
Lab on Firewall, Ethereal, ICMP and ARP

in SANDBOX lab (PL112)

CSE398: Network Systems Design, Lehigh University
Instructor: Dr. Liang Cheng, Assistant Professor, Computer Science and Engineering

Lab Graduate Assistant: Yaoyao Zhu

March 16th, 2005

Introduction

This lab session includes two parts:

1. Configuring firewalls using iptables in Linux;
2. Using ethereal to capture network packets and observe the packets in various layers;

Each machine has one network interface cards (NIC), eth0. Their IP-address configurations
are DHCP enabled.

The eth0 interface belongs to a 192.168.1.0/24 network and is connected with a switch,
which enables an Internet connection. A machine with an IP address 192.168.1.200 is
configured and activated in this 192.168.1.0/24 network to be used for ping checking
functionality.

Procedure

Firewall
1. Make a temporary directory called “temp” and perform the rest of the steps under

“temp” directory.
2. Open a terminal window. Try to ping localhost, 192.168.1.200, and

www.lehigh.edu. They all should be ping-able, otherwise please ask the lab graduate
assistant for help.

3. Open a web browser, and visit http://www.cse.lehigh.edu/~cheng/Teaching/CSE398-
05/firewall-031605.tar to download firewall-031605.tar to the temp
directory that you have just created.

4. Untar the firewall-031605.tar using “tar –xvf firewall-031605.tar”.
It will automatically create a firewall-031605 sub-directory.

5. Change directory to firewall-031605. And modify all the script files to be
executable by using “chmod 700 *”.

6. Study the firewall script accept-all based on the Linux command iptables,
which has been briefly described in the appendix of this document.

7. Run the script accept-all using “./accept-all”. Then try to ping localhost,
192.168.1.200, and www.lehigh.edu. They all should be ping-able, otherwise please
ask the lab graduate assistant for help.

8. Study the firewall script deny-all based on the Linux command iptables, which
has been briefly described in the appendix of this document.

9. Run the script deny-all using “./deny-all”. Then try to ping localhost,
192.168.1.200, and www.lehigh.edu. They all should NOT be ping-able, otherwise
please ask the lab graduate assistant for help.

10. Modify the deny-all script to enable the Loopback interface.
11. Run the script deny-all using “./deny-all”. Then try to ping localhost, and

it should be ping-able.
Then try to ping 192.168.1.200, and www.lehigh.edu. They all should NOT be ping-
able, otherwise please ask the lab graduate assistant for help.

12. Modify the deny-all script to enable the LOCAL_INTERFACE interface.
13. Run the script deny-all using “./deny-all”. Then try to ping localhost, and

it should be ping-able.
Then try to ping 192.168.1.200 and www.lehigh.edu, and they should be ping-able.

14. Run the script accept-all using “./accept-all”. Then try to ping localhost,
192.168.1.200, and www.lehigh.edu. Then they all should be ping-able, otherwise
please ask the lab graduate assistant for help.

15. Study the firewall script block-ip based on the Linux command iptables, which
has been briefly described in the appendix of this document.

16. Run the script block-ip using “./block-ip 192.168.1.200”. Then try to
ping localhost, 192.168.1.200, and www.lehigh.edu. Only “ping 192.168.1.200”
should be blocked.

17. Study the firewall script unblock-ip based on the Linux command iptables,
which has been briefly described in the appendix of this document.

18. Run the script unblock-ip using “./unblock-ip 192.168.1.200”. Then try
to ping localhost, 192.168.1.200, and www.lehigh.edu. The blocked
192.168.1.200 should be enabled to be ping again.

19. Run the script accept-all using “./accept-all”. Then try to ping localhost,
192.168.1.200, and www.lehigh.edu. They all should be ping-able, otherwise please
ask the lab graduate assistant for help.

ethereal
20. Click the main menu and from the “Internet” menu to the “more Internet application”

menu, and run the ethereal application.
21. From the “Capture” menu click “Start”, choose eth0 from the popup dialog, then

click “OK” button to start capturing packets across eth0. Note that eth0 is
connected to the Internet.

