CSE398: Network Systems Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science
Assistant Professor, Lehigh University

January 24, 2005
Outline

- Recap
 - Encoding, framing, error detection, IEEE 802.3
 - Jamming
- Switching and forwarding
- IP (Internet Protocol)
- Summary and homework
Outline

- Recap
- Switching and forwarding
- IP (Internet Protocol)
- Summary and homework
Switching

- **Switch**
 - Forwards frames from input port to output port
 - Port selected based on address in frame header

- **Benefits**
- **Topology**
Source-Routing Switching

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design
Datagram Switching

- No connection setup phase; complete destination addr
- Packet forwarded independently
- *Connectionless* model

Analogy
Virtual Circuit Switching

- Explicit connection setup (and tear-down) phase
 - Permanent VC vs. switched VC: virtual circuit identifier
- Subsequence packets carrying VCI follow same circuit
- Connection-oriented model

- Analogy
 - Each switch maintains a VC table
Virtual Circuit Model

- Typically wait for connection setup
- Connection request: full address
- Data packet: a small identifier/overhead
- Broken connection: establish a new one
- Connection setup provides an opportunity to reserve resources.
Datagram Model

- No RTT delay waiting for connection setup
- Source not knowing if the network is capable of delivering a packet or if the destination host is even up.
- Possible to route around link/node failures
- Full destination address: overhead per data packet is higher
Multiplexing in Circuit Switching and Packet Switching

- Circuit switching
 - TDMA
 - FDMA
- Datagram switching
 - Statistical multiplexing

Each user:
- 100 kbps when "active"
- Active 10% of time
- Circuit-switching: 10 users
- Packet switching: With 35 users, probability > 10 active less than .0004
Outline

- Recap
- Switching and forwarding
- IP (Internet Protocol)
 - Service model, IP header, fragmentation, routing
- Summary and homework
IP Internet

- Internet: concatenation of networks by router/gateway
- Fragmentation and reassembly
Fragmentation

Offset specifies 8-byte chunks of data rather than individual bytes.
Outline

- Recap
- Switching and forwarding
- IP (Internet Protocol)
- Summary and homework
Lab on 01/31

- Traffic monitoring and throughput measurement
- Location: PL112
Homework (due on Jan. 31st before the class)

2.1. Suppose a datagram that contains 2068 bytes of data is passed to IP for delivery across two networks of the Internet (i.e., from the source host to a router to the destination host). The first network uses 14-byte headers and has an MTU of 1024 bytes; the second uses 8-byte headers with an MTU of 512 bytes. Each network’s MTU gives the size of the largest IP segment/packet that can be carried in a link-layer frame. Give the sizes and offsets of the sequence of fragments delivered to the network layer at the destination host. Assume all IP header are 20 bytes.

Off-line discussion question (no need to hand in): verify the numbers of the multiplexing example for packet switching, i.e. with 35 users, probability > 10 active less than .0004