CSE398: Network Systems Design

Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University

Outline

Recap

- Complexity of network processor designLab time log
- Network processor architectures
- Summary and homework

Network Processor Architectures

- Primary architecture characteristics
- Packet flow
- Software architecture
- Assigning functionality to processor hierarchy

Primary Characteristics

- Processor hierarchy
- Memory hierarchy
- Internal transfer mechanisms
- External interface and communication mechanisms
- Special-purpose hardware
- Polling and notification mechanisms
- Concurrent and parallel execution support
- Programming model and paradigm
- Hardware and software dispatch mechanisms

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 03/23/05

Processing Hierarchy

- One or more embedded RISC processors
- One or more specialized coprocessors
- Multiple I/O processors
- One or more fabric interfaces
- One or more data transfer units

Processor Hierarchy – Cont'd

 Type 	Programmable?	On Chip?
 General purpose CPU 	У	possible
Embedded processor	У	typical
 I/O processor 	У	t
 Coprocessor 	n	t
 Fabric interface 	n	t
 Data transfer unit 	n	t
Framer	n	possible
 Physical transmitter 	n	possible

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 03/23/05

Memory Hierarchy

- Memory measurements
 - Random access latency
 - Sequential access latency
 - Throughput
 - Cost
 - Internal
 - External

Memory Type	Rel. Speed	Approx. Size	On Chip?
Control store	100	10 ³	yes
G.P. Registers†	90	10 ²	yes
Onboard Cache	40	10 ³	yes
Onboard RAM	7	10 ³	yes
Static RAM	2	10 ⁷	no
Dynamic RAM	1	10 ⁸	no

CSE398: Network Systems Design 03/23/05

Internal Transfer Mechanisms

- Programmers are free to choose ... =>
- Internal bus
- Hardware FIFOs
- Transfer registers
- Onboard shared memory

Instructor: Dr. Liang Cheng

External Interface and Communication Mechanisms

- Standard and specialized bus interfaces
- Memory interfaces
- Direct I/O interfaces
- Switching fabric interface

Special-purpose Hardware

- Arbitrator
- I/O manager

Polling and Notification Mechanisms

- Handle asynchronous events
 Arrival of packet
 - Timer expiration
 - Completion of transfer across the fabric
- Two paradigms
 Polling
 Notification

Concurrent Execution Support

- Improves overall throughput
- Multiple threads of execution
- Processor switches context when a thread blocks
- Embedded processor
 - Standard operating system
 - Context switching in software
- I/O processors
 - No operating system
 - Hardware support for context switching
 - Low-overhead or zero-overhead

Instructor: Dr. Liang Cheng

Concurrent Support Questions

- Local or global threads (does thread execution span multiple processors)?
- Forced or voluntary context switching (are threads pre-emptable)?

Hardware and Software Dispatch Mechanisms

- Refers to overall control of parallel operations
- Dispatcher
 - Chooses operation to perform
 - Assigns to a processor

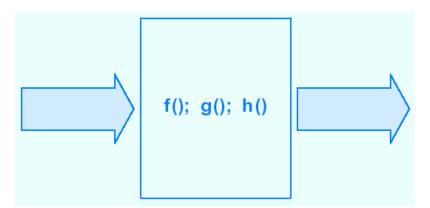
Implicit and Explicit Parallelism

- Explicit parallelism
 - Exposes parallelism to programmer
 - Requires software to understand parallel hardware
- Implicit parallelism
 - Hides parallel copies of functional units
 - Software written as if single copy executing

Network Processor Architectures

- Primary architecture characteristics
- Architecture styles and packet flow
- Software architecture
- Assigning functionality to processor hierarchy

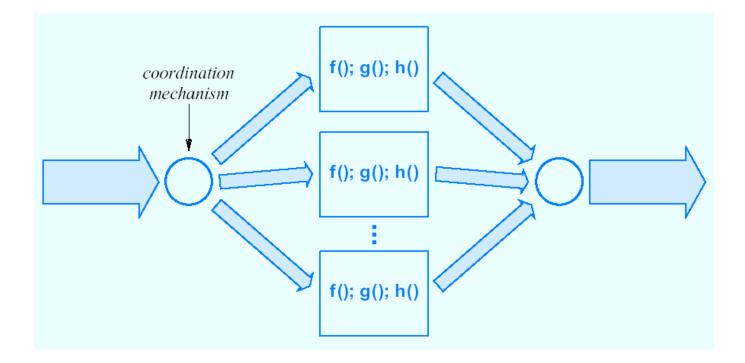
03/23/05


Architecture Styles

- Embedded processor plus fixed coprocessors
- Embedded processor plus programmable I/O processors
- Parallel (number of processors scales to handle load)
- Pipeline processors

