CSE398: Network Systems Design

Instructor: Dr. Liang Cheng
Department of Computer Science and Engineering
P.C. Rossin College of Engineering & Applied Science
Lehigh University

March 16, 2005
Outline

- Recap
 - Traditional protocol processing systems
 - Start Part II
- Second generation network systems
- Third generation network systems
- Fourth generation network systems
 - Network processor
- Summary and homework
Second Generation Network Systems

- Concurrent with ATM development (early 1990s)
- Purpose: scale to speeds faster than single CPU capacity
- Features
 - Use classification instead of demultiplexing
 - Decentralized architecture to offload CPU
 - Design optimized for fast data path
Second GNS Details

- Multiple network interfaces
 - Powerful NIC
 - Private buffer memory
- High-speed hardware interconnects NICs
- General-purpose processor only handles exceptions
- Sufficient for medium speed interfaces (100 Mbps)
- NIC handles most of layers 1 - 3
- Fast-path forwarding avoids CPU completely
Outline

- Second generation network systems
- Third generation network systems
- Fourth generation network systems
 - Network processor
- Summary and homework
Third Generation Network Systems

- Late 1990s
- Functionality gets partitioned further
- Additional hardware on each NIC
- Almost all packet processing off-loaded from CPU
Third Generation Design

- NIC contains
 - ASIC hardware
 - Embedded processor plus code in ROM

- NIC handles
 - Classification
 - Forwarding
 - Traffic policing
 - Monitoring and statistics
Embedded Processor

- Purpose
 - Handle layer 4 functionality & exception packets
 - Ease of implementation
 - Amenity to change

- Two possibilities
 - Complex Instruction Set Computer (CISC)
 - Reduced Instruction Set Computer (RISC)

- RISC used often because
 - Higher clock rates
 - Smaller
 - Lower power consumption
Protocol Processing in Third Generation Systems

- Special-purpose ASIC for lower layer functions
- Embedded (RISC) processor handles layer 4
- CPU only handles low-demand processing
Problems with Third Generation Systems

- High cost
- Long time to market
- Difficult to simulate/test
- Expensive and time-consuming to change
 - Even trivial changes require silicon respin
 - 18-20 month development cycle
- Little reuse across products
- Limited reuse across versions
- No consensus on overall framework
- No standards for special-purpose support chips
- Requires in-house expertise (ASIC designers)
Outline

- Second generation network systems
- Third generation network systems
- Fourth generation network systems
 - Network processor
- Summary and homework
A Fourth Generation

- **Goal**: combine best features of first, second generation and third generation systems
 - Flexibility of programmable processor
 - High speed of ASICs

- **Technology called** *network processors*
 - A network processor is a special-purpose, programmable hardware device that combines the low cost and flexibility of a RISC processor with the speed and scalability of custom silicon (i.e., ASIC chips). Network processors are building blocks used to construct network systems.
Potential Advantages

- Relatively low cost
- Straightforward hardware interface
- Facilities to access
 - Memory
 - Network interface devices
- Programmable
- Ability to scale to higher
 - Data rates
 - Packet rates
The Promise of Programmability

- For producers
 - Lower initial development costs
 - Reuse software in later releases and related systems
 - Faster time-to-market
 - Same high speed as ASICs

- For consumers
 - Much lower product cost
 - Inexpensive (firmware) upgrades
Choice of Instruction Set

- Programmability alone insufficient
- Also need higher speed
- Should network processors have
 - Instructions for specific protocols?
 - Instructions for specific protocol processing tasks?
Instruction Set

- Need to choose one instruction set
- No single instruction set best for all uses
- Other factors
 - Power consumption
 - Heat dissipation
 - Cost
Scalability

- Two primary techniques
 - Parallelism
 - Data pipelining

- Questions
 - How many processors?
 - How should they be interconnected?
Costs and Benefits of Network Processors

- Currently
 - More expensive than conventional processor
 - Slower than ASIC design
- Where do network processors fit?
 - Somewhere in the middle
Achieving Higher Speed

- What is known
 - Must partition packet processing into separate functions
 - To achieve highest speed, must handle each function with separate hardware

- What is unknown
 - Exactly what functions to choose
 - Exactly what hardware building blocks to use
 - Exactly how building blocks should be interconnected
Functions We have Considered

- Address lookup and packet forwarding
- Error detection and correction
- Fragmentation, segmentation, & reassembly
- Frame and protocol demultiplexing
- Packet classification
- Queueing and packet discard
- Scheduling and timing
- Security: authentication and privacy
- Traffic measurement and policing
- Traffic shaping
Variety of Network Processors

- Economics driving a gold rush
 - NPs will dramatically lower production costs for network systems
 - A good NP design potentially worth lots of $$

- Result
 - Wide variety of architectural experiments
 - Wild rush to try yet another variation
An Interesting Observation

- System developed using ASICs
 - High development cost ($1M)
 - Lower cost to replicate
- System developed using network processors
 - Lower development cost
 - Higher cost to replicate
- Conclusion: amortized cost favors ASICs for most high volume systems
Outline

- Second generation network systems
- Third generation network systems
- Fourth generation network systems
 - Network processor
- Summary and homework
Summary

- Third generation network systems have embedded processor on each NIC
- Network processor is programmable chip with facilities to process packets faster than conventional processor
- Primary motivation is economic
 - Lower development cost than ASICs
 - Higher processing rates than conventional processor
Homework (Due March 21)

- 8.3. Problem 7 of Chapter 11 (page 171)
- Lab report of Lab#3 due on Mar. 23rd.