22. Go to the course website: http://www.cse.lehigh.edu/~cheng/
23. After the webpage has been correctly displayed, stop packets capturing.
24. Observe TCP three-way handshaking process and the sequence number mechanism.
25. Observe HTTP protocol such as the GET command.
26. Choose the captured TCP packet with SYN and ACK flag, and observe packet details

in various layers.
Ethernet layer: destination and source MAC addresses

IP layer: version, header length, TTL, flag, protocol, source and destination IP
addresses
Transmission layer: source port and destination port, SN, ACK number, header length,
Flag, window size, checksum

Study the ICMP and ARP protocol
27. Try to ping localhost, 192.168.1.200, and www.lehigh.edu. They all should be

ping-able, otherwise please ask the lab graduate assistant for help.
28. Click “Close” from the “File” menu of the ethereal application, which clears the

screen of the captured packets.
29. Start capturing packets across eth0, which is connected to a hub.
30. Ask your neighbor group to ping 192.168.1.200.
31. Observe whether you have captured any ICMP packet because of “ping

192.168.1.200” by your neighbor group. Confirm it from the source IP address of the
ICMP packets. You should be able to capture the ICMP packets from your neighbor
group. If not, please ask the lab graduate assistant for help.

32. Choose any captured ICMP packet, and observe packet details in various layers:
Ethernet layer: destination and source MAC addresses
IP layer: version, header length, TTL, flag, protocol, source and destination IP
addresses
ICMP layer: type, checksum, ID, SN

33. After your observation, click “Close” from the “File” menu of the ethereal application,
which clears the screen of the captured packets.

34. Observe whether you have captured any ARP packet because of “ping
www.ees.lehigh.edu” by your neighbor group. If yes, observe packet details in various
layers.

35. Discuss your observation and confirm it with the lab graduate assistant.
36. What you have observed in terms of the following information?

Ethernet layer: destination and source MAC addresses
IP layer: version, header length, TTL, flag, protocol, source and destination IP
addresses

Last question:
37. Ask the ip address of one of your neighbor. Create your own script to make your

neighbor not being able to ping your machine but you can still ping your neighbor’s
machine. Study the manual of “iptables” by keying in “man iptables”.

Appendix. (from “man iptables”)

NAME
 iptables - administration tool for IPv4 packet filtering and NAT

SYNOPSIS
 iptables [-t table] -[ADC] chain rule-specification [options]
 iptables [-t table] -I chain [rulenum] rule-specification [options]
 iptables [-t table] -R chain rulenum rule-specification [options]
 iptables [-t table] -D chain rulenum [options]
 iptables [-t table] -[LFZ] [chain] [options]
 iptables [-t table] -N chain
 iptables [-t table] -X [chain]
 iptables [-t table] -P chain target [options]
 iptables [-t table] -E old-chain-name new-chain-name

DESCRIPTION
 Iptables is used to set up, maintain, and inspect the tables of IP
 packet filter rules in the Linux kernel. Several different tables may
 be defined. Each table contains a number of built-in chains and may
 also contain user-defined chains.

 Each chain is a list of rules which can match a set of packets. Each
 rule specifies what to do with a packet that matches. This is called a
 ‘target’, which may be a jump to a user-defined chain in the same ta-
 ble.

TARGETS
 A firewall rule specifies criteria for a packet, and a target. If the
 packet does not match, the next rule in the chain is the examined; if
 it does match, then the next rule is specified by the value of the tar-
 get, which can be the name of a user-defined chain or one of the spe-
 cial values ACCEPT, DROP, QUEUE, or RETURN.

 ACCEPT means to let the packet through. DROP means to drop the packet
 on the floor. QUEUE means to pass the packet to userspace (if sup-
 ported by the kernel). RETURN means stop traversing this chain and
 resume at the next rule in the previous (calling) chain. If the end of
 a built-in chain is reached or a rule in a built-in chain with target
 RETURN is matched, the target specified by the chain policy determines
 the fate of the packet.

TABLES
 There are currently three independent tables (which tables are present
 at any time depends on the kernel configuration options and which mod-
 ules are present).

 -t, --table table
 This option specifies the packet matching table which the com-
 mand should operate on. If the kernel is configured with auto-
 matic module loading, an attempt will be made to load the appro-
 priate module for that table if it is not already there.

