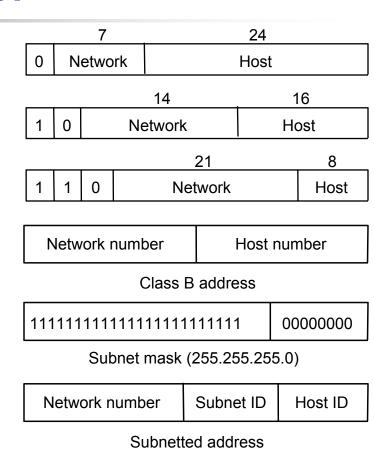
CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Assistant Professor, Lehigh University

January 26, 2005

Outline

- Recap
 - Switching and forwarding
 - IP (Internet Protocol)
- IP
- UDP and TCP
- Summary and homework


IP Service Model

- Connectionless (datagram)
- Best-effort/unreliable service
 - Lost, delivered out of order
 - Duplicated, or delayed
- Addressing
 - Hierarchical: network + host
 - Class A, B, C and D
 Multicast
 - Dot notation
 - **10.3.2.4**, 128.96.34.15,
 - **192.12.69.77, 224.54.93.3**
 - Subnetting
 - Add another level to address/routing hierarchy: *subnet*
 - Subnet masks define variable partition of host part: e.g., 255.255.255.128

А

В

С

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

Packet Routing/Forwarding

Strategy

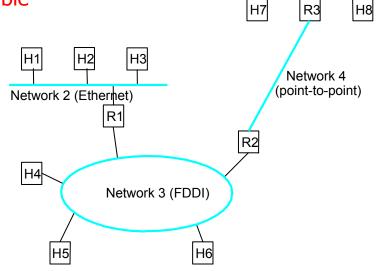
- Every datagram contains destination's address
- If directly connected to destination network, then forward to host
- If not directly connected to destination network, then forward to some router

Next Hop

interface 1

interface 0

R3


R1

- Forwarding table maps network number into next hop
- Each host has a default router
- Each router maintains a routing/forwarding table

Example (R2)

Network Number (Subnet# & Mask) 1 (128.96.34.0 & 255.255.255.0) 2 (128.96.34.128 & 255.255.255.128) 3 (128.96.33.0 & 255.255.255.128)

- 4 (128.96.33.128 & 255.255.255.128)
- Classless interdomain routing (CIDR)
 - **128.96.34.0/24**
 - **128.96.34.128/25**
 - Example: 128.96.34.135
 - Longest match

Instructor: Dr. Liang Cheng

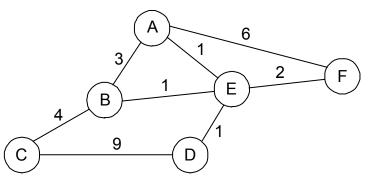
CSE398: Network Systems Design

01/26/05

Network 1 (Ethernet)

Address Translation

- Map IP addresses into physical addresses
 - Destination host
 - Next hop router
- ARP (Address Resolution Protocol)
 - Table of IP to physical address bindings
 - Broadcast request if IP address not in table
 - Target machine responds with its physical address
 - Table entries are discarded if not refreshed


Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 01/26/05

Routing Overview

Forwarding vs. routing

- Forwarding: to select an output port based on the destination address and routing table
- Routing: the process by which the routing table is built
- Network as a graph
 - Graph nodes are routers
 - Default router
 - Graph edges are links
 - Cost: delay, \$, ...

- Problem: find lowest cost path between two nodes
- Factors
 - Static topology (Wireless)
 - Dynamic load

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

Routing Algorithm Classification

- Decentralized information based routing
 - Router knows physically-connected neighbors, link costs to neighbors
 - Iterative process of computation, exchange of info with neighbors
 - "Distance vector" algorithms
- Global information based routing
 - All routers have complete topology, link cost info
 - "Link state" algorithms

Instructor: Dr. Liang Cheng

Outline

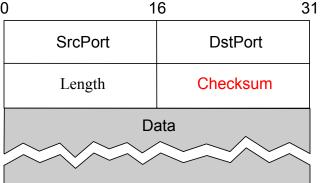
- Recap
- IP
- UDP and TCP (layer 4)
- Summary and homework

Instructor: Dr. Liang Cheng

Process-to-Process Channel

- Host-to-host packet delivery service ⇒ process-to-process communication channel
- Underlying best-effort network
 - Drop messages
 - Re-orders messages
 - Delivers duplicate copies of a given message
 - Limits messages to some finite size
 - Delivers messages after an arbitrarily long delay
- Expected end-to-end services
 - Guarantee message delivery
 - Deliver messages in the same order they are sent
 - Deliver at most one copy of each message
 - Support arbitrarily large messages
 - Support synchronization
 - Allow the receiver to flow control the sender
 - Support multiple application processes on each host

