CSE398: Network Systems Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science
Lehigh University

January 19, 2005
Outline

- Recap/discussion
 - Encapsulation, delay
- Encoding
- Framing
- Error detection
- Ethernet (802.3)
- Summary and homework
Outline

- Recap/discussion
- Encoding
- Framing
- Error detection
- Ethernet (802.3)
- Summary and homework
Encoding

- Encode binary data onto signals
 - Non-return to zero (NRZ): 0 as low signal and 1 as high signal
 - Non-return to zero inverted (NRZI): a transition from current signal encodes a 1; staying at current signal encodes a 0
 - Manchester: exclusive-OR of the NRZ and the clock

<table>
<thead>
<tr>
<th>Bits</th>
<th>0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ</td>
<td>![NRZ waveform]</td>
</tr>
<tr>
<td>Clock</td>
<td>![Clock waveform]</td>
</tr>
<tr>
<td>Manchester</td>
<td>![Manchester waveform]</td>
</tr>
<tr>
<td>NRZI</td>
<td>![NRZI waveform]</td>
</tr>
</tbody>
</table>
Outline

- Recap/discussion
- Encoding
- Framing
- Error detection
- Ethernet (802.3)
- Summary and homework
Framing

- Break sequence of bits into a frame
- Typically implemented by network adaptor
- Byte-oriented approach
 - Sentinel: delineate frame with special pattern, e.g., 01111110; problem & solution
 - Byte-counting: include payload length as byte count in header; problem & solution
- Bit-oriented approach & clock-based approach
Outline

- Recap/discussion
- Encoding
- Framing
- Error detection
- Ethernet (802.3)
- Summary and homework
Error Detection

- **Two-dimensional parity**
 - Based on one-dimensional parity
 - Odd (or even) parity: set 8^{th} bit to 1 if needed to give an odd (or even) number of 1s in the byte
 - Calculation for each bit position across each of the bytes contained in the frame: an extra parity byte for the entire frame

0101001	1
1101001	0
1000000	1

- Internet checksum algorithm
- CRC (Cyclic Redundancy Check)
Internet Checksum Algorithm

- View message as a sequence of 16-bit integers; sum using 16-bit ones-complement arithmetic; take ones-complement of the result.

```c
u_short
cksum(u_short *buf, int count)
{
    register u_long sum = 0;
    while (count--)
    {
        sum += ?; // *buf++, *buf, buf
        if (sum & 0xFFFF0000)
        {
            /* carry occurred, so wrap around */
            sum &= 0xFFFF;
            sum++;
        }
    }
    return ~(sum & 0xFFFF);
}
```
Cyclic Redundancy Check

- Add k bits of redundant data to an n-bit message
 - $k \ll n$, e.g., $k = 32$ and $n = 12,000$ (1500 bytes)
- Represent n-bit message as n-1 degree polynomial
 - e.g., MSG=10011010 as $M(x) = x^7 + x^4 + x^3 + x^1$
- Let k be the degree of some divisor polynomial
 - e.g., $C(x) = x^3 + x^2 + 1$
- Transmit $P(x)$ that is evenly divisible by $C(x)$
 - Subtract remainder of $M(x)x^k/C(x)$ from $M(x)x^k$
- Is received bit-stream evenly divisible by $C(x)$?
- Selecting $C(X)$
 - All single-bit errors, as long as the x^k and x^0 terms have non-zero coefficients.
 - All double-bit errors, as long as $C(x)$ contains a factor with at least three terms
 - Any odd number of errors, as long as $C(x)$ contains the factor $(x+1)$
Outline

- Recap/discussion
- Encoding
- Framing
- Error detection
- Ethernet (802.3)
- Summary and homework
Ethernet (802.3)

- CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
- Broadcast
- MAC (Media Access Control)
- Fast Ethernet and Gigabit Ethernet
- Coaxial cable (500 m, impedance 50 Ohms) and 10BaseT (100 m)
- Repeater: maximum 4 (2500 m)
Ethernet Frame

- Frame: bit-oriented, pre- & post-amble
- 14 byte header
- Unique Ethernet address belongs to each adaptor
 - 48-bit unicast address (24-bit assigned prefix), e.g., 8:0:2b:e4:b1:2
 - Broadcast: all 1s
 - Multicast: first bit is 1
 - Promiscuous mode
- Body: from 46 bytes to 1500 bytes
- Type as demultiplexing key or length field
Transmitter Algorithm in MAC

- If line is idle
 - Send immediately
 - Upper bound message size of 1500 bytes
 - Wait 9.6us between back-to-back frames
- If line is busy
 - Wait until idle and transmit immediately
- If collision
 - Jam for 32 bits, then stop transmitting frame
 - Minimum frame is 64 bytes [header (14) + 46 bytes of data + CRC (4)]
 - Delay and try again
 - 1st time: 0 or 51.2us
 - 2nd time: 0, 51.2, or 102.4us
 - 3rd time: 51.2, 102.4, or 153.6us
 - nth time: $k \times 51.2\text{us}$, for randomly selected $k=0 \ldots 2^n - 1$
 - Exponential backoff
 - Give up after several tries (usually 16)
Outline

- Recap/discussion
- Encoding
- Framing
- Error detection
- Ethernet (802.3)
- Summary and homework
Homework

- Problem 1.2 has been posted at the Blackboard System. Due on Jan. 24 (upload it to Digital Drop Box) to before the class.

- 5-min discussion in the next class: Why jamming bits?