 The tables are as follows:

 filter This is the default table (if no -t option is passed). It con-
 tains the built-in chains INPUT (for packets coming into the box
 itself), FORWARD (for packets being routed through the box), and
 OUTPUT (for locally-generated packets).

 nat This table is consulted when a packet that creates a new connec-
 tion is encountered. It consists of three built-ins: PREROUTING
 (for altering packets as soon as they come in), OUTPUT (for
 altering locally-generated packets before routing), and
 POSTROUTING (for altering packets as they are about to go out).

 mangle This table is used for specialized packet alteration. Until
 kernel 2.4.17 it had two built-in chains: PREROUTING (for alter-
 ing incoming packets before routing) and OUTPUT (for altering
 locally-generated packets before routing). Since kernel 2.4.18,
 three other built-in chains are also supported: INPUT (for pack-
 ets coming into the box itself), FORWARD (for altering packets
 being routed through the box), and POSTROUTING (for altering
 packets as they are about to go out).
 OPTIONS
 The options that are recognized by iptables can be divided into several
 different groups.

 COMMANDS
 These options specify the specific action to perform. Only one of them
 can be specified on the command line unless otherwise specified below.
 For all the long versions of the command and option names, you need to
 use only enough letters to ensure that iptables can differentiate it
 from all other options.

 -A, --append chain rule-specification
 Append one or more rules to the end of the selected chain. When
 the source and/or destination names resolve to more than one
 address, a rule will be added for each possible address combina-
 tion.

 -D, --delete chain rule-specification

 -D, --delete chain rulenum
 Delete one or more rules from the selected chain. There are two
 versions of this command: the rule can be specified as a number
 in the chain (starting at 1 for the first rule) or a rule to
 match.

 -I, --insert chain [rulenum] rule-specification
 Insert one or more rules in the selected chain as the given rule
 number. So, if the rule number is 1, the rule or rules are
 inserted at the head of the chain. This is also the default if
 no rule number is specified.

 -R, --replace chain rulenum rule-specification
 Replace a rule in the selected chain. If the source and/or des-
 tination names resolve to multiple addresses, the command will
 fail. Rules are numbered starting at 1.

 -L, --list [chain]
 List all rules in the selected chain. If no chain is selected,
 all chains are listed. As every other iptables command, it
 applies to the specified table (filter is the default), so NAT
 rules get listed by
 iptables -t nat -n -L
 Please note that it is often used with the -n option, in order
 to avoid long reverse DNS lookups. It is legal to specify the
 -Z (zero) option as well, in which case the chain(s) will be
 atomically listed and zeroed. The exact output is affected by
 the other arguments given. The exact rules are suppressed until
 you use
 iptables -L -v

 -F, --flush [chain]
 Flush the selected chain (all the chains in the table if none is
 given). This is equivalent to deleting all the rules one by
 one.

 -Z, --zero [chain]
 Zero the packet and byte counters in all chains. It is legal to
 specify the -L, --list (list) option as well, to see the coun-
 ters immediately before they are cleared. (See above.)

 -N, --new-chain chain
 Create a new user-defined chain by the given name. There must
 be no target of that name already.

 -X, --delete-chain [chain]

 Delete the optional user-defined chain specified. There must be
 no references to the chain. If there are, you must delete or
 replace the referring rules before the chain can be deleted. If
 no argument is given, it will attempt to delete every non-
 builtin chain in the table.

 -P, --policy chain target
 Set the policy for the chain to the given target. See the sec-
 tion TARGETS for the legal targets. Only built-in (non-user-
 defined) chains can have policies, and neither built-in nor
 user-defined chains can be policy targets.

 -E, --rename-chain old-chain new-chain
 Rename the user specified chain to the user supplied name. This
 is cosmetic, and has no effect on the structure of the table.

 -h Help. Give a (currently very brief) description of the command
 syntax.

 PARAMETERS
 The following parameters make up a rule specification (as used in the
 add, delete, insert, replace and append commands).

 -p, --protocol [!] protocol
 The protocol of the rule or of the packet to check. The speci-
 fied protocol can be one of tcp, udp, icmp, or all, or it can be
 a numeric value, representing one of these protocols or a dif-
 ferent one. A protocol name from /etc/protocols is also
 allowed. A "!" argument before the protocol inverts the test.
 The number zero is equivalent to all. Protocol all will match
 with all protocols and is taken as default when this option is
 omitted.

 -s, --source [!] address[/mask]
 Source specification. Address can be either a network name, a
 hostname (please note that specifying any name to be resolved
 with a remote query such as DNS is a really bad idea), a network
 IP address (with /mask), or a plain IP address. The mask can be
 either a network mask or a plain number, specifying the number
 of 1’s at the left side of the network mask. Thus, a mask of 24
 is equivalent to 255.255.255.0. A "!" argument before the
 address specification inverts the sense of the address. The flag
 --src is an alias for this option.

