CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

- Classification & forwarding (Chapter 9)
- Switching fabrics (Chapter 10)
- Summary and homework

Recall: Packet Demultiplexing

- Used with layered protocols
- Packet proceeds through one layer at a time (inefficient)
 - On input, software in each layer chooses module at next higher layer
 - On output, type field in each header specifies encapsulation
 - Inefficient b/c sequential processing among layers

Instructor: Dr. Liang Cheng

03/14/05

Packet Classification

- Alternative to demultiplexing for higher speed
- Considers all layers at the same time
- Linear in number of fields
- Two possible implementations
 - Software
 - Hardware

Instructor: Dr. Liang Cheng

Example Classification

- Classify Ethernet frames carrying traffic to Web server
- Specify exact header contents in rule set
- Example
 - Ethernet type field specifies IP:
 - IP type field specifies TCP: 2-octet IP type is 6
 - TCP destination port specifies Web server: 2-octet TCP destination port is 80

Instructor: Dr. Liang Cheng

Illustration of Encapsulated Headers

0	4	8	10	16	19	24	31
				ETHERNET DEST. (0-1)			
ETHERNET DESTINATION (2-5)							
ETHERNET SOURCE (0-3)							
ETHERNET SOURCE (4-5)				ETHERNET TYPE			
VERS	HLEN		SERVICE	IP TOTAL LENGTH			
IP IDENT				FLAGS	Ff	RAG. OFFSET	
IP TTL			IP TYPE	IP HDR. CHECKSUM			
IP SOURCE ADDRESS							
IP DESTINATION ADDRESS							
TCP SOURCE PORT				TCP DESTINATION PORT			
TCP SEQUENCE							
TCP ACKNOWLEDGEMENT							
HLEN	NOT US	ED	CODE BITS		TCP	WINDOW	
TCP CHECKSUM				TCP URGENT PTR			
Start Of TCP Data							

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

03/14/05

Software Implementation of Classification

- Compare values in header fields
- Conceptually a logical and of all field comparisons
- Example
 - if ((frame type == 0x0800) && (IP type == 6) && (TCP port == 80))

declare the packet matches the classification;

else

declare the packet does not match the classification;

Optimization?

Instructor: Dr. Liang Cheng

Optimizing Software Classification

- Comparisons performed sequentially ⇒ reorder comparisons to minimize effort
- Assume
 - 95.0% of all frames have frame type 0800₁₆
 - 87.4% of all frames have IP type 6
 - 74.3% of all frames have TCP port 80
 - Values 6 and 80 do not occur in corresponding positions in non-IP packet headers

declare the packet does not match the classification;

• At each step, test the field that will eliminate the most packets

Instructor: Dr. Liang Cheng

Hardware Implementation of Classification

- Can build special-purpose hardware
- Hardware can operate in parallel
- Extract needed fields
- Concatenate bits
- Place result in register
- Perform comparison
- Constant for Web classifier
 - **08.00.06.01.50**₁₆

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

03/14/05

Special Cases Of Classification

Multiple categories

- Classification usually involves multiple categories
- Packets grouped together into flows
- May have a default category
- Each category specified with a rule set
- Variable-size headers
- Dynamic classification

Example Multi-Category Classification

- Flow 1: traffic destined for Web server
- Flow 2: traffic consisting of ICMP echo request packets
- Flow 3: all other traffic (default)

Rule Sets

Web server traffic

- 2-octet Ethernet type is 0800₁₆
- 2-octet IP type is 6
- 2-octet TCP destination port is 80

ICMP echo traffic

- 2-octet Ethernet type is 0800₁₆
- 2-octet IP type is 1
- 1-octet ICMP type is 8

```
if (frame type != 0x0800) {
    send frame to flow 3;
} else if (IP type == 6 && TCP
    destination port == 80) {
    send packet to flow 1;
} else if (IP type == 1 && ICMP
    type == 8) {
    send packet to flow 2;
} else {
    send frame to flow 3;
}
```

Variable-Size Packet Headers

- Fields not at fixed offsets
 - Easily handled with software
- Finite cases can be specified in rules
- Each variable-size header adds one computation step
- In worst case, classification no faster than demultiplexing

Hybrid Classification

- Combines hardware and software mechanisms
 - Hardware used for standard cases
 - Software used for exceptions

Instructor: Dr. Liang Cheng

Basic Types of Classification

Static

- Flows specified in rule sets
- Header fields and values known a priori
- Example ?
- Dynamic
 - Flows created by observing packet stream
 - Values taken from headers
 - Allows fine-grain flows
 - Requires state information
 - Example: ?

