CSE398:
Network Systems Design

1

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science

Lehigh University

February 23, 2005

= Packet processing functions
= Protocol software
= Summary and homework

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

02/23/05

s Protocol software on a conventional
NroCessor

s Summary and homework

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Possible Implementations of
Protocol Software

= In an application program
= Easy to program
= Runs as user-level process
No direct access to network devices
High cost to copy data from kernel address space
= Cannot run at wire speed
= In an embedded system
= Special-purpose hardware device
= Dedicated to specific task
= Ideal for stand-alone system
= Software has full control
= In an operating system kernel
= More difficult to program than application
= Runs with kernel privilege
= Direct access to network devices

Instructor: Dr. Liang Cheng CSE398: Network Systems Design

02/23/05

i Processing Priorities

= Determine which code
CPU runs at any time

. Applications -« lowest priority
= Hardware devices need
highest priority
= Protocol software has
mEdlum prIOrIty pf;z;zz?;g - medium priority

= Application programs et qure_
have lowest priority penween levels [

= Queues provide

device drivers

buffering across handling frames | highestpriority
priorities

= Why hardware device-
related processing has NIC, NIC,

higher priority?

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i OS Implementation of Priority (1)

= Interrupt mechanism
= Operates asynchronously
= Saves current processing state
= Changes processor status
= Branches to specified location
= Hardware interrupt
= Caused by device and must be serviced quickly
= Livelock
= Software interrupt
= Caused by executing program
= Other OS code < Priority < hardware interrupt

= Protocol stack operates as software interrupt

= When packet arrives, hardware interrupts and device driver raises
software interrupt

= When device driver finishes, hardware interrupt clears and protocol
code is invoked

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i OS Implementation of Priority (2)

= Kernel threads
= Finer-grain control than software interrupts
= Can be assigned arbitrary range of
priorities
= Packet passes among multiple threads
of control

= A queue of packets between each pair
of threads

= Threads synchronize to access queues

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Possible Organization of Kernel
Threads for Layered Protocols

= One thread per layer
= One thread per protocol
= Multiple threads per protocol

= Multiple threads per protocol plus timer
management thread(s)

= One thread per packet

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i One Thread per Layer

= Easy for programmer applications
to understand R e -
= Implementation o 0 - e
matches concept < .
= Allows priority to be >_:'H®< s
assigned to each layer)
= A packet is enqueued e
once per layer [) = O
packets arrive ——j» ¥ =~—— packets leave

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i One Thread per Protocol

u lee one thread per applications
layer
=« Implementation matches queue queue
concept = e
= A packet is enqueued
once per layer

= Advantages over one
thread per layer

= Easier for programmer = TCP and UDP reside at

= Finer-grain control >dme Ia_yer

= Allows priority to be " S?parat'on .a”(.)\.NS
assigned to each different priorities

protocol

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Multiple Threads per Protocol

= Further division of applications
duties

= Simplifies programming N op

= More control than /_. read — (i)
single thread

= Typical division
= Thread for incoming

packets = Separate timer makes
= Thread for outgoing programming €asier
packets

= Thread for
management/timing

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Is One Timer Thread Sufficient?

= In theory
= Yes

= In practice

= Large range of timeouts (microseconds to
tens of seconds)

= May want to give priority to some timeouts
= Solution: two or more timer threads

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Timers and Protocols

s TCP
= Retransmission timeout
= ARP
= Cache entry timeout
= [P
= Reassembly timeout
= Observations
= Many protocols implement timeouts

= Each timer thread incurs overhead
= Consolidate timers for multiple protocols

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Multiple Timer Threads

= Two threads usually suffice

= Large-granularity timer
= Values specified in seconds
= Operates at lower priority

= Small-granularity timer
= Values specified in microseconds
=« Operates at higher priority

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Thread Synchronization

= Thread for layer /
= Needs to pass a packet to layer A 1
= Enqueues the packet

= Thread for layer A 1
= Retrieves packet from the queue

= Context switch required!
= OS function

= CPU passes from current thread to a waiting
thread

« High cost = Must be minimized

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i One Thread per Packet

= Preallocate set of threads

= Thread operation
=« Waits for packet to arrive
= Moves through protocol stack
= Returns to wait for next packet

= Minimizes context switches

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

Asynchronous & Synchronous
Programming

= Software interrupts and threads lead to
different styles of programming

« Interrupts => asynchronous
= Threads => synchronous

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Asynchronous API

= Asynchronous: event-driven

= Programmer writes set of functions and
specifies which function to invoke for each
event type

= Programmer has no control over function
invocation

= Functions keep state in shared memory
= Difficult to program

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Synchronous API

= Using blocking
= Writes main flow-of-control
= Explicitly invokes functions as needed

= Built-in functions block until request
satisfied

= Easy to program

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Synchronous API Using Polling

= Nonblocking form of synchronous API

= Each function call returns immediately
= Performs operation if available
= Returns error code otherwise

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Typical Implementations

= Application program
=« Synchronous API using blocking (e.g., socket API)

= Another application thread runs while an
application blocks

= Embedded systems
= Synchronous API using polling
= CPU dedicated to one task

= Operating systems
= Asynchronous API
= Built on interrupt mechanism

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

a Protocol software
= Summary and homework

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

i Homework (due on 02/28)

= /.2. Problem 7 of Chapter 7 (Page 97).

= A question that does not need to be
handed in: check whether link state
routing requires a timer?

Instructor: Dr. Liang Cheng CSE398: Network Systems Design 02/23/05

