CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

January 17, 2005

Outline

- Course information
 - NSF: Pre-test and lab-log
- Network architecture
 - Layering and protocols
 - OSI architecture
 - Internet architecture
- Summary and homework

Basic Course Information

- Network systems: router and switches in the Internet.
- Objective: introduction to network systems from both academic and industry's point of views.
- Course homepage
 - http://www.cse.lehigh.edu/~cheng
- Office hours
 - Tuesday 12 PM to 3 PM, PL 326, <u>cheng@cse.lehigh.edu</u>

Instructor: Dr. Liang Cheng

Textbooks

- D. Comer, Network Systems Design using Network Processors, Agere Version, Prentice Hall, October 2004.
- Prerequisites
 - Computer architecture knowledge
 - CSE342 (Fundamentals of Internetworking) or CSE/ECE404 (Computer Networks), or Instructors' permission.

Grading

- Homework: 20%
- Midterm: 20%
- Lab projects: 30%
- Final exam: 30%
- All exams are open book.
- Collaboration & academic honesty

Tentative Course Schedule

- http://www.cse.lehigh.edu/~cheng/Teaching/ CSE398-05/schedule.html
 - 01/31: Hands-on lab (traffic monitoring and throughput measurement)
 - 02/16: Hands-on lab (basic router configuration)
 - 03/02: Mid-term Exam
 - 03/14: Hands-on lab (firewall and ethereal)
 - 04/06: Hands-on lab (SPA network processor simulator)
 - 04/18: Hands-on lab (SystemC models and simulation)
 - 04/27: Hands-on lab (Stateful FPL application)
 - Agere on-site visit: TBD
 - Final exam: TBD

Instructor: Dr. Liang Cheng

NSF Related Information

Instructor: Dr. Liang Cheng

Outline

- Course information
- Network architecture
 - Layering and protocols
 - OSI architecture
 - Internet architecture
- Summary and homework

Instructor: Dr. Liang Cheng

Computer Networks

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 01/17/05

Hardware Building Block

Communication links
Hosts, end-systems
Routers, switches

Communication Links

- Physical media propagates bits between transmitter / receiver pairs
 - Cable: twisted-pair (Cat-5,6), coax, fiber [guided media]
 - Wireless links: satellite links; wireless LANs, WANs; terrestrial microwave [unguided media]

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

01/17/05

Hosts and Routers

- RAM: Random Access Memory for dynamic configuration/information
- NVRAM: Non-Volatile RAM for backup copy of configuration to be kept when power is turned off
- Flash: Erasable and programmable read-only memory containing IOS software, content retained
- ROM: containing initializing bootstrap program and monitoring system for recovery, IOS software

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 01/17/05

Concepts Related to Links

Bandwidth and throughput

- Bandwidth of a communication link refers to the number of bits per second that can be transmitted on the link
- Throughput of a session refers to the number of bits or bytes per second that has been achieved in transmitting data of the session.
- 10 Mbps (10⁶ bits); a 1 KB file (2¹⁰ bytes?)
- RTT vs. one-way latency. Why?
 - Significance: transcontinental case: One-way distance as 10,000Km and SOL as 200,000Km/s, then RTT is
 - ~100ms.
- High-speed link: large bandwidth link
 - 1MB file via 1Mbps: ~ 8 RTT
 - 1Gbps: ~1 RTT

Instructor: Dr. Liang Cheng

OSI Architecture

Seven-layer OSI (Open Systems Interconnection) network architecture

Instructor: Dr. Liang Cheng

Internet Architecture Protocol Stack

Five-layer model

- An implementation of TCP/IP protocol suite was bundled with Berkeley Unix
- Application: supporting network apps
 - FTP, SMTP, HTTP
- Transport: host-host data transfer
 - TCP, UDP
- Network: routing of packets
 - IP, routing protocols
- Data link: data transfer between neighboring network elements
 - PPP, Ethernet
- Physical: bits "on the wire"

Layering: Logical Communication

E.g.: Telnet

- Transport take data from app
- Add address, reliability check info to form TCP segment
- Send segment to peer
- Wait for peer to ack receipt

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

01/17/05

Encapsulation

- Header, trailer, payload or body
- Session, presentation, application layers: message, header
- Transport layer: datagram, UDP header; segment, TCP header
- Network layer: packet, IP header
- Data link layer: frame, header, trailerPhysical layer: bit

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

01/17/05

Packet arrival rate to link exceeds output link capacity: packets queue, wait for turn; or drop

Instructor: Dr. Liang Cheng

Four Sources of Delay

- 1. Nodal processing:
 - Check bit errors
 - Determine output
- 3. Transmission delay:
 - R=link bandwidth (bps)
 - L=packet length (bits)
 - Time to send bits into link: L/R

- 2. Queueing
 - Time waiting at output for trans.
 - Depends on congestion at router
- 4. Propagation delay:
 - d = length of physical link
 - s = propagation speed in medium
 - Propagation delay = d/s

Instructor: Dr. Liang Cheng

01/17/05

Homework

- Problem 1.1 has been posted at the Blackboard System. Due on Jan. 24 (upload it to Digital Drop Box) to before the class.
- 5-min discussion in the next class: What are the differences between OSI and Internet architectures? You do not need to hand in the answer for this question.

CSE398: Network Systems Design 01/17/05