Embedded Processor Architecture

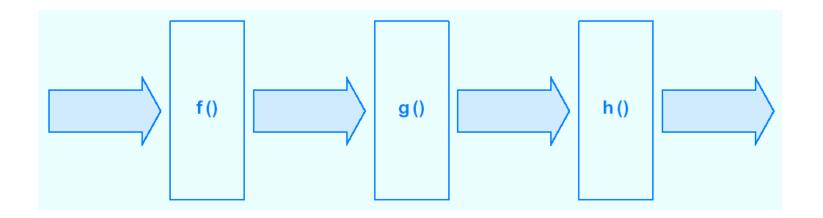
- Single processor
 - Handles all functions
 - Passes packet on
- Known as run-to-completion



Instructor: Dr. Liang Cheng

Parallel Architecture

Each processor handles 1/N of total load



Instructor: Dr. Liang Cheng

Pipeline Architecture

- Each processor handles one function
- Packet moves through "pipeline"

Instructor: Dr. Liang Cheng

CSE398: Network Systems Design 03/23/05

- Embedded processor runs at > wire speed
- Parallel processor runs at < wire speed</p>
- Pipeline processor runs at wire speed

Network Processor Architectures

- Primary architecture characteristics
- Architecture styles and packet flow
- Software architecture
- Assigning functionality to processor hierarchy

Software Architecture

- Central program that invokes coprocessors like subroutines
- Central program that interacts with code on intelligent, programmable I/O processors
- Communicating threads
- Event-driven program
- RPC-style (program partitioned among processors)
- Pipeline (even if hardware does not use pipeline)
- Combinations of the above

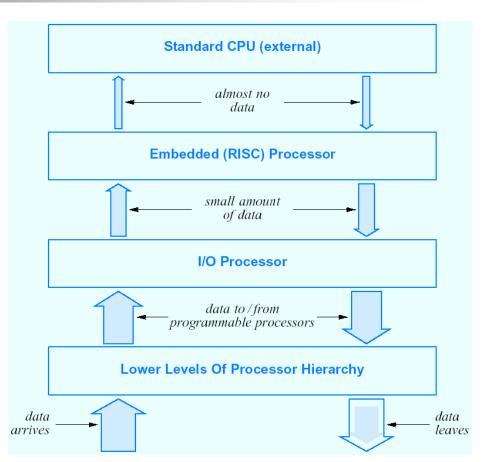
Instructor: Dr. Liang Cheng

Example Uses of Programmable Processors

- 1. Administrative interface
- 2. Classification
- 3. Control of I/O processors
- 4. Exception and error handling
- 5. Forwarding
- 6. High-level egress (e.g., traffic shaping)
- 7. High-level ingress (e.g., reassembly)
- 8. Higher-layer protocols
- 9. Low-level egress operations
- 10. Low-level ingress operations
- 11. Overall management functions
- 12. Routing protocols
- 13. System control

Instructor: Dr. Liang Cheng

Example Uses of Programmable Processors


- General purpose CPU
 - Highest level functionality
 - Administrative interface
 - System control
 - Overall management functions
 - Routing protocols
- Embedded processor
 - Intermediate functionality
 - Higher-layer protocols
 - Control of I/O processors
 - Exception and error handling
 - High-level ingress (e.g., reassembly)
 - High-level egress (e.g., traffic shaping)
- I/O processor
 - Basic packet processing
 - Classification
 - Forwarding
 - Low-level ingress operations
 - Low-level egress operations

Instructor: Dr. Liang Cheng

Packet Flow through Hierarchy

 To maximize performance, packet processing tasks should be assigned to the lowest level processor capable of performing the task.

CSE398: Network Systems Design 03/23/05

Outline

- Recap
- Network processor architectures
- Summary and homework

Instructor: Dr. Liang Cheng