Instructor: Dr. Liang Cheng

Forwarding and Flow

- Classification: packet \Rightarrow flow
 - Classification binding is usually 1-to-1
- Forwarding
 - Destination address \Rightarrow packet disposition
 - Flow \Rightarrow packet disposition
 - Forwarding binding can be 1-to-1 or many-to-1
- Flow identification
 - Fine-grain flow creation

Instructor: Dr. Liang Cheng

03/14/05

Forwarding

In a connection-oriented network

- Flow identifiers ↔ connection identifiers
- Efficient forwarding
- In a connectionless network
 - Route for flow determined when flow created
 - Indexing used in place of route lookup
 - Flow identifier corresponds to index of entry in forwarding cache
 - Forwarding cache must be changed when route changes

Instructor: Dr. Liang Cheng

Second Generation Network Systems

- Designed for greater scale
 - Use classification instead of demultiplexing
- Decentralized architecture
 - Additional computational power on each NIC
 - NIC implements classification and forwarding
- High-speed internal interconnection mechanism
 - Interconnects NICs
 - Provides fast data path

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

03/14/05

Classification & forwarding (Chapter 9)
Switching fabrics (Chapter 10)
Summary and homework

Interconnection

- Physical interconnection
 - Physical box with backplane
 - Individual blades plug into backplane slots
 - Each blade contains one or more network connections
- Logical interconnection
 - Known as *switching fabric*
 - Handles transport from one blade to another
 - Becomes bottleneck as number of interfaces scales

Instructor: Dr. Liang Cheng

Illustration of Switching Fabric

Any input port can send to any output port

Instructor: Dr. Liang Cheng

Switching Fabric Properties

- Used inside a single network system
- Interconnection among I/O ports (and possibly CPU)
 - Can transfer unicast, multicast, and broadcast packets?
 - Scales to arbitrary data rate on any port?
 - Scales to arbitrary packet rate on any port?
 - Scales to arbitrary number of ports?
 - Has low overhead?
 - Has low cost?

Instructor: Dr. Liang Cheng

Types of Switching Fabrics

Space-division (separate paths)Time-division (shared medium)

Space-Division Fabric (separate paths)

- Can use multiple paths simultaneously
- Still have port contention

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design

03/14/05

Goals and Solutions

- High speed and low cost
- Separation of physical paths
- Less parallel hardware
- Crossbar design

Space-Division (Crossbar Fabric)

- Allows simultaneous transfer on disjoint pairs of ports
- Can still have port contention

Instructor: Dr. Liang Cheng

Crossbar Fabric with Queuing

- Solving contention
- Queues (FIFOs)
 - Attached to input
 - Attached to output
 - At intermediate points

Instructor: Dr. Liang Cheng

Time-Division Fabric (shared bus)

- Chief advantage: low cost
- Chief disadvantage: low speed

Instructor: Dr. Liang Cheng

Time-Division Fabric (shared memory)

- May be better than shared bus
- Usually more expensive

Instructor: Dr. Liang Cheng

Multi-Stage Fabrics

- Compromise between pure timedivision and pure space-division
- Attempt to combine advantages of each
 - Lower cost from time-division
 - Higher performance from space-division
- Technique: limited sharing

Banyan Fabric

Example of multi-stage fabric

- Features
 - Scalable
 - Self-routing

- Packet queues allowed, but not required
- Basic building block
 - Address added to front of each packet
 - One bit of address used to select output

Instructor: Dr. Liang Cheng

4-Input and 8-Input Banyan **Switches**

Instructor: Dr. Liang Cheng

- Classification & forwarding (Chapter 9)
- Switching fabrics (Chapter 10)
- Summary and homework
 - Classification & forwarding
 - Switching fabric
 - Two basic approaches
 - Time-division has lowest cost
 - Space-division has highest performance
 - Multistage designs compromise between two
 - Banyan fabric

Instructor: Dr. Liang Cheng

Homework (due on 03/21)

- 8.1. (a) Problem 2 of Chapter 8 (Page 115);
 (b) List two protocols that uses raw sockets for their implementation.
- 8.2. Problem 9 of Chapter 10 (page 157; also refer to the graph in the slide#32)
- Question that does not need to be handed in: How Banyan fabric compromises between the time-division and space-division fabric designs?