Instructor: Dr. Liang Cheng

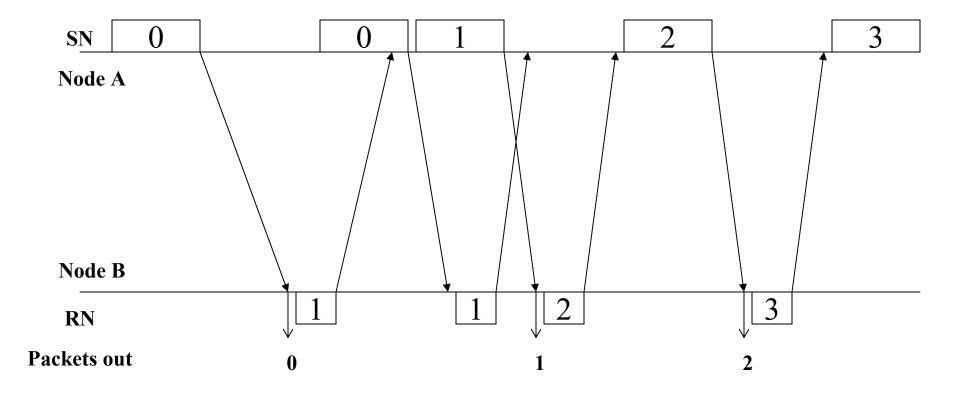

CSE398: Network Systems Design

- Unreliable and unordered datagram service
- No flow control
- Header format

- Endpoints identified by ports
 - Servers have well-known ports: /etc/services

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design


Stop-and-wait Retransmission

- Node A
 - Set *SN* to 0
 - Accept a packet from the next higher layer, assign number SN to the new packet
 - Transmit the SN_{th} packet in a segment containing SN in the sequence number field; if timeout then retransmit
 - If *RN*>*SN*, increase *SN* to *RN* and go to step 2
- Node B
 - Set *RN* to 0, then repeat step 2 and step 3
 - An error-free segment from A with SN=RN, then release the received segment to the higher layer and increment RN
 - At arbitrary time, but within bounded delay after receiving any error-free data segment from A, transmit a segment to A containing *RN* in the request number field

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 01/26/05

Stop-and-wait ARQ Protocol

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 01/

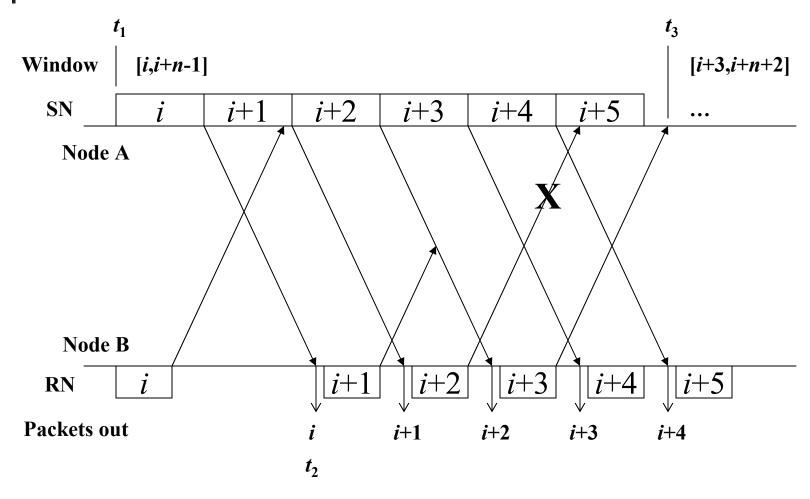
Go-back-n ARQ Protocol

Difference from stop-and-wait ARQ

- Sender: several (n) successive packets can be sent without waiting for the next packet to be requested
- Receiver: RN acknowledges all packets prior to RN and requests transmission of packet RN
- Sliding Window ARQ: *SN*max–*SN*min≤*n*
 - SNmin: smallest-numbered packet that has not been acknowledged
 - SNmax: sequence number to be assigned to the new packet arriving from the higher layer

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 01/26/05

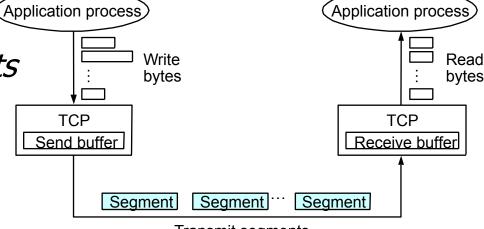

Go-back-n ARQ Protocol

- Node A
 - Set the integer variable *SN*max and *SN*min to 0
 - Do step 3,4,and 5 repeatedly in any order
 - If SNmax < SNmin+n, and if a packet is available from the higher layer, accept the packet, assign number SNmax to it, and increment SNmax
 - If an error-free packet is received from B with RN>SNmin, set SNmin=RN
 - If SN/min<SN/max and no packet is in transmission, choose SN, SN/min<SN<SN/max; transmit the SN/th packet with SN. If timeout then retransmit the whole window
- Node B
 - Set the integer *RN* to 0 and repeat 2 and 3 forever
 - Whenever an error-free packet is received from A with SN=RN, release the received packet to the higher layer and increment RN
 - At arbitrary times, after receiving any error-free packet from A, transmit a packet to A with RN

