonblocking form of synchronous API
Each function call returns immediately

Performs operation if available
Returns error code otherwise



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Typical Implementations
Application program

Synchronous API using blocking (e.g., socket API)
Another application thread runs while an 
application blocks

Embedded systems
Synchronous API using polling
CPU dedicated to one task

Operating systems
Asynchronous API
Built on interrupt mechanism



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Outline
Recap
Protocol software
Summary and homework



Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Homework (due on 02/28)

7.2. Problem 7 of Chapter 7 (Page 97).
A question that does not need to be 
handed in: check whether link state 
routing requires a timer?