 -d, --destination [!] address[/mask]
 Destination specification. See the description of the -s

 (source) flag for a detailed description of the syntax. The
 flag --dst is an alias for this option.

 -j, --jump target
 This specifies the target of the rule; i.e., what to do if the
 packet matches it. The target can be a user-defined chain
 (other than the one this rule is in), one of the special builtin
 targets which decide the fate of the packet immediately, or an
 extension (see EXTENSIONS below). If this option is omitted in
 a rule, then matching the rule will have no effect on the
 packet’s fate, but the counters on the rule will be incremented.

 -i, --in-interface [!] name
 Name of an interface via which a packet is going to be received
 (only for packets entering the INPUT, FORWARD and PREROUTING
 chains). When the "!" argument is used before the interface
 name, the sense is inverted. If the interface name ends in a
 "+", then any interface which begins with this name will match.
 If this option is omitted, any interface name will match.

 -o, --out-interface [!] name
 Name of an interface via which a packet is going to be sent (for
 packets entering the FORWARD, OUTPUT and POSTROUTING chains).
 When the "!" argument is used before the interface name, the
 sense is inverted. If the interface name ends in a "+", then
 any interface which begins with this name will match. If this
 option is omitted, any interface name will match.

 [!] -f, --fragment
 This means that the rule only refers to second and further frag-
 ments of fragmented packets. Since there is no way to tell the
 source or destination ports of such a packet (or ICMP type),
 such a packet will not match any rules which specify them. When
 the "!" argument precedes the "-f" flag, the rule will only
 match head fragments, or unfragmented packets.

 -c, --set-counters PKTS BYTES
 This enables the administrator to initialize the packet and byte
 counters of a rule (during INSERT, APPEND, REPLACE operations).
 MATCH EXTENSIONS
 iptables can use extended packet matching modules. These are loaded in
 two ways: implicitly, when -p or --protocol is specified, or with the
 -m or --match options, followed by the matching module name; after
 these, various extra command line options become available, depending
 on the specific module. You can specify multiple extended match mod-
 ules in one line, and you can use the -h or --help options after the

 module has been specified to receive help specific to that module.

 The following are included in the base package, and most of these can
 be preceded by a ! to invert the sense of the match.

 tcp
 These extensions are loaded if ‘--protocol tcp’ is specified. It pro-
 vides the following options:

 --source-port [!] port[:port]
 Source port or port range specification. This can either be a
 service name or a port number. An inclusive range can also be
 specified, using the format port:port. If the first port is
 omitted, "0" is assumed; if the last is omitted, "65535" is
 assumed. If the second port greater then the first they will be
 swapped. The flag --sport is a convenient alias for this
 option.

 --destination-port [!] port[:port]
 Destination port or port range specification. The flag --dport
 is a convenient alias for this option.

 --tcp-flags [!] mask comp
 Match when the TCP flags are as specified. The first argument
 is the flags which we should examine, written as a comma-sepa-
 rated list, and the second argument is a comma-separated list of
 flags which must be set. Flags are: SYN ACK FIN RST URG PSH ALL
 NONE. Hence the command
 iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN
 will only match packets with the SYN flag set, and the ACK, FIN
 and RST flags unset.

 [!] --syn
 Only match TCP packets with the SYN bit set and the ACK and FIN
 bits cleared. Such packets are used to request TCP connection
 initiation; for example, blocking such packets coming in an
 interface will prevent incoming TCP connections, but outgoing
 TCP connections will be unaffected. It is equivalent to --tcp-
 flags SYN,RST,ACK SYN. If the "!" flag precedes the "--syn",
 the sense of the option is inverted.

 --tcp-option [!] number
 Match if TCP option set.

 --mss value[:value]
 Match TCP SYN or SYN/ACK packets with the specified MSS value

 (or range), which control the maximum packet size for that con-
 nection.

 icmp
 This extension is loaded if ‘--protocol icmp’ is specified. It pro-
 vides the following option:

 --icmp-type [!] typename
 This allows specification of the ICMP type, which can be a
 numeric ICMP type, or one of the ICMP type names shown by the
 command
 iptables -p icmp -h