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 01/26/05

Go-back-n ARQ Protocol



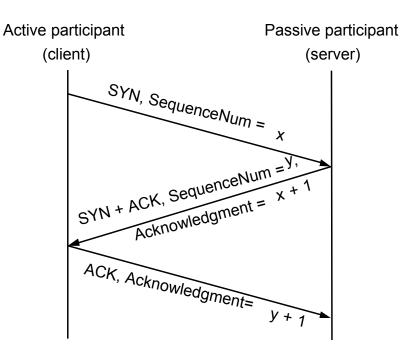
Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

TCP Overview

- Connection-oriented
- Byte-stream
 - App writes bytes
 - TCP sends segments
 - App reads bytes
- Full duplex

Flow control

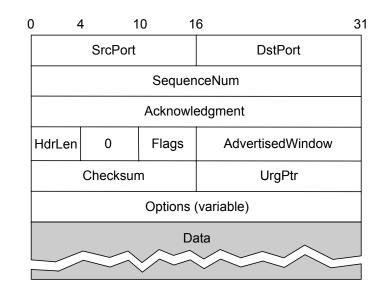

- Transmit segments
- Keep sender from overrunning receiver
- Congestion control
 - Keep sender from overrunning network

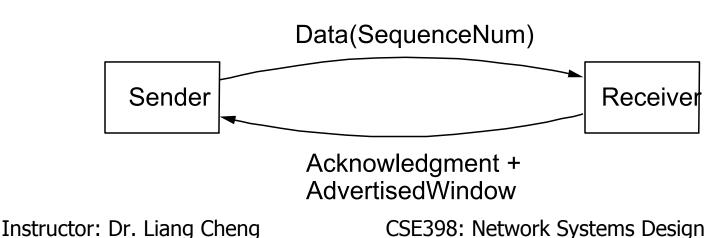
Instructor: Dr. Liang Cheng

01/26/05

Establish & Terminate Connection

Three-way handshake




Instructor: Dr. Liang Cheng

Flow Control

- TCP segment format
- Connection is identified by 4-tuple:
 - (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)
- Flow control
 - Acknowledgment, SequenceNum, AdvertisedWinow
- Flags
 - SYN, FIN, RESET, PUSH, URG, ACK

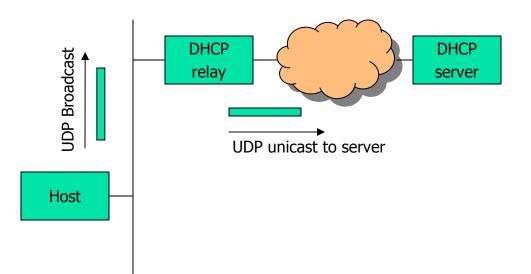
Congestion Control

- AIMD
- Slow start
- Fast retransmit and fast recovery

Outline

- Recap
- IP
- UDP and TCP
- Summary and homework

Instructor: Dr. Liang Cheng


A Review Question

DHCP
UDP or TCP?
Unicast, broadcast, and/or multicast?

- DHCP (Dynamic Host Configuration Protocol)
- Save network administrators' configuration efforts: address pool
- Boot: DHCPDISCOVER to 255.255.255.255
- Relay agent
- Lease renew

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

 Traffic monitoring and throughput measurement

Location: PL112

Instructor: Dr. Liang Cheng

Homework (due on Jan. 31st before the class)

2.2. The following table is a routing table using CIDR. Address bytes are in hexadecimal. The notation "/12" in C4.50.0.0/12 denotes a netmask with 12 leading 1 bits, that is FF.F0.00.00. Note that the last three entries covers every address and thus serve in lieu of a default route. State to what next hop the following will be delivered. (a) C4.5E.13.87 (b) C4.5E.22.09 (c) C3.41.80.02 (d) 5E.43.91.12 (e) C4.6D.31.2E (f) C4.6B.31.2E.

NetMaskLength	NextHop
C4.50.0.0/12	А
C4.5E.10.00/20	В
C4.60.00.00/12	С
C4.68.00.00/14	D
80.00.00.00/1	E
40.00.00.00/2	F
00.00.00.00/2	G